
P3516R1: Uninitialized
algorithms for relocation

Louis Dionne
Giuseppe D’Angelo

LEWG — WG21 Hagenberg, Feb 2025

P3516 in a nutshell

● We propose a new family of “specialized memory algorithms”:
std::uninitialized_relocate (+ _n, _backwards variants)

● These algorithms relocate objects from a source range into uninitialized
storage

● Goal is to be used by containers to move elements around in memory
○ Unify the code paths for relocation via move+destroy and/or via trivial relocation

2

P3516 in a nutshell

template <typename FwdIt1, typename FwdIt2>
constexpr FwdIt2
std::uninitialized_relocate(FwdIt1 first, FwdIt1 last, FwdIt2 result)

● Pre:
a. [first, last) is a valid range with live objects;
b. result is the beginning of a range over uninitialized storage

● Post:
a. objects in [first, last) have been destroyed;
b. [result, result + (last-first)) contains live objects

Each one has been relocated from the corresponding object in the source

3

Use case 1: vector insertion
/* Status quo */
vector<T>::emplace(iterator position,
 Args&&... args) {
if (size() == capacity()) { /* ... */ }
if (position == end()) { /* ... */ }
} else {
 T tmp(std::forward<Args>(args)...);

 std::construct_at(std::to_address(end()),
 std::move(back()));
 ++end_;

 std::move_backward(
position, end() - 2, end() - 1);

 *position = std::move(tmp);
}
return position;
}

/* This paper */
vector<T>::emplace(iterator position,
 Args&&... args) {
if (size() == capacity()) { /* ... */ }
if (position == end()) { /* ... */ }
} else {
 T tmp(std::forward<Args>(args)...);

 std::uninitialized_relocate_backward(
position, end(), end() + 1);

 std::construct_at(std::to_address(position),
 std::move(tmp));

 ++end_;
}
return position;
}

4

Use case 2: vector erasure
/* Status quo */
constexpr iterator
vector<T>::erase(iterator first,
 iterator last)
{
 if (first == last)
 return last;

 auto new_end = std::move(last, end(),
 first);
 std::destroy(new_end, end());

 end_ -= (last - first);
 return first;
}

/* This paper */
constexpr iterator
vector<T>::erase(iterator first,
 iterator last)
{
 if (first == last)
 return last;

 std::destroy(first, last);
 std::uninitialized_relocate(last, end(),
 first);

 end_ -= (last - first);
 return first;
}

5

Use case 3: vector reallocation
/* Status quo */

template <class ...Args>
constexpr reference
vector<T>::emplace_back(Args&& ...args) {
 if (size() < capacity()) { ... }

 vector<T> tmp;
 tmp.reserve((size() + 1) * 2);
 std::construct_at(tmp.begin_ + size(), std::forward<Args>(args)...);
 // ... guard destruction of the new element ...

 for (auto& element : *this)
 tmp.emplace_back(std::move_if_noexcept(element));

 // ... disengage guard ...
 ++tmp.end_;

 swap(tmp);
 return back();
}

6

Use case 3: vector reallocation
/* This paper */

// same as before,
// reserve, construct element, ...

if constexpr (is_nothrow_relocatable_v<T>) {
 tmp.end_ = std::uninitialized_relocate(begin(),

end(), tmp.begin_);
 end_ = begin_;
} else {
 for (auto& element : *this)
 tmp.emplace_back(
 std::move_if_noexcept(element)
);
}

// ... disengage guard ...
++tmp.end_;
swap(tmp);
return back();

/* Status quo */

// same as before,
// reserve, construct element, ...

for (auto& element : *this)
 tmp.emplace_back(
 std::move_if_noexcept(element)
);

// ... disengage guard ...
++tmp.end_;
swap(tmp);
return back();

7

Details: how does relocation happen?

● All the algorithms are implemented as loops around the exposition-only
relocate-at function template:

template<class T>
constexpr T* relocate-at(T* dest, T* source)

● This function relocates 1 element from source to dest
○ Via trivial relocation (P2786) if available
○ Otherwise via move+destroy

8

relocate-at does a lot of heavy lifting

● Tackles 2 axis
○ TR vs. move+destroy
○ constant evaluation vs. runtime

● Allows writing streamlined code that relocates objects
● Necessary to implement basic functionality like vector<T>::emplace

9

Life without relocate-at

template<class T>
constexpr T* relocate-at(T* dest, T* source) {
 if constexpr (is_trivially_relocatable_v<T> && is_move_constructible_v<T>) {
 if consteval {
 return relocate-via-move-and-destroy(dest, source);
 } else {
 return trivially_relocate(source, source + 1, dest);
 }
 } else if constexpr (is_trivially_relocatable_v<T>) {
 return trivially_relocate(source, source + 1, dest);
 } else {
 return relocate-via-move-and-destroy(dest, source);
 }
}

10

Exception handling

● If an exception is thrown during a call to std::uninitialized_relocate:
○ all elements of both the source and destination ranges are destroyed;
○ the exception is thrown again.

