
‭P3566R0: You shall not pass `char*` -‬
‭Safety concerns working with‬
‭unbounded null-terminated strings‬
‭Date:‬ ‭2025-01-11‬
‭Project:‬ ‭ISO JTC1/SC22/WG21: Programming Language‬‭C++‬
‭Audience:‬ ‭SG23‬
‭Author:‬ ‭Marco Foco‬
‭Contributors:‬ ‭Joshua Krieghauser, Alexey Shevlyakov‬
‭Reply to:‬ ‭marco.foco@gmail.com‬

‭History‬

‭R0‬
‭Document creation‬

‭Abstract‬
‭string‬‭s and‬‭string_view‬‭s are often used as a safer‬‭alternative to null-terminated strings.‬
‭Unfortunately they suffer from an implicit assumption at creation/assignment time, and in some‬
‭of their functions: the presence of a null-terminator in the input sequence.‬
‭The absence of the null-terminator can currently lead to undefined behavior inside these‬
‭functions.‬
‭There are many cases when the length of the sequence can be computed at compile time, and‬
‭we should save those usages. In some other cases, we can turn potential undefined-behaviors‬
‭into either well-defined behavior, or "better behaved" undefined behavior (i.e. turning an‬
‭unbounded string operation into a bounded string operation).‬
‭In this paper we propose to restrict the usage of constructors and functions taking a‬‭char*‬
‭argument in‬‭string‬‭and‬‭string_view‬‭, to improve range-safety‬‭in these operations.‬

‭Introduction‬
‭P3038R0 suggests the use of‬‭string‬‭and‬‭string_view‬‭as substitute for‬‭char*‬‭, and‬
‭suggests adding range checking to such classes. P3274R0 further clarifies the Ranges profile,‬
‭banning subscripting of raw pointers, and introducing a checked indexing operator for strings‬
‭and views.‬



‭In an effort to improve safety on our codebase, we independently started implementing the‬
‭suggestion from P3038R0, and replaced‬‭const char*‬‭s‬‭with‬‭string_view‬‭s as much as we‬
‭could in our internal APIs.‬

‭We realized that, in order to improve memory safety further, we should limit the implicit‬
‭construction of‬‭string‬‭and‬‭string_view‬‭from an unsafe‬‭char*‬‭, and only allow construction‬
‭from types that will bring along the some additional range information (e.g.‬‭char[]‬‭).‬

‭Note‬‭: For simplicity of notation, we will often mention‬‭string‬‭,‬‭string_view‬‭and‬‭char*‬‭, but‬
‭the entire discussion is really about‬‭basic_string<CharT>‬‭,‬‭basic_string_view<CharT>‬‭,‬
‭and‬‭CharT*‬‭.‬

‭Proposal‬
‭There are a number of other cases in the standard library where null-terminated strings are‬
‭expected, and, while we aim in the future to address most of them, this proposal will be mainly‬
‭limited to addressing the issues in‬‭string‬‭and‬‭string_views‬‭,‬‭and strictly related usages.‬

‭We aim to separate the function that take a naked‬‭char*‬‭in two categories:‬
‭- Functions that can be implemented in a safe way (computing them with‬‭bounded‬‭memory‬
‭access)‬
‭- Functions that cannot be implemented safely, and need to deal with‬‭unbounded‬‭memory‬
‭access (e.g. unbounded scan for determining the string length)‬

‭In some cases, we will be able to separate functions of the second category (unsafe) into two‬
‭functions (one unsafe and one safe):‬
‭- The first one, taking a bare‬‭char*‬‭(unsafe) will‬‭compute an unbounded string length at‬
‭run-time‬
‭- The second one (safe) will capture the bounded types before they decay (e.g. char[N]), and‬
‭compute the string length only in the safe region (0..N-1).‬

‭We propose to then‬‭[[deprecated]]‬‭all unsafe usages,‬‭and replace them with equivalent‬
‭versions tagged versions of the same functions (proposed tag:‬‭unsafe_length‬‭, of type‬
‭unsafe_length_t‬‭).‬

‭Safe functions in‬‭char_traits‬

‭One important aspect of this proposal is the introduction of a new function in‬‭char_traits‬‭:‬
‭length_s‬‭. This function is the bounded counterpart‬‭of‬‭char_traits::length_s‬‭and has‬
‭two overloads‬



