Document Number: N5008

Date: 2025-03-15
Revises: N5001
Reply to: Thomas Koppe

Google DeepMind
cxxeditor@gmail.com

Working Draft

Programming Languages — C++

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
fomatting.

N5008

Contents

Foreword

Introduction

1 Scope

2 Normative references

3 Terms and definitions

4 General principles
4.1 Implementation compliance
4.2 Structure of this document
4.3 Syntax notation

5 Lexical conventions
5.1 Separate translation oL
5.2 Phases of translation
5.3 Characters oo
5.4 Comments
5.5 Preprocessing tokenso oo
5.6 Header names
5.7 Preprocessing numbers Lo
5.8 Operators and punctuators
5.9 Alternative tokens
5.10 Tokens e
511 Identifiers
512 Keywords L
5.13 Literals

6 Basics
6.1 Preamble
6.2 Declarations and definitions
6.3 One-definitionrule
6.4 SCope ..o
6.5 Name lookup L
6.6 Program and linkageo oL
6.7 Memory and objectso Lo
6.8 Types
6.9 Program execution 0oL
6.10 Contract assertionso

7 Expressions
7.1 Preamble
7.2 Properties of expressions oL
7.3 Standard conversions
7.4 Usual arithmetic conversions
7.5 Primary expressionso
7.6 Compound expressions oo
7.7 Constant expressionso oL

8 Statements
8.1 Preamble
8.2 Label

Contents

xi

10

.............. 10
.............. 12
.............. 12

13

.............. 13
.............. 13
.............. 14
.............. 17
.............. 17
.............. 18
.............. 19
.............. 19
.............. 19
.............. 20
.............. 20
.............. 21
.............. 21

©ISO/IEC

11

8.3 Expression statement oL oo
8.4 Compound statement or block
8.5 Selection statements
8.6 Iteration statementso,
8.7 Jump statementso
8.8 Assertion statement L L.
8.9 Declaration statement L.
8.10 Ambiguity resolution
9 Declarations
9.1 Preamble
9.2 Specifiers
9.3 Declarators
9.4 Function contract specifiers oL L.
9.5 Initializers
9.6 Function definitions
9.7 Structured binding declarations
9.8 Enumerations o
9.9 Namespaces v v v vt i e e
9.10 The using declaration
9.11 The asm declaration,
9.12 Linkage specifications 0oL
9.13 Attributes
10 Modules
10.1 Module units and purviews L.
10.2 Export declaration L oL L
10.3 Import declaration oL
10.4 Global module fragment 0oL
10.5 Private module fragment oo
10.6 Instantiation context
10.7 Reachabilityo o
11 Classes
11.1 Preamble
11.2 Propertiesof classes
11.3 Classnames v v v v i e e e e e e e
11.4 Classmembers e
11.5 Unions e e
11.6 Local class declarations
11.7 Derived classes
11.8 Member access control
11.9 Imitialization
11.10 Comparisons o e
12 Overloading
12.1 Preamble
12.2 Overload resolution
12.3 Addressof an overload set
12.4 Overloaded operators Lo
12.5 Built-in operators
12.6 User-defined literals
13 Templates
13.1 Preamble e
13.2 Template parameters
13.3 Names of template specializations
13.4 Template arguments oo
13.5 Template constraints L L.
Contents

N5008

©ISO/IEC

111

N5008

13.6 Typeequivalence e 412
13.7 Template declarations L L e 413
13.8 Name resolution L e 434
13.9 Template instantiation and specialization 449
13.10 Function template specializations Lo 461
14 Exception handling 483
14.1 Preamble e 483
14.2 Throwing an exception L L e e e 484
14.3 Stack unwinding 486
14.4 Handling an exception L e 487
14.5 Exception specifications Lo 488
14.6 Special functions L 490
15 Preprocessing directives 492
15.1 Preamble e 492
15.2 Conditional inclusion 494
15.3 Source file inclusion 497
15.4 Resource inclusion e 498
15.5 Module directive e 502
15.6 Header unit importation L L Lo 502
15.7 Macro replacement L e 504
15.8 Line control L 509
15.9 Diagnostic directives L 510
15.10 Pragma directive oL e 510
15.11 Null directive o e 510
15.12 Predefined macro names 510
15.13 Pragma operator 513
16 Library introduction 514
16.1 General L 514
16.2 The C standard library 515
16.3 Method of descriptiono 515
16.4 Library-wide requirements Lo Lo 523
17 Language support library 546
171 General oL 546
17.2 Common definitions L 546
17.3 Implementation properties L e 550
17.4 Arithmetic types e 563
17.5 Startup and termination 565
17.6 Dynamic memory managementot e e e 566
17.7 Type identification 573
17.8 Source location 575
17.9 Exception handling Lo 577
17.10 Contract-violation handling Lo 581
17.11 Imitializer lists o e 584
17.12 CompariSONs v v v i e e e e 585
17.13 Coroutines oo e e 593
17.14 Other runtime support e 598
17.15 Cheaders e 599
18 Concepts library 602
18.1 General 602
18.2 Equality preservation 602
18.3 Header <concepts> SYNnopsiS. o o ot it e e e 603
18.4 Language-related concepts L e 605
18.5 CompariSon Concepts v o vt i e e e e e 610
18.6 Object concepts e e e 613
Contents ©ISO/IEC

v

N5008

18.7 Callable concepts 613
19 Diagnostics library 615
19.1 General 615
19.2 Exception classes L L e 615
193 Assertions e 618
19.4 Error numbers e e e e 619
19.5 System error support L 620
19.6 Stacktrace L 628
19.7 Debugging oL e 634
20 Memory management library 636
20.1 General 636
20.2 MemOTY o e e e 636
20.3 Smart pointers e e 656
20.4 Types for composite class design 684
20.5 MemOTy T€SOUICES v v v ettt e e e e e 695
20.6 Class template scoped_allocator_adaptor 704
21 Metaprogramming library 709
21.1 General L e 709
21.2 Compile-time integer sequenceso 709
21.3 Metaprogramming and type traits L Lo oL 709
21.4 Compile-time rational arithmetic L o 737
22 General utilities library 741
22.1 General e 741
22.2 Utility components e e e e e e 741
22.3 Pairs e e e 748
224 Tuples e 754
22.5 Optional objects 768
22.6 Variants L e 782
22.7 Storage for any type 794
22.8 Expected objects L 799
22.9 Bitsets e 820
22.10 Function objects 826
22.11 Bit manipulation oL L 861
22.12 Header <stdbit.h> Synopsis. L e 864
23 Containers library 867
23.1 General e 867
23.2 Requirements L L e e 867
23.3 Sequence containers i e e e e 903
23.4 Associative containers e 948
23.5 Unordered associative containers L L oL o 969
23.6 Container adaptorso e 995
237 VIEWS . . . e e e 1042
24 Iterators library 1092
24.1 General e 1092
24.2 Header <iterator> Synopsis.« . .o e e e 1092
24.3 Iterator requirements L.l 1100
24.4 Tterator primitives L L 1122
24.5 Tterator adaptors L L 1125
24.6 Stream iterators. L 1151
247 Ran@e acCeSs e e e e e 1157
Contents ©ISO/IEC

