
Graph Library: Background and Terminology
Document #: P3127r1
Date: 2025-04-13
Project: Programming Language C++
Audience: Library Evolution

SG19 Machine Learning
SG14 Game, Embedded, Low Latency

Revises: P3127r0

Reply-to: Phil Ratzloff (SAS Institute)
phil.ratzloff@sas.com
Andrew Lumsdaine
lumsdaine@gmail.com

Contributors: Kevin Deweese
Muhammad Osama (AMD, Inc)
Jesun Firoz
Michael Wong (Intel)
Jens Maurer
Richard Dosselmann (University of Regina)
Matthew Galati (Amazon)
Guy Davidson (Creative Assembly)
Oliver Rosten

1

mailto:phil.ratzloff@sas.com
mailto:lumsdaine@gmail.com

© ISO/IEC P3127r1

1 Getting Started
This paper is one of several interrelated papers for a proposed Graph Library for the Standard C++ Library.
The Table 1 describes all the related papers.

Paper Status Description
P1709 Inactive Original proposal, now separated into the following papers.
P3126 Active Overview, describes the big picture of what we are proposing.
P3127 Active Background and Terminology provides the motivation, theoretical background, and

terminology used across the other documents.
P3128 Active Algorithms covers the initial algorithms as well as the ones we’d like to see in the future.
P3129 Active Views has helpful views for traversing a graph.
P3130 Active Graph Container Interface is the core interface used for uniformly accessing graph data

structures by views and algorithms. It is also designed to easily adapt to existing graph data
structures.

P3131 Active Graph Containers describes a proposed high-performance compressed_graph container. It
also discusses how to use containers in the standard library to define a graph, and how to
adapt existing graph data structures.

P3337 In process Comparison to other graph libraries on performance and usage syntax. Not published
yet.

Table 1: Graph Library Papers

Reading them in order will give the best overall picture. If you’re limited on time, you can use the following
guide to focus on the papers that are most relevant to your needs.

Reading Guide

— If you’re new to the Graph Library, we recommend starting with the Overview (P3126) paper to
understand the focus and scope of our proposals. You’ll also want to check out how it stacks up against
other graph libraries in performance and usage syntax in the Comparison (P3337) paper.

— If you want to understand the terminology and theoretical background that underpins what we’re
doing, you should read the Background and Terminology (P3127) paper.

— If you want to use the algorithms, you should read the Algorithms (P3128) and Graph Containers (P3131)
papers. You may also find the Views (P3129) and Graph Container Interface (P3130) papers helpful.

— If you want to write new algorithms, you should read the Views (P3129), Graph Container Interface
(P3130), and Graph Containers (P3131) papers. You’ll also want to review existing implementations in the
reference library for examples of how to write the algorithms.

— If you want to use your own graph data structures, you should read the Graph Container Interface
(P3130) and Graph Containers (P3131) papers.

2 Revision History
P3127r0

— Split from the P1709r5 Overview and Introduction section and expanded with more details and examples.
Also added Getting Started section.

P3127r1
— Move text from the Motivation section to the Overview section in P3126.

— Remove the Six Degrees of Kevin Bacon example, a duplication of the same example in P3126.

§2.0 2

https://www.wg21.link/P3126
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3337
https://www.wg21.link/P3126
https://www.wg21.link/P3337
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3131
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3130
https://www.wg21.link/P3131

© ISO/IEC P3127r1

— Update the Direct Representation with C++ code examples, and add content for special cases that occur
in graphs such as self-loops, multigraph, cycle, tree, etc.

— Add a sections on Incident Matrices and Regarding Algorithms.

§2.0 3

© ISO/IEC P3127r1

3 Naming Conventions
Table 2 shows the naming conventions used throughout the Graph Library documents.

Template Variable
Parameter Type Alias Names Description
G Graph

graph_reference_t<G> g Graph reference
GV val Graph Value, value or reference
EL el Edge list
V vertex_t<G> Vertex descriptor

vertex_reference_t<G> u,v Vertex descriptor reference. u is the source
(or only) vertex. v is the target vertex.

VId vertex_id_t<G> uid,vid,seed Vertex id. uid is the source (or only) vertex
id. vid is the target vertex id.

VV vertex_value_t<G> val Vertex Value, value or reference. This can be
either the user-defined value on a vertex, or a
value returned by a function object (e.g. VVF)
that is related to the vertex.

VR vertex_range_t<G> ur,vr Vertex Range
VI vertex_iterator_t<G> ui,vi Vertex Iterator. ui is the source (or only)

vertex iterator. vi is the target vertex iterator.
first,last first and last are the begin and end iterators

of a vertex range.
VVF vvf Vertex Value Function: vvf(u) → vertex value,

or vvf(uid) → vertex value, depending on
requirements of the consuming algorithm or
view.

VProj vproj Vertex info projection function: vproj(u) →
vertex_info<VId,VV> .

partition_id_t<G> pid Partition id.
P Number of partitions.

PVR partition_vertex_range_t<G> pur,pvr Partition vertex range.
E edge_t<G> Edge descriptor

edge_reference_t<G> uv,vw Edge descriptor reference. uv is an edge from
vertices u to v . vw is an edge from vertices v
to w .

EV edge_value_t<G> val Edge Value, value or reference. This can be
either the user-defined value on an edge, or a
value returned by a function object (e.g. EVF)
that is related to the edge.

ER vertex_edge_range_t<G> Edge Range for edges of a vertex
EI vertex_edge_iterator_t<G> uvi,vwi Edge Iterator for an edge of a vertex. uvi is

an iterator for an edge from vertices u to v .
vwi is an iterator for an edge from vertices v
to w .