‭template<size_t N>‬
‭size_t length_s(const char_type (&s)[N]) {...}‬

‭size_t length_s(const char_type* s, size_t N) {...}‬

‭Both versions behave similarly to‬‭strnlen_s‬‭, returning‬‭the number of characters before the‬
‭null terminator if that appears before the size provided (or implied by the underlying array), or N‬
‭if the terminator was not found.‬

‭Changes to‬‭std::string‬‭and‬‭std::string_view‬

‭Constructing and assigning‬
‭Construction and assignment from‬‭char*‬‭of both classes‬‭requires an unbounded memory scan‬
‭to determine the string length. At the moment, this constructor is typically used for both bounded‬
‭strings (‬‭char[]‬‭) and unbounded (‬‭char*‬‭). We want to‬‭separate bounded and unbounded‬
‭cases, keeping the former and deprecating the latter. We will then introduce a tagged‬
‭replacement for the deprecated functions.‬

‭Example for‬‭string_view‬

‭Before:‬
‭constexpr string_view(const char *p) noexcept : _data(p),‬
‭_size(Traits::length(p)) {...}‬

‭After:‬
‭[[deprecated]] constexpr string_view(const char *p) noexcept :‬
‭_data(p), _size(Traits::length(p)) {...}‬

‭template<size_t N>‬
‭string_view(const char (&p)[N]) noexcept : _data(p),‬
‭_size(Traits::length_s(p, N)) noexcept {...}‬

‭explicit constexpr string_view(unsafe_length_t, const char *p)‬
‭noexcept : _data(p), _size(Traits::length(p)) {...}‬

‭The bounded-memory-range constructor/assignment will be used when dealing with string‬
‭literals and strings built within a fixed-size array. In these cases, we will use N as the length of‬
‭the string should no null-terminator be found within the range.‬



‭This does not represent a breaking change with respect to status quo, as all the usages with‬
‭non-null-terminated‬‭char‬‭sequences would currently‬‭result in undefined behavior (out of‬
‭bounds access), and we're just giving a well-defined behavior to this operation.‬

‭Member function:‬‭copy‬
‭The copy member functions of‬‭string‬‭and‬‭string_view‬‭is‬‭bounded‬‭by the current object's‬
‭length and the count of characters requested, and is therefore considered safe‬

‭Member function:‬‭compare‬‭and‬‭operator <=>‬
‭The only potentially unsafe member function has signature:‬

‭constexpr int compare(const char* s) const;‬

‭This member function does not require any unbounded operation because it will exit as soon as‬
‭the first difference is encountered.‬

‭It will compare the first size() characters of both sequence, and only if they're all equal, it will‬
‭check the‬‭size()+1‬‭character (‬‭s[size()]‬‭), to verify‬‭the sequence‬‭s‬‭terminates correctly.‬

‭The non-member overloads of the‬‭operator <=>‬‭can all‬‭be defined in terms of the‬‭compare‬
‭member function (exactly as today).‬

‭Member function:‬‭starts_with‬
‭The potentially unsafe member function has signature:‬

‭constexpr bool starts_with(const char* s) const;‬

‭This member function does not require any unbounded operation because it will exit as soon as‬
‭the first difference is encountered.‬

‭It will compare at most‬‭size()‬‭characters from the‬‭sequence‬‭s‬‭(as it doesn't need to verify that‬
‭the sequence is terminating).‬

‭Member function:‬‭ends_with‬
‭The potentially unsafe member function has signature:‬

‭constexpr bool ends_with(const char* s) const;‬

‭This member function does not require any unbounded operation because it can compute‬‭sz =‬
‭length_s(s, size()+1)‬



‭●‬ ‭If the result is‬‭size()+1‬‭the provided suffix is longer than the current object, and the‬
‭result is false‬

‭●‬ ‭If the result is smaller, we can compare the sequences by returning‬
‭ends_with(string_view(s, sz))‬

‭It will visit at most‬‭size()+1‬‭characters from the‬‭sequence‬‭s‬‭.‬

‭Member function‬‭contains‬
‭The potentially unsafe member function has signature:‬