A%

N5008

25 Ranges library

25.1
25.2
25.3
254
25.5
25.6
25.7
25.8

General
Header <ranges> synopsis
Range access
Range requirements
Range utilities
Range factories
Range adaptors
Range generators

26 Algorithms library

26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9
26.10
26.11
26.12
26.13

General
Algorithms requirements
Parallel algorithms
Header <algorithm> synopsis
Algorithm result types
Non-modifying sequence operations
Mutating sequence operations
Sorting and related operations
Header <numeric> synopsis
Generalized numeric operations

Specialized <memory> algorithms
Specialized <random> algorithms
C library algorithms

27 Strings library

27.1
27.2
27.3
274
27.5

General
Character traits
String view classes
String classes
Null-terminated sequence utilities

28 Text processing library

28.1
28.2
28.3
28.4
28.5
28.6
28.7

General
Primitive numeric conversions
Localization library
Text encodings identification
Formatting
Regular expressions library
Null-terminated sequence utilities

29 Numerics library

29.1
29.2
29.3
294
29.5
29.6
29.7
29.8
29.9
29.10
29.11

General
Numeric type requirements
The floating-point environment
Complex numbers
Random number generation
Numeric arrays
Mathematical functions for floating-point types
Numbers
Basic linear algebra algorithms
Data-parallel types
C compatibility

30 Time library

30.1
30.2
30.3
30.4

Contents

General
Header <chrono> synopsis
Cpp17Clock requirements
Time-related traits

©ISO/IEC

V1

30.5 Class template duration
30.6 Class template time_point
30.7 Clocks e
30.8 Thecivilcalendar
30.9 Classtemplate hh_ mm_ss.
30.10 12/24 hours functions. L.
30.11 Time zones e
30.12 Formatting
30.13 Parsing.o
30.14 Hash support
30.15 Header <ctime> synopsis.
31 Input/output library
31.1 General
31.2 Jostreams requirements
31.3 Forward declarations L Lo
31.4 Standard iostream objects L.
31.5 Jostreams base classes L.
31.6 Stream buffers.o o L
31.7 Formatting and manipulators 0L
31.8 String-based streamso oL
31.9 Span-based streamso
31.10 File-based streams,
31.11 Synchronized output streams
31.12 Filesystems
31.13 Clibrary files
32 Concurrency support library
321 General
32.2 Requirements L s
32.3 Stoptokens
32.4 Threads
32.5 Atomic operations
32.6 Mutual exclusion L
32.7 Condition variables oo
32.8 Semaphore
32.9 Coordination types
32.10 Futures
32.11 Safe reclamation oL
33 Execution control library
33.1 General
33.2 Queries and queryables oL
33.3 Asynchronous operations L.
33.4 Header <execution> synopsis
33,5 Queries ...
33.6 Schedulers
33.7 Receivers
33.8 Operation stateso oL
33.9 Senders
33.10 Sender/receiver utilities
33.11 Queryable utilities L
33.12 Execution contexts
33.13 Coroutine utilities o oL
Annex A Grammar summary
A1l General
A2 Keywords
A3 Lexical conventions
Contents

N5008

©ISO/IEC

Vil

N5008

A4 Basics 2199
A5 EXpressions oL 2199
A6 Statements L e 2203
A7 Declarations e 2204
A8 Modules 2211
A9 ClasSes . . . o v i 2212
A10 Overloading e 2213
A1l Templates o oL e e 2214
A.12 Exception handling e 2215
A.13 Preprocessing directiveso 2215
Annex B Implementation quantities 2218
Annex C Compatibility 2220
C.1 CHtand ISO C++ 2023 oo 2220
C.2 CH+t+and ISO C++ 2020 o o e e e e 2224
C.3 CH+t+and ISO C++ 2017 o e e e 2228
C4 C++and ISO C++ 2014 o o 2237
C.5 Cttand ISO C++ 2011 o oo e 2240
C.6 Ct+t+and ISO C++ 2003 o oo e 2242
C7 CHrand C . . . o e 2249
C.8 Cstandard library e 2258
Annex D Compatibility features 2260
D.1 General e e 2260
D.2 Non-local use of TU-local entities 2260
D.3 Implicit capture of *this by reference L. 2260
D.4 Deprecated volatile types o . Lo e 2260
D.5 Non-comma-separated ellipsis parameterso .. 2261
D.6 Implicit declaration of copy functions 2261
D.7 Redeclaration of static constexpr data members 0L 2261
D.8 Literal operator function declarations using an identifier 2261
D.9 template keyword before qualified names oo 2262
D.10 has_denorm members in numeric_limits 2262
D.11 Deprecated C macros o it e e e e e 2262
D.12 Deprecated error numbers oL Lo 2262
D.13 Deprecated type traits 2262
D.14 Relational operators L 2264
D15 Tuple. o e e 2264
D.16 Varianto e e 2265
D.17 Deprecated iterator class templateo L L oo 2265
D.18 Deprecated move_iterator accesso 2265
D.19 Deprecated locale category facets L o oL 2266
D.20 Deprecated formatting 2266
D.21 Deprecated filesystem path factory functions oo oL 2266
D.22 Deprecated atomic operationso 2267
Annex E Conformance with UAX #31 2269
E.1 General 2269
E.2 Rl Default identifiers 2269
E.3 R2 Immutable identifiers 2269
E.4 R3 Pattern_ White_Space and Pattern_ Syntax characters 2269
E.5 R4 Equivalent normalized identifierso oo 2270
E.6 Rb Equivalent case-insensitive identifiers L oL 0oL 2270
E.7 R6 Filtered normalized identifiers L oL L 2270
E.8 RYT Filtered case-insensitive identifiers L. 2270
E.9 R8 Hashtag identifiers 2270
Bibliography 2271
Contents ©ISO/IEC

viii

N5008

Cross-references 2272
Cross-references from ISO C++ 2017 2302
Index 2306
Index of grammar productions 2343
Index of library headers 2349
Index of library names 2351
Index of library concepts 2447
Index of implementation-defined behavior 2452

Contents ©ISO/IEC

1X

N5008

Foreword

[This page is intentionally left blank.]

Foreword ©ISO/IEC

X

N5008

Introduction

Clauses and subclauses in this document are annotated with a so-called stable name, presented in square
brackets next to the (sub)clause heading (such as “[lex.token]” for 5.10, “Tokens”). Stable names aid in the
discussion and evolution of this document by serving as stable references to subclauses across editions that
are unaffected by changes of subclause numbering.

Aspects of the language syntax of C++ are distinguished typographically by the use of italic, sans-serif type
or constant width type to avoid ambiguities; see 4.3.

