Document Number: P3667R0
Date: 2025-04-10

Reply to: J. Daniel Garcia
e-mail: jdgarcia@inf.uc3m.es

Audience: EWIG

Extending range-for loop with an expression statement

J. Daniel Garcia
Computer Science and Engineering Department
University Carlos IIT of Madrid

Abstract

This paper proposes extending the range-based for loop syntax with an expression statement. This form
of statements minimizes the likelihood of forgetting the update of a variable introduced by an init statement
in a range-based for loop.

1 Introduction

Initializers in range-based for loops [1] were introduced in C++20 to solve issues with prvalues that might lead
to undefined behavior.
This has led to a new common pattern while iterating:

std::array vec {2, 4, 6};

for (int i=0; auto x : vec) {
std::println() 1, X);
++i;

}

v[0]
v[1]
v[2]

2
4
6

This allows safe traversal of an iterable, while having a handy way to access to the integer index.
However, one might easily forget updating the index:

std::array vec {2, 4, 6};

for (int i=0; auto x : vec) {
std::println(, 1, X);
// Ouch! Forgot to update i

}

v[0]
v[o0]
v[0]

2
4
6

An obvious extension is to allow the increment to be part of the for statement. P0614 [1] already outlined
as a future direction a range-based for with increment as for (init; auto x : e; inc). However, to the best of
my knowledge this has never been proposed.

jdgarcia@inf.uc3m.es

2 Proposed change
2.1 Before/After

Before After

for (int i = 0; auto x : e) { for (int i = 0; auto x : e; ++i) {
f(x,1); f(x,i);
++i; }

}

2.2 Discussion
2.2.1 Current use

The use of initializers in for-statements is encouraged by some coding guidelines (e.g. CppCoreGuidelines ES.6).
However, the fact that the initialized variable needs to be updated in loop body (and might be forgotten) might
lead to logical errors.

This current state has also a teachability impact as the programmer has to remember to add the update of
the initialized variable at the end of the loop body.

2.2.2 Expected meaning

It might be considered that the proposed meaning is surprising as a possible interpretation is that in a traditional
for loop and a range-based for loop have similarities:

for (int i=0; i<max; ++i) {
/).
}

for (auto x : v) {

/...
}

Consequently the expression x : v may be seen as a termination condition, just like the expression i | max.
However, consider the case of the proposed new syntax.

for (int i=0; x : v; ++i) {
N2

In this case, the programmer might see that the apparent loop variable is i and that it is used in the loop
condition.

However, a different view is that we can read for auto x : v as “for each value x in the range v”. This is
more consistent with the name range-based for loop.

The fact that we have an unrelated variable i was introduced in C++20. So, since then we have the syntax
for range-based for loop with initializers:

for(int i=0; auto x: v) {
}

Thus, in fact, we have two loop variables introduced: i and x. The latter (x) is implicitly updated in the
for statement, while the former (i), needs to be updated in the loop body and may be easily forgotten.

2.2.3 Considering the for-range declaration different from the condition

An alternate design might consider the for-declaration different from the condition.
I am not proposing all the following possibilities:

// Traditional for loop.

// Works today.

for (int i=0; i<max; ++i) {
}

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es6-declare-names-in-for-statement-initializers-and-conditions-to-limit-scope

// Range—based for loop.
// Works today.

for (x:v){

}

// Range—based for loop with initializer.
// Works today.
for (int i=0; x : v) {
++Hi;
}

// Range—based for loop with initializer and condition.
// Not Proposed.
for (int i=0; x : v; i<10) {

/).

.

}

// Range—based for loop with initializer, condition and expression
// Not proposed.

for (int i=0; x : v; i<10; ++i) {

}

// Range—based for loop with initializer, condition and without expression
// Not Proposed.

for (int i=0; x : v; ; +4i) {

}

This would be more complicated from what I currently propose in this paper.