‭constexpr bool contains(const char* s) const;‬

‭This member function does not require any unbounded operation because it can compute‬‭sz =‬
‭length_s(s, size()+1)‬

‭●‬ ‭If the result is‬‭size()+1‬‭the provided suffix is longer‬‭than the current object, and the‬
‭result is false‬

‭●‬ ‭If the result is smaller, we can compare the sequences by returning‬
‭contains(string_view(s, sz))‬

‭It will visit at most‬‭size()+1‬‭characters from the‬‭sequence‬‭s‬‭.‬

‭Member function‬‭find‬‭and‬‭rfind‬
‭The potentially unsafe member functions has signatures:‬

‭constexpr size_type [r]find(const char* s) const;‬

‭This member function does not require any unbounded operation because it can compute‬‭sz =‬
‭length_s(s, size()+1)‬

‭●‬ ‭If the result is‬‭size()+1‬‭the provided suffix is longer‬‭than the current object, and the‬
‭result is false‬

‭●‬ ‭If the result is smaller, we can compare the sequences by returning‬
‭[r]find(string_view(s, sz))‬

‭It will visit at most‬‭size()+1‬‭characters from the‬‭sequence‬‭s‬‭.‬

‭Member Functions‬‭find_first_of‬‭,‬‭find_last_of‬‭,‬
‭find_first_not_of‬‭and‬‭find_last_not_of‬

‭The unsafe member functions has signature (example with‬‭find_first_of‬‭):‬



‭constexpr size_type find_first_of(const char* s, size_type pos = 0)‬
‭const;‬

‭Here there's no way to deduce an upper bound for the length of s. Like in the‬
‭construction/assignment case, we have to split these usages, deprecate the unsafe versions,‬
‭and add the tagged member functions:‬

‭Example with find_first_of‬

‭[[deprecated]] constexpr size_type find_first_of(const char* s,‬
‭size_type pos = 0) const;‬

‭template<size_t N>‬
‭constexpr size_type find_first_of(const char (&s)[N], size_type pos =‬
‭0) const noexcept;‬

‭constexpr size_type find_first_of(unsafe_length_t, const char* s,‬
‭size_type pos = 0) const;‬

‭Changes to‬‭std::string‬‭only‬

‭Member function‬‭insert‬
‭Unsafe member function:‬

‭constexpr string& insert(size_type index, const char* s);‬

‭It's impossible to deduce an upper bound for the length of s, so we deprecate the member‬
‭function with the usual outcome:‬

‭[[deprecated]] string& insert(size_type index, const char* s);‬

‭template<size_t N>‬
‭constexpr string& insert(size_type index, const char (&s)[N]);‬

‭constexpr string& insert(unsafe_length_t, size_type index, const char*‬
‭s);‬

‭Member function‬‭append‬‭and‬‭operator +=‬
‭Unsafe member functions:‬

‭constexpr string& append(const char* s);‬
‭constexpr string& operator +=(const char* s);‬



‭It's impossible to deduce an upper bound for the length of s, so we deprecate the member‬
‭function with the usual outcome:‬

‭[[deprecated]] constexpr string& append(const char* s);‬
‭[[deprecated]] constexpr string& operator +=(const char* s);‬

‭template<size_t N>‬
‭constexpr string& append(const char (&s)[N]);‬
‭template<size_t N>‬
‭constexpr string& operator +=(const char (&s)[N]);‬

‭constexpr string& append(unsafe_length_t, const char* s);‬

‭No tagged replacement can be offered for the‬‭operator‬‭+=‬

‭Member function‬‭replace‬
‭Unsafe overloads:‬

‭constexpr string& replace(size_type pos, size_type count, const char*‬
‭cstr);‬
‭constexpr string& replace(const_iterator first, const_iterator last,‬
‭const char* cstr);‬

‭It's impossible to deduce an upper bound for the length of s, so we deprecate the member‬
‭function with the usual outcome:‬

‭[[deprecated]] constexpr string& replace(size_type pos, size_type‬
‭count, const char* cstr);‬
‭[[deprecated]] constexpr string& replace(const_iterator first,‬
‭const_iterator last, const char* cstr);‬

‭template<size_t N>‬
‭constexpr string& replace(size_type pos, size_type count, const char‬
‭(&s)[N]);‬
‭template<size_t N>‬
‭constexpr string& replace(const_iterator first, const_iterator last,‬
‭const char (&s)[N]);‬