Introduction ©ISO/IEC

X1

N5008

1 Scope [intro.scope]

1 This document specifies requirements for implementations of the C++ programming language. The first such
requirement is that an implementation implements the language, so this document also defines C++. Other
requirements and relaxations of the first requirement appear at various places within this document.

2 (C++ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:2018. C++ provides many facilities beyond those provided by C, including additional data
types, classes, templates, exceptions, namespaces, operator overloading, function name overloading, references,
free store management operators, and additional library facilities.

Scope ©ISO/IEC
1

(1.7)
(1.8)
(1.9)

(1.10)

2

N5008

Normative references lintro.refs]

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 2382, Information technology — Vocabulary
ISO 8601-1:2019, Date and time — Representations for information interchange — Part 1: Basic rules
ISO/IEC 9899:2018, Information technology — Programming languages — C

ISO/IEC/IEEE 9945:2009, Information Technology — Portable Operating System Interface (POSIX®)*
Base Specifications, Issue 7

ISO/IEC/IEEE 9945:2009/Cor 1:2013, Information Technology — Portable Operating System Interface
(POSIX®) Base Specifications, Issue 7 — Technical Corrigendum 1

ISO/IEC/IEEE 9945:2009/Cor 2:2017, Information Technology — Portable Operating System Interface
(POSIX®) Base Specifications, Issue 7 — Technical Corrigendum 2

ISO/IEC 60559:2020, Information technology — Microprocessor Systems — Floating-Point arithmetic
ISO 80000-2:2019, Quantities and units — Part 2: Mathematics
Ecma International, ECMAScript?> Language Specification, Standard Ecma-262, third edition, 1999.

The Unicode Consortium. The Unicode Standard. Available from: https://www.unicode.org/versions/
latest/

1) POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc. This information is given for

the convenience of users of this document and does not constitute an endorsement by ISO or IEC of this product.

2) ECMAScript® is a registered trademark of Ecma International. This information is given for the convenience of users of
this document and does not constitute an endorsement by ISO or IEC of this product.

Normative references ©ISO/IEC

2

https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/

(2.1)

(2.2)

N5008

3 Terms and definitions lintro.defs]

For the purposes of this document, the terms and definitions given in ISO/IEC 2382, ISO 80000-2:2019, and
the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at https://www.electropedia.org/

3.1 [defns.access]
access

(execution-time action) read or modify the value of an object

[Note 1 to entry: Only glvalues of scalar type can be used to access objects. Reads of scalar objects are described in

7.3.2 and modifications of scalar objects are described in 7.6.19, 7.6.1.6, and 7.6.2.3. Attempts to read or modify an
object of class type typically invoke a constructor (11.4.5) or assignment operator (11.4.6); such invocations do not

themselves constitute accesses, although they may involve accesses of scalar subobjects. — end note]
3.2 [defns.argument)]
argument

(function call expression) expression or braced-init-list in the comma-separated list bounded by the parentheses

3.3 [defns.argument.macro]
argument
(function-like macro) sequence of preprocessing tokens in the comma-separated list bounded by the parentheses

3.4 [defns.argument.throw]
argument
(throw expression) operand of throw

3.5 [defns.argument.templ]
argument

(template instantiation) constant-expression, type-id, or id-expression in the comma-separated list bounded by
the angle brackets

3.6 [defns.block]
block

(execution) wait for some condition (other than for the implementation to execute the execution steps of the
thread of execution) to be satisfied before continuing execution past the blocking operation

3.7 [defns.block.stmt]
block
(statement) compound statement

3.8 [defns.c.lib]
C standard library
library described in ISO/IEC 9899:2018, Clause 7

[Note 1 to entry: With the qualifications noted in Clause 17 through Clause 33 and in C.8, the C standard library is a
subset of the C++ standard library. — end note|

3.9 [defns.character]|
character
(library) object which, when treated sequentially, can represent text

[Note 1 to entry: The term does not mean only char, char8_t, char16_t, char32_t, and wchar_t objects (6.8.2), but
any value that can be represented by a type that provides the definitions specified in Clause 27, 28.3, Clause 31,
or 28.6. — end note]

§3.9 ©ISO/IEC
3

https://www.iso.org/obp
https://www.electropedia.org/

N5008

3.10 [defns.character.container|
character container type
(library) class or a type used to represent a character (3.9)

[Note 1 to entry: It is used for one of the template parameters of char_traits and the class templates which use
that, such as the string, iostream, and regular expression class templates. — end note]

3.11 [defns.regex.collating.element)]
collating element
sequence of one or more characters (3.9) within the current locale that collate as if they were a single character

3.12 [defns.component]
component
(library) group of library entities directly related as members, parameters (3.38), or return types

[Note 1 to entry: For example, the class template basic_string and the non-member function templates that operate
on strings are referred to as the string component. — end note]

3.13 [defns.cond.supp]
conditionally-supported
program construct that an implementation is not required to support

[Note 1 to entry: Each implementation documents all conditionally-supported constructs that it does not support.
— end note]

3.14 [defns.const.eval]
constant evaluation
evaluation that is performed as part of evaluating an expression as a core constant expression (7.7)

3.15 [defns.const.subexpr]
constant subexpression
expression whose evaluation as subexpression of a conditional-expression CE would not prevent CE from being
a core constant expression

3.16 [defns.deadlock]
deadlock

(library) situation wherein one or more threads are unable to continue execution because each is blocked (3.6)
waiting for one or more of the others to satisfy some condition

3.17 [defns.default.behavior.impl]
default behavior

(library implementation) specific behavior provided by the implementation, within the scope of the required
behavior (3.48)

3.18 [defns.diagnostic]
diagnostic message
message belonging to an implementation-defined subset of the implementation’s output messages

3.19 [defns.dynamic.type]
dynamic type
(glvalue) type of the most derived object to which the glvalue refers

[Exzample 1: If a pointer (9.3.4.2) p whose static type is “pointer to class B” is pointing to an object of class D, derived
from B (11.7), the dynamic type of the expression *p is “D”. References (9.3.4.3) are treated similarly. — end ezample]

3.20 [defns.dynamic.type.prvalue]
dynamic type
(prvalue) static type (3.61) of the prvalue expression

3.21 [defns.erroneous]
erroneous behavior
well-defined behavior that the implementation is recommended to diagnose

§3.21 ©ISO/IEC
4

N5008

[Note 1 to entry: Erroneous behavior is always the consequence of incorrect program code. Implementations are
allowed, but not required, to diagnose it (4.1.1). Evaluation of a constant expression (7.7) never exhibits behavior
specified as erroneous in Clause 4 through Clause 15. — end note]

3.22 [defns.expression.equivalent]
expression-equivalent

(library) expressions that all have the same effects, either are all potentially-throwing or are all not potentially-
throwing, and either are all constant subexpressions (3.15) or are all not constant subexpressions

[Ezample 1: For a value x of type int and a function £ that accepts integer arguments, the expressions f(x + 2),
£(2 + x),and £(1 + x + 1) are expression-equivalent. — end ezample]