EVF evf Edge Value Function: evf(uv) → edge value.
EProj eproj Edge info projection function: eproj(uv) →

edge_info<VId,Sourced,EV> .

Table 2: Naming Conventions for Types and Variables

§3.0 4

© ISO/IEC P3127r1

4 Graph Background
For clarity in the material contained in other documents, here we briefly review some of the basic terminology
of graphs. We use commonly accepted terminology for graph data structures and algorithms and specifically
adopt the terminology used in the textbook by Cormen, Leiserson, Rivest, and Stein (“CLRS”) [1]. In defining
terminology that is rich enough, yet precise enough, to be used as the basis of a C++ graph library, we emphasize
the difference between a graph (an abstraction of entities in a domain, along with their relationships) and the
representation of a graph (a structure suitable for use by algorithms and/or for code)1. We note that because of
the precision with which we define representations, there are results that may be unexpected for some.

5 Summary of Key Takeaways
A very brief summary of our terminology is the following:

— A graph comprises a set of vertices {V } and a set of edges {E}, and is written G = {V, E}.

— Expressing algorithms (mathematically as well as in code) requires a representation of a graph, the most
basic of which is an adjacency matrix. An adjacency matrix is constructed using an enumeration of the
vertices, not the vertices themselves.

— In addition to the (dense) adjacency matrix representation, we consider three sparse representations:
coordinate, compressed, and packed coordinate. The sparse forms store indices defined by the enumeration.

— The coordinate and compressed forms of the adjacency matrix2 respectively correspond to representations
of the graph theoretical edge list and adjacency list.

6 Basic Terminology
To model the relationships between entities in some domain, a graph G comprises two sets: a vertex set V ,
whose elements correspond to the domain entities, and an edge set E, whose elements are pairs corresponding to
elements in V that have some relationship with each other. That is, if u and v are members of V that have some
relationship that we wish to capture, then we can express that by the existence of a pair {u, v} in E. We write
G = {V, E} to express that the two sets V and E define a graph G. We can also describe set membership of a
vertex in V or and edge in E with set notation as v ∈ V or e ∈ E, but we will generally try to avoid using too
much purely mathematical notation.

Figures 1a and 1b show two examples of graph models, a network of airline routes between cities and a social
network of names and followers. The figures indicate the domain-specific data to be modeled and the sets V and
E for each graph. Each figure also includes a node and link diagram, a commonly-used graphical3 notation.

6.1 Graph Representation: Enumerating the Vertices
To reason about graphs, and to write algorithms for them, we require a concrete representation of the graph. We
note that a graph and its representation are not the same thing. It is therefore essential that we be precise about
this distinction as we develop a software library of graph algorithms and data structures4.

The representations that we will be using are familiar ones: adjacency matrix, edge list, and adjacency list. We
begin with a process that is so standard that we typically don’t even notice it, but it forms the foundation of all
graph representations: we enumerate the vertices. That is, we assign an index to each element of V and write
V = {v0, v1, . . . vn−1}. Based on that enumeration, elements of E are expressed in the form {vi, vj}. Similarly,
we can enumerate the edges, and write E = {e0, e1, . . . em−1}, though the enumeration of E does not play a

1An example of the kind of ambiguity about graphs arising in typical usage is shown in Appendix A
2the terems coordinate and compressed are taken from linear algebra.
3An unfortunate collision of terminology.
4In fact, if we are to be completely precise, the library we are proposing is one of algorithms and data structures for graph

representations. We will make concessions to commonly accepted terminology, while precisely defining that terminology.

§6.1 5

© ISO/IEC P3127r1

SEA
MSP
SLC

DTW
ATL
BOS

MSP DTW
SEASLC

MSP SLC
BOS SLC
SEA BOS
BOS ATL
SEA MSP
BOS DTW

850
1357
1981
3835
4016
1523
2704
1191

SEA

MSP

BOS

SLC

DTW

ATL

850

1357

1981

3835

1523
2704

1191

Airport Distance (km)
<latexit sha1_base64="Qs4lx608We42x+Xrxviq/GN8r3M=">AAADgHicjVJdb9MwFHUTYFv46uCRBywmqj2UkkxCSBVIG6OChyGK+jVUV5XjusWq7US2gzRFedj7XuFn8c7v4AeA00UsoWNwFUv3XJ977slNwpgzbXz/e81xr12/sbG55d28dfvO3fr2vaGOEkXogEQ8Usch1pQzSQeGGU6PY0WxCDkdhcvD/H70mSrNItk3JzGdCLyQbM4INrY03a79RCFdMJlipfBJlirCM+8NbMCX9qAUDpuwA1EGERojLTDnesliLKJEmok3vOAhgc0nJdJe5yBr/kbvet0S6h0dltDr/qiEDvpHJfTqfS/769TOxVSvNLk6K1e3Cs0KpWogt7qiIOQ1GqiN2lfo5a1rernNSyiX61U3U7zhVXr5Sv5bL3f7D71iJfbxEJWz4otP6zt+y18FXE+CItnZ/3j27bT242F3WmdoFpFEUGkIx1qPAz82E6tmGOHUaieaxpgs8YKObSqxoHqSrv7UDD62lRmcR8oeaeCqWu5IeSL0E3tvPWee9Rb86WQ9Ge61gmct/4M1+QKcxyZ4AB6BXRCA52AfvAVdMADEmTtnzhfnq+u4u+5TNzinOrWi5z6ohNv+BaiXFBk=</latexit>

G = {V, E}
V = {SEA, MSP, SLC, DTW, ATL, BOS}
E = {{MSP, DTW}, {SLC, SEA},

{MSP, SLC}, {BOS, SLC},
{SEA, BOS}, {BOS, ATL},
{SEA, MSP}, {BOS, DTW}}

(a) An undirected graph representing airline routes between cities. Shown are the list of
airports (the vertices) and the list of routes between them (the edges). Also shown are a
node and link diagram and the set-based description.