‭constexpr string& replace(unsafe_length_t, size_type pos, size_type‬
‭count, const char* cstr);‬
‭constexpr string& replace(unsafe_length_t, const_iterator first,‬
‭const_iterator last, const char* cstr);‬



‭Non-member‬‭operator+‬
‭Unsafe overloads:‬

‭constexpr string operator+(const string& lhs, const Char* rhs);‬
‭constexpr string operator+(const char* lhs, const string& rhs);‬
‭constexpr string operator+(string&& lhs, const char* rhs);‬
‭constexpr string operator+(const char* lhs, string&& rhs);‬

‭It's impossible to deduce an upper bound for the length of s, so we deprecate the member‬
‭function with the usual outcome:‬

‭[[deprecated]] constexpr string operator+(const string& lhs, const‬
‭Char* rhs);‬
‭[[deprecated]] constexpr string operator+(const char* lhs, const‬
‭string& rhs);‬
‭[[deprecated]] constexpr string operator+(string&& lhs, const char*‬
‭rhs);‬
‭[[deprecated]] constexpr string operator+(const char* lhs, string&&‬
‭rhs);‬

‭template<size_t N>‬
‭constexpr string operator+(const string& lhs, const char (&rhs)[N]);‬
‭template<size_t N>‬
‭constexpr string operator+(const char (&lhs)[N], const string& rhs);‬
‭template<size_t N>‬
‭constexpr string operator+(string&& lhs, const char (&rhs)[N]);‬
‭template<size_t N>‬
‭constexpr string operator+(const char (&lhs)[N], string&& rhs);‬

‭No tagged replacement can be offered for the‬‭operator‬‭+‬

‭Changes to‬‭std::zstring_view‬
‭As a note for‬‭zsrting_view‬‭described in P3081, will‬‭need to receive all the changes coming‬
‭from‬‭string_view‬‭.‬
‭In addition,‬‭zstring_view‬‭will have to guarantee the‬‭presence of the null-terminator when‬
‭built from bounded-ranges. This can be achieved by computing‬‭length_s‬‭on the provided‬
‭sequence, and verifying that the effective length returned is less than‬‭N-1‬‭(with‬‭N‬‭being the‬
‭number of characters in the sequence).‬



‭Alternatives‬
‭●‬ ‭If we want to frame this proposal in the "profiles" framework, we propose to introduce a‬

‭new annotation‬‭[[ranges_deprecated]]‬‭which will be used when passing‬
‭unbounded memory ranges. This will deprecated the offending constructor selectively,‬
‭without incurring in ODR violations (we evaluated other options, where the offending‬
‭functions were "disappearing" under the ranges profile, but that would generate ODR‬
‭violations in codebases that mix different profile configurations)‬

‭●‬ ‭Another alternative is the direct removal of any function marked as‬‭[[deprecated]]‬‭in‬
‭this document‬

‭Conclusion‬
‭In this paper we proposed to restrict the usage of constructors and functions taking a‬‭char*‬
‭argument in‬‭string‬‭and‬‭string_view‬‭, with the scope‬‭of improving range-safety of these‬
‭operations.‬

‭The changes proposed in this document allow to remove or mitigate the effects of undefined‬
‭behavior in‬‭string‬‭and‬‭string_view‬‭.‬

‭Appendix A‬
‭Resources on safe C++‬

‭●‬ ‭Bjarne Stroustrup :: Approaching C++ Safety - YouTube‬
‭A presentation at Core C++ 2023 where Stoustrup present the idea of a "profile"‬

‭●‬ ‭P2816R0‬‭: Bjarne Stroustrup, Gabriel Dos Reis - "Safety‬‭Profiles: Type and resource‬
‭Safe programming in ISO Standard C++"‬

‭●‬ ‭P3274R0‬‭: Bjarne Stroustrup - "A framework for Profiles‬‭development"‬
‭●‬ ‭P3081R0‬‭: Herb Sutter - "Core safety Profiles: Specification,‬‭adoptability, and impact"‬
‭●‬ ‭P3436R1‬‭: Herb Sutter - "Strategy for removing safety-related‬‭UB by default"‬