3.23 [defns.regex.finite.state.machine]
finite state machine

(regular expression) unspecified data structure that is used to represent a regular expression (3.46), and which
permits efficient matches against the regular expression to be obtained

3.24 [defns.regex.format.specifier]
format specifier

(regular expression) sequence of one or more characters (3.9) that is expected to be replaced with some part
of a reqular expression (3.46) match

3.25 [defns.handler]
handler function
(library) non-reserved function whose definition may be provided by a C++ program

[Note 1 to entry: A C++ program may designate a handler function at various points in its execution by supplying a

pointer to the function when calling any of the library functions that install handler functions (see Clause 17). —end
note|
3.26 [defns.ill.formed]

ill-formed program
program that is not well-formed (3.68)

3.27 [defns.impl.defined]
implementation-defined behavior

behavior, for a well-formed program (3.68) construct and correct data, that depends on the implementation
and that each implementation documents

3.28 [defns.order.ptr]
implementation-defined strict total order over pointers

(library) implementation-defined strict total ordering over all pointer values such that the ordering is consistent
with the partial order imposed by the built-in operators <, >, <=, >= and <=>

3.29 [defns.impl.limits]
implementation limit
restriction imposed upon programs by the implementation

3.30 [defns.locale.specific]
locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implementation
documents

3.31 [defns.regex.matched]
matched

(regular expression) condition when a sequence of zero or more characters (3.9) correspond to a sequence of
characters defined by the pattern

3.32 [defns.modifier]
modifier function

(library) class member function other than a constructor, assignment operator, or destructor that alters the
state of an object of the class

§ 3.32 ©ISO/IEC
5

N5008

3.33 [defns.move.assign]
move assignment
(library) assignment of an rvalue of some object type to a modifiable lvalue of the same type

3.34 [defns.move.constr]
move construction
(library) direct-initialization of an object of some type with an rvalue of the same type

3.35 [defns.nonconst.libcall]
non-constant library call

invocation of a library function that, as part of evaluating any expression E, prevents E from being a core
constant expression

3.36 [defns.ntcts]
NTCTS

(library) sequence of values that have character (3.9) type that precede the terminating null character type
value charT()

3.37 [defns.observer]
observer function
(library) class member function that accesses the state of an object of the class but does not alter that state

[Note 1 to entry: Observer functions are specified as const member functions. — end note]

3.38 [defns.parameter]
parameter

(function or catch clause) object or reference declared as part of a function declaration or definition or in the
catch clause of an exception handler that acquires a value on entry to the function or handler

3.39 [defns.parameter.macro]
parameter

(function-like macro) identifier from the comma-separated list bounded by the parentheses immediately
following the macro name

3.40 [defns.parameter.templ]
parameter
(template) member of a template-parameter-list

3.41 [defns.regex.primary.equivalence.class]
primary equivalence class

(regular expression) set of one or more characters (3.9) which share the same primary sort key: that is the
sort key weighting that depends only upon character shape, and not accents, case, or locale-specific tailorings

3.42 [defns.prog.def.spec]
program-defined specialization

(library) explicit template specialization or partial specialization that is not part of the C++ standard library
and not defined by the implementation

3.43 [defns.prog.def.type]
program-defined type

(library) non-closure class type or enumeration type that is not part of the C++ standard library and not
defined by the implementation, or a closure type of a non-implementation-provided lambda expression, or an
instantiation of a program-defined specialization (3.42)

[Note 1 to entry: Types defined by the implementation include extensions (4.1) and internal types used by the library.
— end note]

3.44 [defns.projection]
projection
(library) transformation that an algorithm applies before inspecting the values of elements

§ 3.44 ©ISO/IEC
6

N5008

[Example 1:

std::pair<int, std::string_view> pairs[] = {{2, "foo"}, {1, "bar"}, {0, "baz"}};
std::ranges::sort(pairs, std::ranges::less{}, [](auto const& p) { return p.first; 1});

sorts the pairs in increasing order of their first members:
{{0, "baz"}, {1, "bar"}, {2, "foo"}}

— end ezample]

3.45 [defns.referenceable]
referenceable type

type that is either an object type, a function type that does not have cv-qualifiers or a ref-qualifier, or a
reference type

[Note 1 to entry: The term describes a type to which a reference can be created, including reference types. — end
note|
3.46 [defns.regex.regular.expression]

regular expression
pattern that selects specific strings from a set of character (3.9) strings

3.47 [defns.replacement)]
replacement function
(library) non-reserved function whose definition is provided by a C++ program

[Note 1 to entry: Only one definition for such a function is in effect for the duration of the program’s execution, as
the result of creating the program (5.2) and resolving the definitions of all translation units (6.6). — end note]

3.48 [defns.required.behavior]
required behavior

(library) description of replacement function (3.47) and handler function (3.25) semantics applicable to both
the behavior provided by the implementation and the behavior of any such function definition in the program

[Note 1 to entry: If such a function defined in a C++ program fails to meet the required behavior when it executes,
the behavior is undefined. — end note]

3.49 [defns.reserved.function]
reserved function
(library) function, specified as part of the C++ standard library, that is defined by the implementation

ote 0 ENLTY: a Ct++ program provides a demnnition 1or any reserve unction, € results are undenned. —en

Note 1t try: If a C id definition f d function, th It defined d
note)

3.50 [defns.undefined.runtime]

runtime-undefined behavior
behavior that is undefined except when it occurs during constant evaluation

[Note 1 to entry: During constant evaluation,

— it is implementation-defined whether runtime-undefined behavior results in the expression being deemed
non-constant (as specified in 7.7) and

— runtime-undefined behavior has no other effect.

— end note]

3.51 [defns.signature]
signature
(function) name, parameter-type-list, and enclosing namespace

[Note 1 to entry: Signatures are used as a basis for name mangling and linking. — end note]

3.52 [defns.signature.friend]
signature

(non-template friend function with trailing requires-clause) name, parameter-type-list, enclosing class, and
trailing requires-clause

§ 3.52 ©ISO/IEC
7

N5008

3.53 [defns.signature.templ]
signature

(function template) name, parameter-type-list, enclosing namespace, return type, signature (3.59) of the
template-head, and trailing requires-clause (if any)

3.54 [defns.signature.templ.friend]
signature

(friend function template with constraint involving enclosing template parameters) name, parameter-type-list,
return type, enclosing class, signature (3.59) of the template-head, and trailing requires-clause (if any)

3.55 [defns.signature.spec]
signature

(function template specialization) signature (3.53) of the template of which it is a specialization and its
template arguments (3.5) (whether explicitly specified or deduced)

3.56 [defns.signature.member]
signature

(class member function) name, parameter-type-list, class of which the function is a member, cv-qualifiers (if
any), ref-qualifier (if any), and trailing requires-clause (if any)

3.57 [defns.signature.member.templ]
signature

(class member function template) name, parameter-type-list, class of which the function is a member, co-
qualifiers (if any), ref-qualifier (if any), return type (if any), signature (3.59) of the template-head, and trailing
requires-clause (if any)