Sarah

Michael

Jessica

Daniel

Olivia James

Jessica
Sarah
Michael
Daniel
Olivia
James

Names

Olivia
Daniel
Olivia
Michael
Jessica
Michael

James
Olivia
Jessica
Jessica
Sarah
Daniel

Olivia
Sarah

Daniel
Michael

Sarah Olivia

Followers
<latexit sha1_base64="alWdnUQc51TBm8kJK30eODWhtAE=">AAAEp3icnVNdaxNBFJ0mq9b40bQ+CjJYDSmEsPGhSlEoaFEK0kqbNJBZwt3JJBkyO7vMzBbCsj9Nn332zT/gX/DV2Xys+Sg2eGHgzp0z95x7mPEjwbVx3Z9bhaJz5+697fulBw8fPd4p7+61dBgrypo0FKFq+6CZ4JI1DTeCtSPFIPAFu/JH77Pzq2umNA/lpRlHzAtgIHmfUzC21N0tfCU+G3CZgFIwThNFRVrC+COu4Hd2kQS3avgEkxQT0iE6ACH0iEcQhLE0nkVOo/UXTwIwQxUkF6BgmNby/WdOh8DEQuWUaW2FLFQ+gOTLEAiYXtifCX7NIb1Vz0muJy9V/6FkxosPaou4dX3TmTIYIXnjSoUckaONeOYdsw7V1aFuhm1CtGr13KXlcdZpJuZa1P9wzIe7jSS3Fm9Es/YC8llIOoMTJnuz51rqlvfdujsJvJ40Zsn+sff997e9Z7/Ou+UfpBfSOGDSUAFadxpuZDzbznAqWFoisWYR0BEMWMemMrPISyb/LMUvbaWH+6GySxo8qS7eSCDQehz4Fpmp16tnWfGms05s+m+8hMsoNkzSKVE/FtiEOPu0uMcVo0aMbQJUcasVW/cVUGO/dmZCY3Xk9aT1qt44rB9+sW68RdPYRk/Rc1RFDfQaHaNP6Bw1ES2+KJ4WL4qXzoFz5rSc9hRa2JrdeYKWwoE/ztxtxA==</latexit>

G = {V, E}
V = {Sarah, Michael, Jessica, Daniel, James, Olivia}
E = {(Michael, Daniel), (Jessica, Sarah),

(Michael, Jessica), (Olivia, Jessica),
(Sarah, Olivia), (Olivia, James),
(Sarah, Michael), (Olivia, Daniel),
(Daniel, Olivia)}

(b) A directed graph representing followers in a social network. Shown in the diagram are the names
of members (the vertices) and the members they follow (the edges). Since following is a one-way
relationship, we use a directed graph to model it. Also shown are a node and link diagram and the
set-based description.

Figure 1: Graph models of an airline route system and of a social media follower network.

role in standard representations of graphs. The number of elements in V is denoted by |V | and the number of
elements in E is denoted by |E|.

We summarize some remaining terminology about vertices and edges.

— An edge ek may be directed, denoted as the ordered pair ek = (vi, vj), or it may be undirected, denoted as
the (unordered) set ek = {vi, vj}. The edges in E are either all directed or all undirected, corresponding
respectively to a directed graph or to an undirected graph.

— If the edge set E of a directed graph contains an edge ek = (vi, vj), then vertex vj is said to be adjacent to
vertex vi. The edge ek is an out-edge of vertex vi and an in-edge of vertex vj . Vertex vi is the source of
edge ek, while vj is the target of edge ek.

— If the edge set E of an undirected graph contains an edge ek = {vi, vj}, then ek is said to be incident on
the vertices vi and vj . Moreover, vertex vj is adjacent to vertex vi and vertex vi is adjacent to vertex vj .
The edge ek is an out-edge of both vi and vj and it is an in-edge of both vi and vj .

— The neighbors of a vertex vi are all the vertices vj that are adjacent to vi. The set of all the neighbors of vi

is the neighborhood of vi.

— A path is a sequence of vertices v0, v1, . . . , vk−1 such that there is an edge from v0 to v1, an edge from v1 to
v2, and so on. That is, a path is a set of edges (vi, vi+1) ∈ E for i = 0, 1, . . . , k − 2.

There are some special cases that deserve mention, as their presence or absence may determine algorithmic
properties.

— A self-loop is an edge from a vertex vi to itself, that is, there is an edge vi, vi in E.

— An isolated vertex vi is one that has no edge incident on it, that is, a vertex vi for which there is no edge
{vi, vj} nor {vj , vi}.

— A multigraph is a graph G for which there exist multiple edges between the same vertices, i.e., there are
multiple edges {vi, vj} for the same i and j in E.

§6.1 6

© ISO/IEC P3127r1

— A hypergraph is a graph G = {V, E} for which the elements of E are arbitrary subsets of V . That is,
elements of E may be {vi, vj , vk, . . .}. Consideration of hypergraphs is outside the scope of this proposal.

— A hypersparse graph is a graph for which the enumeration is not contiguous. That is for V = {vi, vj , vk, . . .},
with i < j < k < . . . the set {i, j, k, . . .} may not be contiguous and may not start at 0.

