
Pack Indexing for Template Names
Document #: P3670R1
Date: 2025-05-03
Programming Language C++
Audience: EWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Revisions

R1

• Fix example.

Motivation

We added the ability to index packs of types and expressions in C++26 through P2662R3 [3].
(P2662R3 [3] is now implemented in Clang and GCC, and we got very positive feedback).

However, P2662R3 [3] does not allow the indexing of a pack of templates. There is no good
reason for that. The intent was always to be able to index all packs.

Both P2841R7 [2] and P2989R2 [1] were in flight, and it was not clear to me if either these
papers would impact the indexing of packs of template-names. So, I punt that question to
the present paper. It turns out that P2841R7 [2] has no impact on the design of this paper -
except that indexing a pack of concept template parameter just works - and P2989R2 [1] was
not approved for C++26.

In short, we are proposing to complete the design of pack indexing.

Design

The syntax for indexing a pack of template-name is similar to the syntax to the syntax used to
index a pack of types or expressions.

template < template <typename> typename... TT>
struct S {

template <typename T>
using First = TT...[0]<T>;

};

The indexed pack is a template-name and can be used anywhere any template-name would be
usable. All packs of template template parameters can be indexed (type, variable, concepts).

1

mailto:corentin.jabot@gmail.com
https://wg21.link/P2662R3
https://wg21.link/P2662R3
https://wg21.link/P2662R3
https://wg21.link/P2841R7
https://wg21.link/P2989R2
https://wg21.link/P2841R7
https://wg21.link/P2989R2

Implementation

This paper has not been implemented, but I am confident this can be implemented in Clang
without trouble. I can’t comment on other implementations.

Wording

�? Names of template specializations [temp.names]

A template specialization[temp.spec] can be referred to by a template-id:

simple-template-id:
template-name < template-argument-listopt >

template-id:
simple-template-id
operator-function-id < template-argument-listopt >
literal-operator-id < template-argument-listopt >

template-name:
identifier
simple-template-name
pack-index-template-name

pack-index-template-name:
simple-template-name ... [constant-expression]

simple-template-name:
identifier

template-argument-list:
template-argument ...opt
template-argument-list , template-argument ...opt

template-argument:
constant-expression
type-id
nested-name-specifieropt template-name
nested-name-specifier template template-name

The component name of a simple-template-id, template-id, or template-name is the first name
in it.

The simple-template-name P in a pack-index-template-name shall denote a pack.

The constant-expression shall be a converted constant expression [expr.const] of type std::size_-
t whose value V , termed the index, is such that 0 ≤ V < sizeof...(P).

A pack-index-template-name is a pack expansion [temp.variadic].

[Note: The pack-index-template-name denotes the type of the V th element of the pack. —end
note]

2

A < is interpreted as the delimiter of a template-argument-list if it follows a name that is not a
conversion-function-id and

• that follows the keyword template or a ~ after a nested-name-specifier or in a classmember
access expression, or

• for which name lookup finds the injected-class-name of a class template or finds any
declaration of a template, or

• that is an unqualified name for which name lookup either finds one or more functions
or finds nothing, or

• that is a terminal name in a using-declarator [namespace.udecl], in a declarator-id [dcl.mean-
ing], or in a type-only context other than a nested-name-specifier [temp.res].

�? Variadic templates [temp.variadic]

In a template parameter pack that is a pack expansion [temp.param]:

• In a sizeof... expression[expr.sizeof]; the pattern is an identifier.

• In a pack-index-expression; the pattern is an identifier.

• In a pack-index-specifier; the pattern is a typedef-name.

• In a pack-index-template-name; the pattern is a simple-template-name.

• In a fold-expression [expr.prim.fold]; the pattern is the cast-expression that contains an
unexpanded pack.

• In a fold expanded constraint[temp.constr.fold]; the pattern is the constraint of that fold
expanded constraint.

[Editor’s note: [...]]