3.58 [defns.signature.member.spec]
signature

(class member function template specialization) signature (3.57) of the member function template of which it
is a specialization and its template arguments (whether explicitly specified or deduced)

3.59 [defns.signature.template.head]
signature

(template-head) template parameter (3.40) list, excluding template parameter names and default arguments
(3.5), and requires-clause (if any)

3.60 [defns.stable]
stable algorithm
(library) algorithm that preserves, as appropriate to the particular algorithm, the order of elements

[Note 1 to entry: Requirements for stable algorithms are given in 16.4.6.8. — end note]

3.61 [defns.static.type]
static type
type of an expression resulting from analysis of the program without considering execution semantics

[Note 1 to entry: The static type of an expression depends only on the form of the program in which the expression
appears, and does not change while the program is executing. — end note]

3.62 [defns.regex.subexpression)]
sub-expression
(regular expression) subset of a regular expression (3.46) that has been marked by parentheses

3.63 [defns.traits]
traits class

(library) class that encapsulates a set of types and functions necessary for class templates and function
templates to manipulate objects of types for which they are instantiated

3.64 [defns.unblock]
unblock
satisfy a condition that one or more blocked (3.6) threads of execution are waiting for

§ 3.64 ©ISO/IEC
8

N5008

3.65 [defns.undefined]
undefined behavior
behavior for which this document imposes no requirements

[Note 1 to entry: Undefined behavior may be expected when this document omits any explicit definition of behavior or
when a program uses an incorrect construct or invalid data. Permissible undefined behavior ranges from ignoring the
situation completely with unpredictable results, to behaving during translation or program execution in a documented
manner characteristic of the environment (with or without the issuance of a diagnostic message (3.18)), to terminating
a translation or execution (with the issuance of a diagnostic message). Many incorrect program constructs do not
engender undefined behavior; they are required to be diagnosed. Evaluation of a constant expression (7.7) never
exhibits behavior explicitly specified as undefined in Clause 4 through Clause 15. — end note]

3.66 [defns.unspecified]
unspecified behavior
behavior, for a well-formed program (3.68) construct and correct data, that depends on the implementation

[Note 1 to entry: The implementation is not required to document which behavior occurs. The range of possible
behaviors is usually delineated by this document. — end note]

3.67 [defns.valid]
valid but unspecified state

(library) value of an object that is not specified except that the object’s invariants are met and operations on
the object behave as specified for its type

[Ezample 1: If an object x of type std::vector<int> is in a valid but unspecified state, x.empty() can be called
unconditionally, and x.front () can be called only if x.empty() returns false. — end example]

3.68 [defns.well.formed]
well-formed program
C++ program constructed according to the syntax and semantic rules

§3.68 ©ISO/IEC
9

(2.1)

(2.3)
(2.3.1)
(2.3.2)

(2.3.3)

(2.3.4)

(2.4)
(2.5)

(2.6)

N5008

4 General principles lintro]

4.1 Implementation compliance [intro.compliance]

4.1.1 General [intro.compliance.general]

The set of diagnosable rules consists of all syntactic and semantic rules in this document except for those
rules containing an explicit notation that “no diagnostic is required” or which are described as resulting in
“undefined behavior”.

Although this document states only requirements on C++ implementations, those requirements are often
easier to understand if they are phrased as requirements on programs, parts of programs, or execution of
programs. Such requirements have the following meaning;:

— If a program contains no violations of the rules in Clause 5 through Clause 33 as well as those specified
in Annex D, a conforming implementation shall accept and correctly execute® that program, except
when the implementation’s limitations (see below) are exceeded.

If a program contains a violation of a rule for which no diagnostic is required, this document places no
requirement on implementations with respect to that program.

Otherwise, if a program contains
— a violation of any diagnosable rule,
— a preprocessing translation unit with a #warning preprocessing directive (15.9),

— an occurrence of a construct described in this document as “conditionally-supported” when the
implementation does not support that construct, or

— a contract assertion (6.10.2) evaluated with a checking semantic in a manifestly constant-evaluated
context (7.7) resulting in a contract violation,

a conforming implementation shall issue at least one diagnostic message.
[Note 1: During template argument deduction and substitution, certain constructs that in other contexts require a
diagnostic are treated differently; see 13.10.3. — end note]
Furthermore, a conforming implementation shall not accept
— a preprocessing translation unit containing a #error preprocessing directive (15.9),
— a translation unit with a static_assert-declaration that fails (9.1), or

— a contract assertion evaluated with a terminating semantic (6.10.2) in a manifestly constant-evaluated
context (7.7) resulting in a contract violation.

For classes and class templates, the library Clauses specify partial definitions. Private members (11.8) are not
specified, but each implementation shall supply them to complete the definitions according to the description
in the library Clauses.

For functions, function templates, objects, and values, the library Clauses specify declarations. Implementa-
tions shall supply definitions consistent with the descriptions in the library Clauses.

A C++ translation unit (5.2) obtains access to the names defined in the library by including the appropriate
standard library header or importing the appropriate standard library named header unit (16.4.3.2).

The templates, classes, functions, and objects in the library have external linkage (6.6). The implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete C++ program (5.2).

An implementation is either a hosted implementation or a freestanding implementation. A freestanding
implementation is one in which execution may take place without the benefit of an operating system. A hosted
implementation supports all the facilities described in this document, while a freestanding implementation
supports the entire C++ language described in Clause 5 through Clause 15 and the subset of the library
facilities described in 16.4.2.5.

3) “Correct execution” can include undefined behavior and erroneous behavior, depending on the data being processed; see
Clause 3 and 6.9.1.

§4.1.1 ©ISO/IEC
10

10

11

N5008

It is implementation-defined whether the implementation is a hardened implementation. If it is a hardened
implementation, violating a hardened precondition results in a contract violation (16.3.2.4).

An implementation is encouraged to document its limitations in the size or complexity of the programs it
can successfully process, if possible and where known. Annex B lists some quantities that can be subject to
limitations and a potential minimum supported value for each quantity.

A conforming implementation may have extensions (including additional library functions), provided they
do not alter the behavior of any well-formed program. Implementations are required to diagnose programs
that use such extensions that are ill-formed according to this document. Having done so, however, they can
compile and execute such programs.

Each implementation shall include documentation that identifies all conditionally-supported constructs that
it does not support and defines all locale-specific characteristics.*

4.1.2 Abstract machine [intro.abstract]

The semantic descriptions in this document define a parameterized nondeterministic abstract machine. This
document places no requirement on the structure of conforming implementations. In particular, they need
not copy or emulate the structure of the abstract machine. Rather, conforming implementations are required
to emulate (only) the observable behavior of the abstract machine as explained below.?

