P3566R0: You shall not pass char* -
Safety concerns working with
unbounded null-terminated strings

Date: 2025-01-11

Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: SG23

Author: Marco Foco

Contributors: Joshua Krieghauser, Alexey Shevlyakov

Reply to: marco.foco@gmail.com

History

RO

Document creation

Abstract

strings and string views are often used as a safer alternative to null-terminated strings.
Unfortunately they suffer from an implicit assumption at creation/assignment time, and in some
of their functions: the presence of a null-terminator in the input sequence.

The absence of the null-terminator can currently lead to undefined behavior inside these
functions.

There are many cases when the length of the sequence can be computed at compile time, and
we should save those usages. In some other cases, we can turn potential undefined-behaviors
into either well-defined behavior, or "better behaved" undefined behavior (i.e. turning an
unbounded string operation into a bounded string operation).

In this paper we propose to restrict the usage of constructors and functions taking a char*
argumentin string and string view, to improve range-safety in these operations.

Introduction

P3038R0 suggests the use of string and string view as substitute for char*, and
suggests adding range checking to such classes. P3274R0 further clarifies the Ranges profile,
banning subscripting of raw pointers, and introducing a checked indexing operator for strings
and views.

In an effort to improve safety on our codebase, we independently started implementing the
suggestion from P3038R0, and replaced const char*s with string views as much as we
could in our internal APIs.

We realized that, in order to improve memory safety further, we should limit the implicit
construction of string and string view from an unsafe char*, and only allow construction
from types that will bring along the some additional range information (e.g. char[]).

Note: For simplicity of notation, we will often mention string, string view and char*, but
the entire discussion is really about basic string<CharT>, basic_string view<CharT>,
and CharT*.

Proposal

There are a number of other cases in the standard library where null-terminated strings are
expected, and, while we aim in the future to address most of them, this proposal will be mainly
limited to addressing the issues in string and string views, and strictly related usages.

We aim to separate the function that take a naked char* in two categories:

- Functions that can be implemented in a safe way (computing them with bounded memory
access)

- Functions that cannot be implemented safely, and need to deal with unbounded memory
access (e.g. unbounded scan for determining the string length)

In some cases, we will be able to separate functions of the second category (unsafe) into two
functions (one unsafe and one safe):

- The first one, taking a bare char* (unsafe) will compute an unbounded string length at
run-time

- The second one (safe) will capture the bounded types before they decay (e.g. char[N]), and
compute the string length only in the safe region (0..N-1).

We propose to then [[deprecated]] all unsafe usages, and replace them with equivalent
versions tagged versions of the same functions (proposed tag: unsafe length, of type
unsafe length t).

Safe functions in char traits

One important aspect of this proposal is the introduction of a new function in char traits:
length_s. This function is the bounded counterpart of char traits::length s and has
two overloads

template<size t N>
size t length s(const char type (&s)[N]) {...}

size t length s(const char type* s, size t N) {...}

Both versions behave similarly to strnlen_s, returning the number of characters before the
null terminator if that appears before the size provided (or implied by the underlying array), or N
if the terminator was not found.

Changes to std::stringand std::string view

Constructing and assigning

Construction and assignment from char* of both classes requires an unbounded memory scan
to determine the string length. At the moment, this constructor is typically used for both bounded
strings (char []) and unbounded (char*). We want to separate bounded and unbounded
cases, keeping the former and deprecating the latter. We will then introduce a tagged
replacement for the deprecated functions.

Example for string view

Before:
constexpr string view(const char *p) noexcept : data(p),
_size(Traits::length(p)) {...}

After:
[[deprecated]] constexpr string view(const char *p) noexcept
_data(p), _size(Traits::length(p)) {...}

template<size t N>
string view(const char (&p) [N]) noexcept : data(p),
_size(Traits::length s(p, N)) noexcept {...}

explicit constexpr string view(unsafe length t, const char *p)
noexcept : data(p), size(Traits::length(p)) {...}

The bounded-memory-range constructor/assignment will be used when dealing with string
literals and strings built within a fixed-size array. In these cases, we will use N as the length of
the string should no null-terminator be found within the range.