The instantiation of a pack expansion considers items E1, E2, . . . , EN , where N is the number of
elements in the pack expansion parameters. Each Ei is generated by instantiating the pattern
and replacing each pack expansion parameter with its ith element. Such an element, in the
context of the instantiation, is interpreted as follows:

• if the pack is a template parameter pack, the element is

– a typedef-name for a type template parameter pack,

– an id-expression for a constant template parameter pack, or

– a template-name for a template template parameter pack

designating the ith corresponding type, constant, or template template argument;

• if the pack is a function parameter pack, the element is an id-expression designating the
ith function parameter that resulted from instantiation of the function parameter pack
declaration;

3

• if the pack is an init-capture pack, the element is an id-expression designating the variable
introduced by the ith init-capture that resulted from instantiation of the init-capture pack
declaration; otherwise

• if the pack is a structured binding pack, the element is an id-expression designating the
ith structured binding in the pack that resulted from the structured binding declaration.

WhenN is zero, the instantiation of a pack expansion does not alter the syntactic interpretation
of the enclosing construct, even in cases where omitting the pack expansion entirely would
otherwise be ill-formed or would result in an ambiguity in the grammar.

The instantiation of a sizeof... expression[expr.sizeof] produces an integral constant with
value N .

When instantiating a pack-index-expression P , let K be the index of P . The instantiation of P is
the id-expression EK .

When instantiating a pack-index-specifier P , let K be the index of P . The instantiation of P is
the typedef-name EK .

When instantiating a pack-index-template-name P , let K be the index of P . The instantiation of
P is the simple-template-name EK .

[Editor’s note: [...]]

�? Type equivalence [temp.type]

Two template-ids are the same if

• their template-names, operator-function-ids, or literal-operator-ids refer to the same tem-
plate, and

• their corresponding type template-arguments are the same type, and

• the template parameter values determined by their corresponding constant template
arguments[temp.arg.nontype] are template-argument-equivalent (see below), and

• their corresponding template template-arguments refer to the same template.

Two template-ids that are the same refer to the same class, function, or variable.

[Editor’s note: [...]]

If an expression e is type-dependent [temp.dep.expr], decltype(e) denotes a unique depen-
dent type. Two such decltype-specifiers refer to the same type only if their expressions are
equivalent[temp.over.link]. [Note: However, such a type might be aliased, e.g., by a typedef-
name. —end note]

For a type template parameter pack T, T...[constant-expression] denotes a unique dependent
type.

If the constant-expression of a pack-index-specifier is value-dependent, two such pack-index-
specifier s refer to the same type only if their constant-expression s are equivalent [temp.over.link].

4

Otherwise, two such pack-index-specifier s refer to the same type only if their indexes have the
same value.

If the constant-expression of a pack-index-template-name is value-dependent, two such pack-
index-template-names refer to the same template only if their constant-expressions are equiv-
alent [temp.over.link]. Otherwise, two such pack-index-template-names refer to the same
template only if their indexes have the same value.

�? Keywords [gram.key]

New context-dependent keywords are introduced into a program by typedef[dcl.typedef],
namespace[namespace.def], class[class], enumeration[dcl.enum], and template[temp] declara-
tions.

typedef-name:
identifier
simple-template-id

namespace-name:
identifier
namespace-alias

namespace-alias:
identifier

class-name:
identifier
simple-template-id

enum-name:
identifier

template-name:
identifier
simple-template-name
pack-index-template-name

Feature test macros

[Editor’s note: Bump __cpp_pack_indexing to the date of adoption] .

[1] Corentin Jabot and Gašper Ažman. P2989R2: A simple approach to universal template
parameters. https://wg21.link/p2989r2, 6 2024.

[2] Corentin Jabot, Gašper Ažman, James Touton, and Hubert Tong. P2841R7: Concept and
variable-template template-parameters. https://wg21.link/p2841r7, 2 2025.

[3] Corentin Jabot and Pablo Halpern. P2662R3: Pack indexing. https://wg21.link/p2662r3,
12 2023.

[N5008] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N5008

5

https://wg21.link/p2989r2
https://wg21.link/p2841r7
https://wg21.link/p2662r3
https://wg21.link/N5008

	1 Motivation
	2 Design
	3 Implementation
	4 Wording
	5 Names of template specializations
	5.1 Variadic templates

	6 Type equivalence
	7 Keywords
	8 Feature test macros