Certain aspects and operations of the abstract machine are described in this document as implementation-
defined behavior (for example, sizeof (int)). These constitute the parameters of the abstract machine. Each
implementation shall include documentation describing its characteristics and behavior in these respects.’
Such documentation shall define the instance of the abstract machine that corresponds to that implementation
(referred to as the “corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in this document as unspecified
behavior (for example, order of evaluation of arguments in a function call (7.6.1.3)). Where possible, this
document defines a set of allowable behaviors. These define the nondeterministic aspects of the abstract
machine. An instance of the abstract machine can thus have more than one possible execution for a given
program and a given input.

Certain other operations are described in this document as undefined behavior (for example, the effect of
attempting to modify a const object).

Certain events in the execution of a program are termed observable checkpoints.

[Note 1: A call to std::observable (22.2.9) is an observable checkpoint, as are certain parts of the evaluation of
contract assertions (6.10). — end note]

The defined prefiz of an execution comprises the operations O for which for every undefined operation U
there is an observable checkpoint C' such that O happens before C' and C happens before U.

[Note 2: The undefined behavior that arises from a data race (6.9.2.2) occurs on all participating threads. — end
note)

A conforming implementation executing a well-formed program shall produce the observable behavior of
the defined prefix of one of the possible executions of the corresponding instance of the abstract machine
with the same program and the same input. If the selected execution contains an undefined operation, the
implementation executing that program with that input may produce arbitrary additional observable behavior
afterwards. If the execution contains an operation specified as having erroneous behavior, the implementation
is permitted to issue a diagnostic and is permitted to terminate the execution at an unspecified time after
that operation.

Recommended practice: An implementation should issue a diagnostic when such an operation is executed.

[Note 8: An implementation can issue a diagnostic if it can determine that erroneous behavior is reachable under an
implementation-specific set of assumptions about the program behavior, which can result in false positives. — end
note|

4) This documentation also defines implementation-defined behavior; see 4.1.2.

5) This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this
document as long as the result is as if the requirement had been obeyed, as far as can be determined from the observable
behavior of the program. For instance, an actual implementation need not evaluate part of an expression if it can deduce that
its value is not used and that no side effects affecting the observable behavior of the program are produced.

6) This documentation also includes conditionally-supported constructs and locale-specific behavior. See 4.1.1.

§4.1.2 ©ISO/IEC
11

N5008

8 The following specify the observable behavior of the program:

(8.1) — Accesses through volatile glvalues are evaluated strictly according to the rules of the abstract machine.

(82) — Data is delivered to the host environment to be written into files (SEE ALsO: ISO/IEC 9899:2018,
7.21.3).
[Note 4: Delivering such data is followed by an observable checkpoint (31.13.1). Not all host environments
provide access to file contents before program termination. — end note]

(8.3) — The input and output dynamics of interactive devices shall take place in such a fashion that prompting

output is actually delivered before a program waits for input. What constitutes an interactive device is
implementation-defined.

[Note 5: More stringent correspondences between abstract and actual semantics can be defined by each implementation.
— end note]

4.2 Structure of this document [intro.structure]

1 Clause 5 through Clause 15 describe the C++ programming language. That description includes detailed
syntactic specifications in a form described in 4.3. For convenience, Annex A repeats all such syntactic
specifications.

2 Clause 17 through Clause 33 and Annex D (the library clauses) describe the C++ standard library. That
description includes detailed descriptions of the entities and macros that constitute the library, in a form
described in Clause 16.

3 Annex B recommends lower bounds on the capacity of conforming implementations.

4 Annex C summarizes the evolution of C++ since its first published description, and explains in detail the
differences between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D
describes those features.

4.3 Syntax notation [syntax]

1 In the syntax notation used in this document, syntactic categories are indicated by italic, sans-serif type, and
literal words and characters in constant width type. Alternatives are listed on separate lines except in a
few cases where a long set of alternatives is marked by the phrase “one of”. If the text of an alternative is
too long to fit on a line, the text is continued on subsequent lines indented from the first one. An optional
terminal or non-terminal symbol is indicated by the subscript “,p:”, so

{ expressionop }
indicates an optional expression enclosed in braces.

2 Names for syntactic categories have generally been chosen according to the following rules:

(2.1) — X-name is a use of an identifier in a context that determines its meaning (e.g., class-name, typedef-name).
(2.2) — X-id is an identifier with no context-dependent meaning (e.g., qualified-id).

(2.3) — X-seq is one or more X’s without intervening delimiters (e.g., declaration-seq is a sequence of declarations).
(2.4) — X-list is one or more X’s separated by intervening commas (e.g., identifier-list is a sequence of identifiers

separated by commas).

§4.3 ©ISO/IEC
12

N5008

5 Lexical conventions [lex]

5.1 Separate translation [lex.separate]

1 The text of the program is kept in units called source files in this document. A source file together with
all the headers (16.4.2.3) and source files included (15.3) via the preprocessing directive #include, less any
source lines skipped by any of the conditional inclusion (15.2) preprocessing directives, as modified by the
implementation-defined behavior of any conditionally-supported-directives (15.1) and pragmas (15.10), if any,
is called a preprocessing translation unit.

[Note 1: A C++ program need not all be translated at the same time. — end note]

2 [Note 2: Previously translated translation units and instantiation units can be preserved individually or in libraries.
The separate translation units of a program communicate (6.6) by (for example) calls to functions whose identifiers
have external or module linkage, manipulation of objects whose identifiers have external or module linkage, or
manipulation of data files. Translation units can be separately translated and then later linked to produce an
executable program (6.6). — end note]

5.2 Phases of translation [lex.phases]

1 The precedence among the syntax rules of translation is specified by the following phases.”

1. An implementation shall support input files that are a sequence of UTF-8 code units (UTF-8 files). It
may also support an implementation-defined set of other kinds of input files, and, if so, the kind of an
input file is determined in an implementation-defined manner that includes a means of designating
input files as UTF-8 files, independent of their content.

[Note 1: In other words, recognizing the U+FEFF BYTE ORDER MARK is not sufficient. — end note]

If an input file is determined to be a UTF-8 file, then it shall be a well-formed UTF-8 code unit
sequence and it is decoded to produce a sequence of Unicode® scalar values. A sequence of translation
character set elements (5.3.1) is then formed by mapping each Unicode scalar value to the corresponding
translation character set element. In the resulting sequence, each pair of characters in the input
sequence consisting of U+000D CARRIAGE RETURN followed by U+000A LINE FEED, as well as each U+000D
CARRIAGE RETURN not immediately followed by a U+000A LINE FEED, is replaced by a single new-line
character.

For any other kind of input file supported by the implementation, characters are mapped, in an imple-
mentation-defined manner, to a sequence of translation character set elements, representing end-of-line
indicators as new-line characters.

2. If the first translation character is U+FEFF BYTE ORDER MARK, it is deleted. Each sequence of a
backslash character (\) immediately followed by zero or more whitespace characters other than new-line
followed by a new-line character is deleted, splicing physical source lines to form logical source lines.
Only the last backslash on any physical source line shall be eligible for being part of such a splice.

[Note 2: Line splicing can form a universal-character-name (5.3.1). — end note]

A source file that is not empty and that (after splicing) does not end in a new-line character shall be
processed as if an additional new-line character were appended to the file.