This does not represent a breaking change with respect to status quo, as all the usages with
non-null-terminated char sequences would currently result in undefined behavior (out of
bounds access), and we're just giving a well-defined behavior to this operation.

Member function: copy

The copy member functions of string and string view is bounded by the current object's
length and the count of characters requested, and is therefore considered safe

Member function: compare and operator <=>

The only potentially unsafe member function has signature:

constexpr int compare (const char* s) const;

This member function does not require any unbounded operation because it will exit as soon as
the first difference is encountered.

It will compare the first size() characters of both sequence, and only if they're all equal, it will
check the size () +1 character (s [size () 1), to verify the sequence s terminates correctly.

The non-member overloads of the operator <=> can all be defined in terms of the compare
member function (exactly as today).

Member function: starts with

The potentially unsafe member function has signature:

constexpr bool starts with(const char* s) const;

This member function does not require any unbounded operation because it will exit as soon as
the first difference is encountered.

It will compare at most size () characters from the sequence s (as it doesn't need to verify that
the sequence is terminating).

Member function: ends _with

The potentially unsafe member function has signature:

constexpr bool ends with(const char* s) const;

This member function does not require any unbounded operation because it can compute sz =
length s(s, size()+1)

e |Iftheresultis size () +1 the provided suffix is longer than the current object, and the

result is false
e If the result is smaller, we can compare the sequences by returning
ends with (string view(s, sz))

It will visit at most size () +1 characters from the sequence s.

Member function contains

The potentially unsafe member function has signature:

constexpr bool contains(const char* s) const;

This member function does not require any unbounded operation because it can compute sz =
length s(s, size()+1)
e |Iftheresultis size () +1 the provided suffix is longer than the current object, and the

result is false
e If the result is smaller, we can compare the sequences by returning
contains (string view(s, sz))

It will visit at most size () +1 characters from the sequence s.
Member function find and rfind
The potentially unsafe member functions has signatures:

constexpr size type [r]find(const char* s) const;

This member function does not require any unbounded operation because it can compute sz =
length s(s, size()+1)
e |Iftheresultis size () +1 the provided suffix is longer than the current object, and the

result is false
e If the result is smaller, we can compare the sequences by returning
[r]find(string view(s, sz))

It will visit at most size () +1 characters from the sequence s.

Member Functions find first of, find last of,
find first not of and find last not of

The unsafe member functions has signature (example with find first of):

constexpr size type find first of (const char* s, size type pos = 0)
const;

Here there's no way to deduce an upper bound for the length of s. Like in the
construction/assignment case, we have to split these usages, deprecate the unsafe versions,
and add the tagged member functions:

Example with find_first_of

[[deprecated]] constexpr size type find first of (const char* s,
size type pos = 0) const;

template<size t N>
constexpr size type find first of (const char (&s) [N], size type pos =

0) const noexcept;

constexpr size type find first of (unsafe length t, const char* s,
size type pos = 0) const;

Changes to std::string only
Member function insert

Unsafe member function:

constexpr stringé& insert(size type index, const char* s);

It's impossible to deduce an upper bound for the length of s, so we deprecate the member
function with the usual outcome:

[[deprecated]] string& insert(size type index, const char* s);

template<size t N>
constexpr string& insert(size type index, const char (&s) [N]);

constexpr stringé& insert (unsafe length t, size type index, const char*
s) i

Member function append and operator +=

Unsafe member functions:

constexpr string& append(const char* s);
constexpr string& operator +=(const char* s);

It's impossible to deduce an upper bound for the length of s, so we deprecate the member
function with the usual outcome:

[[deprecated]] constexpr string& append(const char* s);
[[deprecated]] constexpr string& operator +=(const char* s);

template<size t N>

constexpr string& append(const char (&s) [N]);
template<size t N>

constexpr stringé& operator +=(const char (&s) [N]);

constexpr stringé& append(unsafe length t, const char* s);