— A path is sequence of edges {vi, vj}, {vj , vk}, {vk, vl}, . . . such that every vi is distinct. That is, any vi

appears once and only once in an edge {vj , vi} and once and only once in an edge {vi, vk}.

— A cycle is a path such that every vertex appears twice, that is, for every vi there is an edge {vj , vi} and an
edge {vi, vk}. In terms of the sequence above, a path is a cycle if the second vertex of the last edge is the
first vertex of the first edge.

— A directed acyclic graph (DAG) is a directed graph with no cycles.

— A tree is a connected graph with no cycles. Trees are a special case of graphs but are important enough that
they have their own rich theory (and corresponding software). As such, we omit trees from this proposal
and look forward to separate library proposals for trees.

— A subgraph of G = {V, E} is a graph H = {V, F} such that F is a subset of E.

— A spanning tree is a subgraph of G that is also a tree.

If any of these properties is important to the correct functioning of an algorithm, either positively or negatively,
it will be part of the corresponding requirements of the algorithm. In general we assume that graphs are not
multigraphs, not hyperspase, and that they do not have self-loops.

6.2 Adjacency-Based Representations
We begin our development of graph representations with the almost universally-accepted definition of the
adjacency matrix representation of a graph. The adjacency matrix representation of a graph G is a |V | × |V |
matrix A = (aij) such that, respectively for a directed or undirected graph

aij =
{

1 if (vi, vj) ∈ E
0 otherwise aij = aji =

{
1 if (vi, vj) ∈ E
0 otherwise

That is, aij = 1 if and only if vj is adjacent to vi in the original graph G (hence the name “adjacency matrix“).
We note that the difference between the adjacency matrices for a directed vs an undirected graph is that and the
adjacency matrix for an undirected graph has aji = 1 whenever aij is equal to one. That is, it is symmetric.

Here we can see also why we said that the initial enumeration of V is foundational to representations: The
adjacency matrix is based solely on the indices used in that enumeration. It does not contain the vertices or edges
themselves. The enumeration corresponding to vertices is implicit: the neighbor information for vertex vi is
stored on row i of the matrix. Similarly, we don’t store an edge (vi, vj) explicitly, but rather an indicator as to
whether (vi, vj) exists in E or not.

As a data structure to use for algorithms, the adjacency matrix is not very efficient, neither in terms of storage
(which, at |V | × |V | is prohibitive), nor for computation, because for many graphs, the adjacency matrix contains
almost all zero elements. Instead of storing the entire adjacency matrix, we can simply store the index values of
its non-zero elements. A sparse coordinate adjacency matrix is a container C of pairs (i, j) for every aij in A.

NB: At first glance, it may seem that we have simply created a data structure C that has a pair (i, j) if E in the
original graph has an edge from vi to vj . This is true in the directed case. However, in the undirected case, if
there is an edge between vi and vj , then vi is adjacent to vj , and vj is adjacent to vi. In other words, if there
is an edge between vi and vj in an undirected graph, then both the entries aij and aji are equal to 15 — and
therefore for a single edge between vi and vj , C contains two index pairs: (i, j) and (j, i). The sparse coordinate
representation is commonly known as edge list. However, we caution the reader that C does not store edges, but
rather indices that represent adjacencies between vertices. In the case that C represents an undirected graph,
there is not a 1-1 correspondence between the edges in E and the contents of C.

5That is, the adjacency matrix is symmetric.

§6.2 7

© ISO/IEC P3127r1

Although the sparse coordinate adjacency matrix is much more efficient in terms of storage than the original
adjacency matrix, it isn’t as efficient as it could be. Much more importantly, it is not useful for the types of
operations used by most graph algorithms, which need to be able to get the set of neighbors of a given vertex in
constant time. To support this type of operation, we use a compressed sparse adjacency matrix, which is an array
J with |V | entries, where each J [i] is a linear container of indices {j} such that vj is a neighbor of (is adjacent
to) vi in G. That is j is contained in J [i] if and only if there is an edge (vi, vj) in E (or, equivalently, if there is
a pair (i, j) in C or, equivalently, if aij = 1)6. We note that if (vi, vj) is an edge in an undirected graph, J [i]
will contain j and J [j] will contain i. The common name for this data structure is adjacency list. Although this
name is problematic (for instance, it is not actually a list), it is so widely used that we also use it here—but we
mean specifically that an “adjacency list” is the compressed sparse adjacency matrix representation of a graph7.
Again we emphasize the distinction between a graph and its representation: An adjacency list J is not the same
as the graph G—it is a representation of G, based on an enumeration of the vertices in {V }.

Illustrations of the adjacency-matrix representations of the airline route graph and the electronic instagram graph
are shown in Figures 2 and 3, respectively.

2
0
1
3
5
4

SLC
SEA
MSP
DTW
BOS
ATL

(a) An enumeration
of the airport graph
given in 1a.

<latexit sha1_base64="1hoyjL+Pxw3n2H6Xy3Mqwq+glp0=">AAAC5nicbVLLbtNAFB27PMrwaChLNiOqVKwiO20om0qlbFgWibSVYjcaT66TUcdja+a6UmSlezYsQIgta1Z8Czs+BomJE6Wk5kpndHTOfcwrKZS0GAS/PX/jzt179zcf0IePHj/Zaj3dPrV5aQT0Ra5yc55wC0pq6KNEBeeFAZ4lCs6Sy7dz/+wKjJW5/oDTAuKMj7VMpeDopGHrzxt2yCIFKQ5olMBY6gp5UipuZpWoY0bbAWMsdOg67DnsO/SoW3advABbIowi1mYBXYlrCbUZ0kbVTWX3pm3T3KNr4rq535wZrmb2aAR6tDoajYwcTzAetnaCTlAHa5JwSXaOLnavL378PD4Ztn5Fo1yUGWgUils7CIMC44oblEKB61taKLi45GMYOKp5Bjau6measbZTRizNjYNGVqv/VlQ8s3aaJS4z4zixt725+D9vUGL6Oq6kLkoELRaD0lIxzNn8zdlIGhCopo5wYaTbKxMTbrhA9zOou4Tw9pGb5LTbCV91eu/dbRyTRWyS5+QFeUlCckCOyDtyQvpEeML76H32vvgT/5P/1f+2SPW9Zc0zshb+97+jaMOM</latexit>

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 1 1
1 1 1

1 1
1

1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(b) The adjacency matrix rep-
resentation of the graph given
in Figure 1a, using the enumer-
ation given in Figure 2a.