3. The source file is decomposed into preprocessing tokens (5.5) and sequences of whitespace characters
(including comments). A source file shall not end in a partial preprocessing token or in a partial
comment.” Each comment (5.4) is replaced by one space character. New-line characters are retained.
Whether each nonempty sequence of whitespace characters other than new-line is retained or replaced
by one space character is unspecified. As characters from the source file are consumed to form the next
preprocessing token (i.e., not being consumed as part of a comment or other forms of whitespace), except
when matching a c-char-sequence, s-char-sequence, r-char-sequence, h-char-sequence, or g-char-sequence,

7) Implementations behave as if these separate phases occur, although in practice different phases can be folded together.

8) Unicode® is a registered trademark of Unicode, Inc. This information is given for the convenience of users of this document
and does not constitute an endorsement by ISO or IEC of this product.

9) A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that
requires a terminating sequence of characters, such as a header-name that is missing the closing " or >. A partial comment
would arise from a source file ending with an unclosed /* comment.

§5.2 ©ISO/IEC
13

(1.1)

(1.2)

N5008

universal-character-names are recognized (5.3.2) and replaced by the designated element of the translation
character set (5.3.1). The process of dividing a source file’s characters into preprocessing tokens is
context-dependent.

[Example 1: See the handling of < within a #include preprocessing directive (15.3). — end example]

4. The source file is analyzed as a preprocessing-file (15.1). Preprocessing directives (Clause 15) are executed,
macro invocations are expanded (15.7), and _Pragma unary operator expressions are executed (15.13).
A #include preprocessing directive (15.3) causes the named header or source file to be processed from
phase 1 through phase 4, recursively. All preprocessing directives are then deleted.

5. For a sequence of two or more adjacent string-literal preprocessing tokens, a common encoding-prefix is
determined as specified in 5.13.5. Each such string-literal preprocessing token is then considered to have
that common encoding-prefix.

6. Adjacent string-literal preprocessing tokens are concatenated (5.13.5).

7. Each preprocessing token is converted into a token (5.10). Whitespace characters separating tokens
are no longer significant. The resulting tokens constitute a translation unit and are syntactically and
semantically analyzed as a translation-unit (6.6) and translated.

[Note 8: The process of analyzing and translating the tokens can occasionally result in one token being replaced
by a sequence of other tokens (13.3). — end note]

It is implementation-defined whether the sources for module units and header units on which the
current translation unit has an interface dependency (10.1, 10.3) are required to be available.

[Note 4: Source files, translation units and translated translation units need not necessarily be stored as files,
nor need there be any one-to-one correspondence between these entities and any external representation. The
description is conceptual only, and does not specify any particular implementation. — end note]

8. Translated translation units and instantiation units are combined as follows:
[Note 5: Some or all of these can be supplied from a library. — end note]
Each translated translation unit is examined to produce a list of required instantiations.
[Note 6: This can include instantiations which have been explicitly requested (13.9.3). — end note]

The definitions of the required templates are located. It is implementation-defined whether the source
of the translation units containing these definitions is required to be available.

[Note 7: An implementation can choose to encode sufficient information into the translated translation unit so
as to ensure the source is not required here. — end note]

All the required instantiations are performed to produce instantiation units.

[Note 8: These are similar to translated translation units, but contain no references to uninstantiated templates
and no template definitions. — end note]

The program is ill-formed if any instantiation fails.

9. All external entity references are resolved. Library components are linked to satisfy external references
to entities not defined in the current translation. All such translator output is collected into a program
image which contains information needed for execution in its execution environment.

5.3 Characters [lex.char]

5.3.1 Character sets [lex.charset]
The translation character set consists of the following elements:

— each abstract character assigned a code point in the Unicode codespace as specified in the Unicode
Standard, and

— a distinct character for each Unicode scalar value not assigned to an abstract character.

[Note 1: Unicode code points are integers in the range [0, 10FFFF] (hexadecimal). A surrogate code point is a value
in the range [D800, DFFF]| (hexadecimal). A Unicode scalar value is any code point that is not a surrogate code point.
— end note]

The basic character set is a subset of the translation character set, consisting of 99 characters as specified in
Table 1.

[Note 2: Unicode short names are given only as a means to identifying the character; the numerical value has no
other meaning in this context. — end note]

§5.3.1 ©ISO/IEC
14

§5.3.1

N5008

Table 1 — Basic character set

[tab:lex.charset.basic]

character

glyph

U+0009
U+000B
U+000C
U+0020
U+000A
U+0021
U+0022
U+0023
U+0024
U+0025
U+0026
U+0027
U+0028
U+0029
U+002A
U+002B
U+002C
U+002D
U+002E
U+002F

U+0030 ..

U+003A
U+003B
U+003C
U+003D
U+003E
U+003F
U+0040

U+0041 ..

U+005B
U+005C
U+005D
U+005E
U+005F
U+0060

U+0061 ..

U+007B
U+007C
U+007D
U+007E

U+0039

U+005A

U+007A

CHARACTER TABULATION
LINE TABULATION
FORM FEED

SPACE

LINE FEED
EXCLAMATION MARK
QUOTATION MARK
NUMBER SIGN
DOLLAR SIGN
PERCENT SIGN
AMPERSAND
APOSTROPHE

LEFT PARENTHESIS
RIGHT PARENTHESIS
ASTERISK

PLUS SIGN

COMMA
HYPHEN-MINUS

FULL STOP

SOLIDUS

DIGIT ZERO .. NINE
COLON

SEMICOLON
LESS-THAN SIGN
EQUALS SIGN
GREATER-THAN SIGN
QUESTION MARK
COMMERCIAL AT
LATIN CAPITAL LETTER A

LEFT SQUARE BRACKET
REVERSE SOLIDUS

RIGHT SQUARE BRACKET
CIRCUMFLEX ACCENT
LOW LINE

GRAVE ACCENT

LATIN SMALL LETTER A ..

LEFT CURLY BRACKET
VERTICAL LINE

RIGHT CURLY BRACKET
TILDE

V/

Z

new-line

o

123456789

A we

DEFGHIJKLM
QRSTUVWIXYZ

Y= Sk =20 NV

’

bcdefghijklm
opgrstuvwzxyz

Y — B

©ISO/IEC
15

N5008

3 The basic literal character set consists of all characters of the basic character set, plus the control characters
specified in Table 2.

Table 2 — Additional control characters in the basic literal character set
[tab:lex.charset.literal]

’ character ‘

U+0000 NULL

U+0007 ALERT

U+0008 BACKSPACE
U+000D CARRIAGE RETURN

4 A code unit is an integer value of character type (6.8.2). Characters in a character-literal other than a
multicharacter or non-encodable character literal or in a string-literal are encoded as a sequence of one or
more code units, as determined by the encoding-prefix (5.13.3, 5.13.5); this is termed the respective literal
encoding. The ordinary literal encoding is the encoding applied to an ordinary character or string literal. The
wide literal encoding is the encoding applied to a wide character or string literal.