No tagged replacement can be offered for the operator +=

Member function replace

Unsafe overloads:

constexpr stringé& replace(size type pos, size type count, const char*
cstr) ;

constexpr string& replace(const iterator first, const iterator last,
const char* cstr);

It's impossible to deduce an upper bound for the length of s, so we deprecate the member
function with the usual outcome:

[[deprecated]] constexpr stringé& replace(size type pos, size type
count, const char* cstr);

[[deprecated]] constexpr stringé& replace(const iterator first,
const iterator last, const char* cstr);

template<size t N>

constexpr string& replace(size type pos, size type count, const char
(&s) [N]);

template<size t N>

constexpr string& replace (const iterator first, const iterator last,
const char (&s) [N]);

constexpr stringé& replace (unsafe length t, size type pos, size type
count, const char* cstr);

constexpr stringé& replace (unsafe length t, const iterator first,
const iterator last, const char* cstr);

Non-member operator+

Unsafe overloads:

const stringé& lhs, const Char* rhs);
const char* 1lhs, const stringé& rhs);
string&& lhs, const char* rhs);
const char* 1lhs, stringé&& rhs);

constexpr string operator+
constexpr string operator+
constexpr string operator+

o~ o~ o~ —~

constexpr string operator+

It's impossible to deduce an upper bound for the length of s, so we deprecate the member
function with the usual outcome:

[[deprecated]] constexpr string operator+ (const string& lhs, const
Char* rhs);

[[deprecated]] constexpr string operator+(const char* lhs, const
string& rhs);

[[deprecated]] constexpr string operator+ (string&é& lhs, const char*
rhs) ;

[[deprecated]] constexpr string operator+(const char* lhs, stringé&&
rhs) ;

template<size t N>

constexpr string operator+(const string& 1lhs, const char (&rhs) [N]);
template<size t N>

constexpr string operator+(const char (&lhs) [N], const stringé& rhs);
template<size t N>

constexpr string operator+(string&& lhs, const char (&rhs) [N]);
template<size t N>

constexpr string operator+ (const char (&lhs) [N], stringé&& rhs);

No tagged replacement can be offered for the operator +

Changes to std::zstring view

As a note for zsrting view described in P3081, will need to receive all the changes coming
from string view.

In addition, zstring view will have to guarantee the presence of the null-terminator when
built from bounded-ranges. This can be achieved by computing length s on the provided
sequence, and verifying that the effective length returned is less than N-1 (with N being the
number of characters in the sequence).

Alternatives

e If we want to frame this proposal in the "profiles" framework, we propose to introduce a
new annotation [[ranges deprecated]] which will be used when passing
unbounded memory ranges. This will deprecated the offending constructor selectively,
without incurring in ODR violations (we evaluated other options, where the offending
functions were "disappearing" under the ranges profile, but that would generate ODR
violations in codebases that mix different profile configurations)

e Another alternative is the direct removal of any function marked as [[deprecated]] in
this document

Conclusion

In this paper we proposed to restrict the usage of constructors and functions taking a char*
argument in string and string view, with the scope of improving range-safety of these
operations.

The changes proposed in this document allow to remove or mitigate the effects of undefined
behaviorin string and string view.

Appendix A

Resources on safe C++

e Bjarne Stroustrup :: Approaching C++ Safety - YouTube
A presentation at Core C++ 2023 where Stoustrup present the idea of a "profile"

e P2816R0: Bjarne Stroustrup, Gabriel Dos Reis - "Safety Profiles: Type and resource
Safe programming in ISO Standard C++"
P3274R0: Bjarne Stroustrup - "A framework for Profiles development"
P3081R0: Herb Sutter - "Core safety Profiles: Specification, adoptability, and impact"
P3436R1: Herb Sutter - "Strategy for removing safety-related UB by default"