5

5

2

4

2

0

5 3

0

1

1

5

2

3

01 5

5

2

4

2

0

53

0

1

1

5

2

3

0 1
<latexit sha1_base64="Ah9GC8B10eUvNcXFy3BDuKoxQk4=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYRCswp1ItLAI2FhGMB+QHGFvby9Zs7d77M4FQsh/sLFQxNb/Y+e/cZNcoYkPBh7vzTAzL0wFN+h5387a+sbm1nZhp7i7t39wWDo6bhqVacoaVAml2yExTHDJGshRsHaqGUlCwVrh8G7mt0ZMG67kI45TFiSkL3nMKUErNbujSKHplcpexZvDXSV+TsqQo94rfXUjRbOESaSCGNPxvRSDCdHIqWDTYjczLCV0SPqsY6kkCTPBZH7t1D23SuTGStuS6M7V3xMTkhgzTkLbmRAcmGVvJv7ndTKMb4IJl2mGTNLFojgTLip39robcc0oirElhGpub3XpgGhC0QZUtCH4yy+vkuZlxa9Wqg9X5dptHkcBTuEMLsCHa6jBPdShARSe4Ble4c1Rzovz7nwsWtecfOYE/sD5/AHNM49H</latexit>...

<latexit sha1_base64="Ah9GC8B10eUvNcXFy3BDuKoxQk4=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYRCswp1ItLAI2FhGMB+QHGFvby9Zs7d77M4FQsh/sLFQxNb/Y+e/cZNcoYkPBh7vzTAzL0wFN+h5387a+sbm1nZhp7i7t39wWDo6bhqVacoaVAml2yExTHDJGshRsHaqGUlCwVrh8G7mt0ZMG67kI45TFiSkL3nMKUErNbujSKHplcpexZvDXSV+TsqQo94rfXUjRbOESaSCGNPxvRSDCdHIqWDTYjczLCV0SPqsY6kkCTPBZH7t1D23SuTGStuS6M7V3xMTkhgzTkLbmRAcmGVvJv7ndTKMb4IJl2mGTNLFojgTLip39robcc0oirElhGpub3XpgGhC0QZUtCH4yy+vkuZlxa9Wqg9X5dptHkcBTuEMLsCHa6jBPdShARSe4Ble4c1Rzovz7nwsWtecfOYE/sD5/AHNM49H</latexit>...

(c) The coordinate
sparse adjacency ma-
trix representation
(shown split into two
columns).

51

04

0
1
2
3
4
5

32

2

2
0

50 1
51

5
3

(d) The compressed sparse adjacency
matrix representation.

Figure 2: Adjacency matrix representations of the airport graph model.

2
0
1
3
5
4

Jessica
Sarah
Michael
Daniel
Olivia
James

(a) An enumera-
tion of the instagram
graph given in 1b.

<latexit sha1_base64="m6KQjjMwSICHnmu5/NlpC9Fizl0=">AAAC5nicbVLLbhMxFPUMr2IoBFiysahSsYrG6QOEQCpiw7JIpKmUGUUe505i1eMZ2XeQoiELlmxYgBBbvoFPYYfEryDhTEpaOr3SsY/Ouff6mZZaOYyiX0F45eq16zc2btJbtzfv3O3cu3/kispKGMhCF/Y4FQ60MjBAhRqOSwsiTzUM05NXS3/4DqxThXmL8xKSXEyNypQU6KVx589L9oLFGjIc0TiFqTI1irTSwi5q2cSCdiPGGPfoe+x47HrsUT9se3m7mf+BxzHrsoieCeeTGpPTVtWZ2adtY91253JzVbnbXpOvzT0ag5msj0Zjq6YzTMadragXNcHahJ+SrYPh+2cffm/+OBx3fsaTQlY5GJRaODfiUYlJLSwqqcH3rRyUQp6IKYw8NSIHl9TNMy1Y1ysTlhXWwyBr1PMVtcidm+epz8wFztxFbyle5o0qzJ4mtTJlhWDkaqGs0gwLtnxzNlEWJOq5J0Ja5ffK5ExYIdH/DOovgV88cpsc9Xt8v7f/xt/Gc7KKDfKQPCKPCSdPyAF5TQ7JgMhABh+Dz8GXcBZ+Cr+G31apYXBa84D8F+H3v/TOwz0=</latexit>

A =

2
6666664

1 1
1 1

1
1

1 1 1

3
7777775

(b) The adjacency matrix rep-
resentation of the graph given
in Figure 1b, using the enumer-
ation given in Figure 3a.

5
3
5
1
2
1

4
5
2
2
0
3

5
0

3
1

0 5

(c) The coordinate
sparse adjacency ma-
trix representation.

51

0

34

0
1
2
3
4
5

32

2

5

(d) The compressed sparse adjacency
matrix representation.