● Destroying all the objects constructed is common with the other uninitialized_*
algorithms

● Here we also need to fully destroy the source range, otherwise the program
state is unrecoverable

○ Identical conclusions as other relocation papers (cf. P1144)
● Still fulfills the contract of the intended use cases:

○ Vector reallocation won’t use relocation anyhow, if possibly throwing
○ Vector erase/insert in the middle only has the basic guarantee, losing the tail is OK

11

FAQ: Why taking iterators/ranges and not pointers?

● Because it’s more useful: implementation of container functions that call the
relocation algorithms is usually based on iterators

○ Even if the container is contiguous, like std::vector
○ Louis has done work in libc++

● Lowering iterators to pointers is possible for contiguous containers, but one
loses information, and generally wants to avoid doing so

○ Debug/hardened iterators are a thing

● Consistency with the existing specialized memory algorithms, specified in
terms of iterators/ranges

12

FAQ: What about allocator support?

● Pre-existing: none of the specialized memory algorithms has allocator support
● Some implementations (e.g. libstdc++) have private allocator-aware versions
● The proposed algorithms are still perfectly usable usable by

○ Allocator-unaware containers (inplace_vector; containers in Qt / 3rd parties)
○ Allocator-aware containers if the allocator is known not to specialize construct/destroy (e.g.

std::allocator) or does not keep track of the constructed items (e.g.
polymorphic_allocator)

● std::trivially_relocate() has the same “issue” (no support for
allocators)

○ See also P3585R0 (allocator_traits::is_internally_relocatable)
○ Such a trait can be used to enable the uninitialized_relocate algorithms! And not just TR

13

FAQ: Why forward and backward variants?

● Relocation in overlapping ranges requires careful ordering of the operations
● Relocating “to the right” (destination range starts from inside the source

range) requires relocating from the tails, backward
● Not a novelty:

○ std::copy, std::copy_backward
○ std::move, std::move_backward

● Therefore we also propose std::uninitialized_relocate_backward
● Useful in std::vector::insert (in order to “create a window” where to insert)

14

FAQ: Why supporting a throwing relocation?

● A language notion of “relocating constructor” is likely going to be nothrow
○ At least, all papers in the area so far seem to agree on this

● However, as a library notion, relocation needs to be backwards-compatible in
order to be useful

15

FAQ: Why supporting a throwing relocation? (Cont.)

● In order to relocate an object:
○ If possible, use trivial relocation (C++26)
○ (Otherwise, if possible, use language relocation (C++-next))
○ Otherwise, use move+destroy (C++11)

■ Which may actually mean copy+destroy (C++98)
● Some of these may throw! And there’s nothing wrong with that. Code that

cares about a possible throwing relocate already has provisions in place.
○ E.g. std::vector reallocation always copies in that case

● This is similar to throwing moves: containers and algorithms in the library
must support them, even if “we don’t like them”

● P2786 indeed added std::is_nothrow_relocatable

16

FAQ: Does uninitialized_relocate really need to relocate
one element at a time?
● No, that’s just the specification!

● Any implementation worth its salt is going to special-case the performance
sensitive paths anyhow

○ Just like in the existing uninitialized_* algorithms, or in std::copy, std::move, std::rotate, etc.

● Within the algorithms, we can detect if source/destination ranges are
contiguous, and then:

○ if the value_type is trivial (e.g. int) => use “bulk” memmove()
○ If the value_type is TR (e.g. unique_ptr<T>) => use “bulk” std::trivially_relocate()

17

FAQ: Why specifying so many algorithms, when only a few
seem to have direct use cases?
● Consistency with the existing memory algorithms

○ Which already have many variations: default construct, value construct, copy, move, fill
○ Which already come in parallel and range versions

■ That’s why we provided these as well
● Library consistency ought to trump the “perceived” usefulness

18

Suggested Polls

1. Do we want “higher level” relocation facilities that work with types other than
trivially relocatable types for C++26?

2. Do we want such relocation facilities to work with iterators/ranges or pointers?

3. Do we want such relocation facilities to allow potentially-throwing moves?

4. Should we expose relocate-at as a std::relocate_at public function?

19