2.2.4 Conflict with multi-range for loops

A conflicting proposal would be to allow multiple ranges in the same for-loop as outlined by P0026 [2].

for (int i = 0; auto x : el; auto y : e2) {
fx,y);

However, such a proposal was presented in 2016 and since then there has been no activity in such direction.
Nevertheless, I am not preventing this approach if it is retaken as a for-range declaration is different from
an expression.

2.2.5 Library solutions

Although a library solution has not been explored, one might envision such a solution based on some kind of
iterator:

for (auto i : indexed{e}) {
std::println(, L.index(), i.value());

Or even in combination with structured bindings:

for (auto [i, x] : indexed{e}.) {

std::println(, 1, X);

However, those solutions assume a specific type for the index (int, std::size_t, ...). Besides they do not
allow for cases where the updated variable(s) might get an update different from plain increment.

2.2.6 Using views::enumerate

One specific solution would be to use std::views::enumerate.

std::array v{2.5, 3.0, 4.5, 5.0, 5.5};
for (auto [i, x] : std::views::enumerate(v)) {
std::println() 1, X);

}

However, this solution has two drawbacks:
e It is not possible to specify the concrete type of the integer index.

e The initial value of the index is fixed to start at 0.

2.2.7 Other uses

The proposed solution does not limit itself to integer indexing and may have other uses:
Consider the following:

enum class flag { none=0, open=1<<0, close=1<<1, read=1<<2, write=1<<3 };
flag next(flag x); // Get next flag option

std::array names { , , , , }
for (auto f = flag::none; auto n : names; f = next(f)) {

do_something(f);

std::println(, n);

}

In this case, the variable f in the for-loop initializer is from an enum type. And in each iteration is updated
by the expression f = next(f).
Such a loop does not seem easy to express with std::views::enumerate.

2.2.8 Current approach
Current approach for the example covered in this paper could be:

std::array vec {1, 2, 3, 4, 5, 6};
for (int i=0; auto x : vec) {
std::println(, i+, x);

}

However, this presents a maintenance burden. Consider now, that we decide to modifiy the loop to print
only even values:

std::array vec {1, 2, 3, 4, 5, 6};
for (int i=0; auto x : vec) {
if (is_even(x)) {
std::println(, i++, X);
}
}

That would incorrectly print indices of even values as the index is only incremented if is_even(x) is true.
However, consider both loops with the proposed solution:

std::array vec {1, 2, 3, 4, 5, 6};
for (int i=0; auto x : vec, ++i) {
std::println() 1, X);

}
for (int i=0; auto x : vec, ++i) {
if (is_even(x)) {
std::println(, 1, X);
}
}

3 Teachability

This proposal improves teachability of the C++ language as it makes regular for loops and range-based for
loops more uniform improving regularity of the language.
We can simply teach that a for loop has:

e Optionally, a possibly comma-separated list of initializations in an init-statement.
e Optionally, one of the followings:

— A condition.

— A for-range-declaration separated with colon from a for-range-initialize
e Optionally, an expression.

In addition to regularity, this proposal allows to avoid simple errors made by programmers when using
range-based for loops.

4 Proposed wording

No proposed wording is provided in this version.

Acknowledgements

Thanks to Thomas K6ppe for his previous work on range-based for with initializers and for providing feedback
and context.

Thanks to Bjarne Stroustrup, Gabriel Dos Reis and Ville Voutilainen for their comments on early versions
of this paper.

References

[1] Thomas Koppe. Range-based for statements with initializer. WG21 proposal P0614R1, ISO/IEC
JTC1/SC22/WG21, November 2017.

[2] Matthew McAtamney-Greenwood. multi-range-based for loops. WG21 proposal P0026, ISO/IEC
JTC1/SC22/WG21, August 2015.

	Introduction
	Proposed change
	Before/After
	Discussion
	Current use
	Expected meaning
	Considering the for-range declaration different from the condition
	Conflict with multi-range for loops
	Library solutions
	Using blueviews::enumerate
	Other uses
	Current approach

	Teachability
	Proposed wording