Figure 3: Adjacency matrix representations of the instagram graph model.

6.3 Incident Matrices
An Incidence matrix of a directed graph G is a |V | × |E| matrix B = (bij) such that

bij =

 −1 if (vi, vj) ∈ E
1 if (vj , vi) ∈ E
0 otherwise

6The compressed sparse adjacency matrix is identical to the compressed sparse row format from linear algebra
7We concede that “adjacency list” rolls off the tongue much more easily than “compressed sparse adjacency matrix representation

of a graph.”

§6.3 8

© ISO/IEC P3127r1

We note that the product BB⊤ of an incident matrix B is the adjacency matrix of the graph G, i.e., G = BB⊤.

7 Direct Representations
Another approach to representing a graph is to model an adjacency list (e.g., Figure 2d or 3d) directly. That is,
we can represent a vertex as a class and an edge as a class, and use pointers to represent adjacency.

For example, the following structures could be used to directly represent a graph
struct Edge;
struct Vertex;

struct Vertex {
std::forward_list<Edge> edges;
std::string name;

};

struct Arc {
Vertex* tip;
double distance;

};

struct Graph {
std::vector<Vertex> vertices;

};

Much of terminology for graphs still applies in a direct representation, except, of course, we have structures
representing the different components of a graph, rather than their indices. There are a number of variations one
could consider to this representation, such as using std::vector rather than std::forward_list to store outgoing
Arc in a Vertex.

Direct representations of graphs will often be implicitly part of other structures (“embedded”) in a given
application. For example, one might have data structures to represent an electronic circuit:

struct two_terminal {
node* from;
node* to;
double current;

};

struct resistor : public two_terminal {
double conductance;

};

struct capacitor : public two_terminal {
double capacitance;

};

struct node {
std::forward_list<two_terminal> elements;
double voltage;

};

struct circuit {
std::vector<node> nodes;

};

Note that, although structures and fields are differently named, a circuit is inherently a direct representation of a
graph, with nodes as vertices and two_terminal elements as edges.

§8.0 9

© ISO/IEC P3127r1

8 Bipartite Graphs

2

3

0

Hugo Weaving

Carrie-Ann Moss

Tom Cruise

Kelly McGillis

Natalie Portman

Kevin Bacon

5

4

1

(a) Table of ac-
tors.

V for Vendetta

A Few Good Men

Black Swan

Top Gun
2

0

3

1

The Matrix4

(b) Table of movies.

A Few Good Men

The Matrix
V for Vendetta, The Matrix

Black Swan, V for Vendetta

Top Gun, A Few Good Men

Natalie Portman

Kevin Bacon
Tom Cruise

Carrie-Ann Moss
Hugo Weaving

Top GunKelly McGillis

(c) A table of actors and movies they
have appeared in.

A Few Good Men

The Matrix

V for Vendetta
Top Gun

Tom Cruise, Kevin Bacon
Kelly McGillis, Tom Cruise

Carrie-Ann Moss, Hugo Weaving

Hugo Weaving, Natalie Portman
Black Swan Natalie Portman

(d) A table of movies with starring
actors.

Figure 4: Illustrative simplification of IMDB actor and movie data.

So far, we have been considering graphs where edges in E are pairs of vertices, which are taken from a single set
V . We refer to such a graph as a unipartite graph. But consider again the Kevin Bacon example. The source
for the information comprising the Kevin Bacon data is the Internet Movie Database (IMDB). However, the
IMDB does not contain any explicit information about the relationships between actors. Rather it contains files
of tabular data, one of which contains an entry for each movie with the list of actors that have appeared in that
movie, and another of which contains an entry for each actor with the list of movies that actor has appeared in
(“movie-actor” and “actor-movie” tables, respectively). Such tables are shown in Figure 4.8 Thus, a graph, as we
have defined it, cannot model the IMDB.

There is a small generalization we can make to the definition of graph that will result in a suitable abstraction
for modeling the IMDB. In particular, we need one set of vertices corresponding to actors, another set of vertices
corresponding to movies, and then a set of edges corresponding to the relationships between actors and movies.
There are two kinds of relationships to consider actors in movies or movies starring actors. To be well-defined, the
edge set may only contain one kind of relationship. To capture this kind of model, we define a structurally bipartite
graph H = {U, V, E}, where vertex sets U and V are enumerated U = {u0, u1, . . . , un0} and V = {v0, v1, . . . vn1},
and the edge set E consists of pairs (ui, vj) where ui is in U and vj is in V .

The adjacency matrix representation of a structurally bipartite graph is a |U | × |V | matrix A = (aij) such that,

aij =
{

1 if (vi, vj) ∈ E
0 otherwise

From this adjacency matrix representation we can readily construct coordinate and compressed sparse represen-
tations. The only structural difference between the representations of a structurally bipartite graph and that
of a unipartite graph is that of vertex cardinality. That is, in a unipartite graph, edges map from V to V , and
hence the values in the left hand column and in the right hand column of a coordinate representation would
be in the same range: [0, |V |). However, for a structurally bipartite graph, this is no longer the case. Although
the coordinate representation still consists of pairs of vertex indices, the range of values in the left hand column
is [0, |U |), while in the right hand column it is [0, |V |). Similarly, the compressed representation will have |U |
entries, but the values stored in each entry may range from [0, |V |). We note that these are constraints on values,
not on structure.

We distinguish a structurally bipartite graph from simply a bipartite graph because the former applies separate
enumerations to U and V . In customary graph terminology, a bipartite graph is one in which the vertices can
be partitioned into two disjoint sets, such that all of the edges in the graph only connect vertices from one set
to vertices of the other set. However, although the vertices are partitioned, they are still taken from the same

8This is a greatly simplified version of the CSV files that actually comprise the IMDB. The full set of files is available for
non-commercial use at https://datasets.imdbws.com.

§8.0 10

https://datasets.imdbws.com

© ISO/IEC P3127r1

0 0

1 5
10

11
2 2

3 4
42

33
24

10
1
2
3
4

5
0

1
2 4

43
2

(a) Coordinate and compressed sparse adjacency
representations for movies with their starring ac-
tors.

0 1

1 0
00

22
2 4

4 3
43

24
15

00
1
2
3
4

0
1

2
2 4
4
3

5 1
2

(b) Coordinate and compressed sparse adjacency
representations for actors and the movies they
have appeared in.

Figure 5: Sparse adjacency representations (edge lists and adjacency lists) for IMDB actor and movie data.

original vertex set V and have a single enumeration. Whether a graph can be partitioned in this way is a run-time
property inherent to the graph itself (which can be discovered with an appropriate algorithm). This is not a
natural way to model separate categories of entities, such as movies and actors, where entities are categorized
completely independently of each other and it is therefore most appropriate to have independent enumerations
for them. A structurally bipartite graph explicitly captures distinct vertex categories.

We note that a structurally bipartite graph may have an edge (ui, vi), that is, an edge between two vertices with
the same index. Even though ui and vi are not the same vertex, we opt to consider such an edge to still be called
a self-loop.

9 Partitioned Graphs
In contrast to structurally bipartite graphs, there are certainly cases where one would want to maintain two
categories of entities, or otherwise distinguish the vertices, from the same vertex set. In that case, we would use
a partitioned graph, which we define as G = {V, E}, where the vertex set V consists of non-overlapping subsets,
i.e., V = {V0, V1, . . .} which we enumerate as V0 = {v0, v1, . . . , vn0−1}, V1 = {vn0, . . . , vn1−1} and so on. Each Vi

is a partition of V . The total enumeration of V is V = {v0, v1, . . . , vn−1}. Just as each Vi is a partition of V , the
enumeration of each Vi is a partitioning of the enumeration of V .

The edge set E still consists of edges (vi, vj) (or {vi, vj} where, in general, vi and vj may come from any partition.

We note that partitioned graphs are not restricted to two partitions—a partitioned graph can represent an
arbitrary number of partitions, i.e., a multipartite graph (a graph with multiple subsets of vertices such that edges
only go between subsets). While partitioned graphs can be used to model multipartite graphs, partitioned graphs
are not necessarily multipartite; edges can comprise vertices within a partition as well as well as across partitions.

10 Regarding Algorithms

A On Ambiguous Terminology
Here we show how graph terminology in practical use is often ambiguous (and why we were so painstaking in our
definitions). The definitions of graph and adjacency list from The Handbook of Graph Theory, Second Edition is
a typical example:9

D1: A directed graph or digraph G = (V, E) consists of a finite, nonempty set of vertices V and a set of edges
E. Each edge is an ordered pair (v, w) of vertices.

9Although we take this example of ambiguity from the Handbook, in general the Handbook is a rigorous and extensive collection of
important theoretical results in graph theory. We borrow from its formatting conventions here.

§A.0 11

© ISO/IEC P3127r1

E1: A line drawing of a graph G = (V, E) is shown in Figure 1.1.1 [omitted, ed.]. It has vertex-set V =
u,v,w,x and edge-set E = a,b,c,d,e,f.

D9: An adjacency list representation for a graph or digraph G = (V, E) is an array L of |V | lists, one for each
vertex in V . For each vertex i, there is a pointer Li to a linked list containing all vertices j adjacent to i.

The ambiguity occurs between D1/E1 and D9.

In D1, a vertex v ∈ V is an element of unspecified type and in E1 a particular case is given in E1 where each
vertex is a letter. Indeed, in the literature, it is common to identify vertices in V with domain entities that the
graph is modeling (“a vertex is a person”). These are (literally) textbook definitions, and no one would bat an
eye in reading them.

But if we look critically at D9, what is meant by “vertex” is completely ambiguous. The adjacency list in D9 is
representing graph G = {V, E}, that is, by D1, a vertex is a member of V and its type is unspecified. However,
D9 also uses the term “vertex” to refer to indices – “vertex” i indexes Li, the linked list Li stores “vertices” – yet,
it is index values, not vertices that are being stored. Beyond “vertex,” many other terms are ambiguously used
when referring to graphs. Perhaps the most egregious ambiguity is the term “graph” itself – which is used to refer
to the graph G = {V, E}, to the representation of a graph, or even to the entities being modeled by the graph.

A more careful distinction needs to be made between a graph and its representation – and between the abstractions
associated with a graph and the abstractions associated with the representation of a graph. We can’t use the
same term (e.g., “vertex”) to mean two different things.

B From Data to Graph
B.1 Columnar Data
Here we show how one might create an unlabeled edge list from a table of data stored in a CSV file. The
following loads a list of directed edges from a CSV file (the values in each row are assumed to be separated by
whitespace)10. The elements of the first column are considered to be the source vertices and the elements of the
second column are the destination vertices. If the edges also had properties, the third column would contain the
property values. In this example, the edges are loaded into a vector of tuples, which meets the requirements of a
(presumed) sparse_coordinate concept.

auto sparse_coordinate edges = std::vector<std::tuple<vertex_id_t, vertex_id_t>;
auto input = std::ifstream ("input.csv");
vertex_id_t src, dst;
while (input >> src >> dst) {

edges.emplace_back (src, dst);
}

Similarly, we could load a list of undirected edges from a CSV file into a sparse_coordinate structure. Note that,
as discussed above, the coordinate sparse adjacency matrix representation (aka an edge list), contains an entry
(i, j) as well as an entry (j, i) for each undirected edge {vi, vj}. Hence, we add both (src, dst) and (dst, src)
to edges.

auto sparse_coordinate edges = std::vector<std::tuple<vertex_id_t, vertex_id_t, double> edges;
auto input = std::ifstream ("input.csv");
vertex_id_t src, dst;
double val;
while (input >> src >> dst >> val) {

edges.emplace_back (src, dst, val);
edges.emplace_back (dst, src, val);

}

10We take a broad view of what a comma is.

§B.1 12

© ISO/IEC P3127r1

These examples are meant to be illustrative and not necessarily comprehensive (nor efficient). There are, of
course, many ways to define containers that meet the requirements of the edge list concept and many ways to
create an edge list from columnar data.

B.2 Converting an Edge List to an Adjacency List
The following creates a compressed sparse representation (an adjacency list) from a coordinate sparse representation.
The adjacency list is represented as a std::vector<std::vector<vertex_id_t>>;

auto sparse_coordinate edges = std::vector<std::tuple<vertex_id_t, vertex_id_t>;
// Read the edges
auto sparse_compressed adj_list = std::vector<std::vector<vertex_id_t>>;
for (auto [src, dst] : edges) {

if (src >= adj_list.size()) {
adj_list.resize(src + 1);

}
adj_list[src].push_back (dst);

}

We note that the sparse_coordinate representation is agnostic as to whether it was originally created based on
directed edges or undirected edges. An optimization to the sparse coordinate representation would be to use a
packed coordinate representation, which would only maintain a single entry for each undirected edge. In that
case, we would need to have two complementary insertions into the adjacency list for each entry in the packed
coordinate representation.

The following example illustrates the use of a packed coordinate format to construct an adjacency list with an
edge property.

auto packed_sparse_coordinate edges = std::vector<std::tuple<vertex_id_t, vertex_id_t, double>>;
// Read the edges
auto compressed_sparse adj_list = std::vector<std::vector<std::tuple<vertex_id_t, double>>>(edges

.num_vertices();
for (auto [src, dst, val] : edges) {

adj_list[src].push_back (dst, val);
adj_list[dst].push_back (src, val);

}

C Graphs and Sparse Matrices
The relationship between graphs and sparse matrices is natural and important enough that a few words are in
order.

In numerical linear algebra, a sparse matrix is one that only stores elements of interest 11. Elements that are not
stored are assumed to be zero. The information necessary to use a matrix includes the row index, the column
index, and the entry value itself—abstractly a triple (i, j, v) The elements can be stored in coordinate form, where
each triple is stored (either as separate arrays or as tuples in a single array), or in compressed sparse form, which
compresses one of the index dimensions and stores the other index and the value.

A sparse matrix can be considered as a structurally bipartite graph representation. Suppose that we have a
sparse matrix A represented as {(i, j, aij)}. We can create a structurally bipartite J = {U, V, E} such that (i, j)
is in E if and only if {(i, j, aij)} is in A. The coordinate and compressed representations for a sparse matrix are
the same as for the graph (and, in fact, the terminology “coordinate” and “compressed sparse” originate in sparse
numerical linear algebra). For a matrix, the sets U and V have a particular meaning. Either the indices of U
consist of row numbers and V of column numbers, or vice versa. In the former case, a compressed representation
is known as “compressed sparse row.” In the latter case, it is known as “compressed sparse column.”

11These are typically called “non-zeroes”, though the stored value could be zero.

§C.0 13

© ISO/IEC P3127r1

The following code snippet illustrates a sparse matrix vector product when a compressed adjacency representation
is interpreted as a compressed sparse row matrix.

for (auto&& [row, u_neighbors] : make_neighbor_range(graph)) {
for (auto&& [col, val] : u_neighbors) {

y[row] += x[col] * val;
}

}

The following code snippet illustrates a sparse matrix vector product but for a compressed sparse row matrix.

for (auto&& [col, u_neighbors] : make_neighbor_range(graph)) {
for (auto&& [row, v] : u_neighbors) {

y[row] += x[col] * v;
}

}

Acknowledgements
Phil Ratzloff’s time was made possible by SAS Institute.

Portions of Andrew Lumsdaine’s time was supported by NSF Award OAC-1716828 and by the Segmented Global
Address Space (SGAS) LDRD under the Data Model Convergence (DMC) initiative at the U.S. Department
of Energy’s Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute
under Contract DE-AC06-76RL01830.

Michael Wong’s work is made possible by Codeplay Software Ltd., ISOCPP Foundation, Khronos and the
Standards Council of Canada.

Muhammad Osama’s time was made possible by Advanced Micro Devices, Inc.

The authors thank the members of SG19 and SG14 study groups for their invaluable input.

§C.0 14

© ISO/IEC P3127r1

References
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 4 ed.,

2022.

[2] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User Guide and Reference Manual.
Addison-Wesley Professional, Dec. 2001.

§C.0 15

	Getting Started
	Revision History
	Naming Conventions
	Graph Background
	Summary of Key Takeaways
	Basic Terminology
	Graph Representation: Enumerating the Vertices
	Adjacency-Based Representations
	Incident Matrices

	Direct Representations
	Bipartite Graphs
	Partitioned Graphs
	Regarding Algorithms
	On Ambiguous Terminology
	From Data to Graph
	Columnar Data
	Converting an Edge List to an Adjacency List

	Graphs and Sparse Matrices
	Acknowledgements