5 A literal encoding or a locale-specific encoding of one of the execution character sets (16.3.3.3.4) encodes
each element of the basic literal character set as a single code unit with non-negative value, distinct from the
code unit for any other such element.

[Note 3: A character not in the basic literal character set can be encoded with more than one code unit; the value of
such a code unit can be the same as that of a code unit for an element of the basic literal character set. — end note]

The U+0000 NULL character is encoded as the value 0. No other element of the translation character set is
encoded with a code unit of value 0. The code unit value of each decimal digit character after the digit 0
(U+0030) shall be one greater than the value of the previous. The ordinary and wide literal encodings are
otherwise implementation-defined. For a UTF-8, UTF-16, or UTF-32 literal, the implementation shall encode
the Unicode scalar value corresponding to each character of the translation character set as specified in the
Unicode Standard for the respective Unicode encoding form.

5.3.2 Universal character names [lex.universal.char]
n-char:
any member of the translation character set except the U+007D RIGHT CURLY BRACKET or new-line
character

n-char-sequence:
n-char n-char-sequence,p;

named-universal-character:
\N{ n-char-sequence }

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

simple-hexadecimal-digit-sequence:
hexadecimal-digit simple-hexadecimal-digit-sequencep;
universal-character-name:
\u hex-quad
\U hex-quad hex-quad
\u{ simple-hexadecimal-digit-sequence
named-universal-character

1 The universal-character-name construct provides a way to name any element in the translation character set
using just the basic character set. If a universal-character-name outside the c-char-sequence, s-char-sequence,
or r-char-sequence of a character-literal or string-literal (in either case, including within a user-defined-literal)
corresponds to a control character or to a character in the basic character set, the program is ill-formed.

[Note 1: A sequence of characters resembling a universal-character-name in an r-char-sequence (5.13.5) does not form a
universal-character-name. — end note]

2 A universal-character-name of the form \u hex-quad, \U hex-quad hex-quad, or \u{simple-hexadecimal-digit-
sequence} designates the character in the translation character set whose Unicode scalar value is the

§5.3.2 ©ISO/IEC
16

N5008

hexadecimal number represented by the sequence of hexadecimal-digits in the universal-character-name. The
program is ill-formed if that number is not a Unicode scalar value.

3 A universal-character-name that is a named-universal-character designates the corresponding character in the
Unicode Standard (chapter 4.8 Name) if the n-char-sequence is equal to its character name or to one of its
character name aliases of type “control”; “correction”, or “alternate”; otherwise, the program is ill-formed.

[Note 2: These aliases are listed in the Unicode Character Database’s NameAliases.txt. None of these names or
aliases have leading or trailing spaces. — end note]

5.4 Comments [lex.comment]

1 The characters /* start a comment, which terminates with the characters */. These comments do not nest.
The characters // start a comment, which terminates immediately before the next new-line character. If
there is a form-feed or a vertical-tab character in such a comment, only whitespace characters shall appear
between it and the new-line that terminates the comment; no diagnostic is required.

[Note 1: The comment characters //, /*, and */ have no special meaning within a // comment and are treated just
like other characters. Similarly, the comment characters // and /* have no special meaning within a /* comment.
— end note]

5.5 Preprocessing tokens [lex.pptoken)]
preprocessing-token:

header-name

import-keyword

module-keyword

export-keyword

identifier

pp-number

character-literal

user-defined-character-literal

string-literal

user-defined-string-literal

preprocessing-op-or-punc

each non-whitespace character that cannot be one of the above

1 A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6. In

this document, glyphs are used to identify elements of the basic character set (5.3.1). The categories of
preprocessing token are: header names, placeholder tokens produced by preprocessing import and module
directives (import-keyword, module-keyword, and export-keyword), identifiers, preprocessing numbers, character
literals (including user-defined character literals), string literals (including user-defined string literals),
preprocessing operators and punctuators, and single non-whitespace characters that do not lexically match
the other preprocessing token categories. If a U+0027 APOSTROPHE or a U+0022 QUOTATION MARK character
matches the last category, the program is ill-formed. If any character not in the basic character set matches the
last category, the program is ill-formed. Preprocessing tokens can be separated by whitespace; this consists of
comments (5.4), or whitespace characters (U+0020 SPACE, U+0009 CHARACTER TABULATION, new-line, U+000B
LINE TABULATION, and U+000C FORM FEED), or both. As described in Clause 15, in certain circumstances
during translation phase 4, whitespace (or the absence thereof) serves as more than preprocessing token
separation. Whitespace can appear within a preprocessing token only as part of a header name or between
the quotation characters in a character literal or string literal.

2 Each preprocessing token that is converted to a token (5.10) shall have the lexical form of a keyword, an
identifier, a literal, or an operator or punctuator.

3 The import-keyword is produced by processing an import directive (15.6), the module-keyword is produced by
preprocessing a module directive (15.5), and the export-keyword is produced by preprocessing either of the
previous two directives.

[Note 1: None has any observable spelling. — end note]

4 If the input stream has been parsed into preprocessing tokens up to a given character:

§5.5 ©ISO/IEC
17

(4.1)

(4.2)

(4.3)

(4.3.1)

(4.3.2)

N5008

— If the next character begins a sequence of characters that could be the prefix and initial double quote of
a raw string literal, such as R", the next preprocessing token shall be a raw string literal. Between the
initial and final double quote characters of the raw string, any transformations performed in phase 2
(line splicing) are reverted; this reversion shall apply before any d-char, r-char, or delimiting parenthesis
is identified. The raw string literal is defined as the shortest sequence of characters that matches the
raw-string pattern

encoding-prefixop: R raw-string

— Otherwise, if the next three characters are <:: and the subsequent character is neither : nor >, the < is
treated as a preprocessing token by itself and not as the first character of the alternative token <:.

— Otherwise, the next preprocessing token is the longest sequence of characters that could constitute
a preprocessing token, even if that would cause further lexical analysis to fail, except that a header-
name (5.6) is only formed

— after the include or import preprocessing token in a #include (15.3) or import (15.6) directive,
or
— within a has-include-expression.
[Ezample 1:

#define R "x"
const char* s = R"y"; // ill-formed raw string, not "x" "y"

— end ezample]

[Ezample 2: The program fragment Oxe+foo is parsed as a preprocessing number token (one that is not a valid
integer-literal or floating-point-literal token), even though a parse as three preprocessing tokens Oxe, +, and foo can
produce a valid expression (for example, if foo is a macro defined as 1). Similarly, the program fragment 1E1 is parsed
as a preprocessing number (one that is a valid floating-point-literal token), whether or not E is a macro name. — end
example)

[Ezample 8: The program fragment x+++++y is parsed as x ++ ++ + y, which, if x and y have integral types, violates

a constraint on increment operators, even though the parse x ++ + ++ y can yield a correct expression. — end
example)
5.6 Header names [lex.header]

header-name:

< h-char-sequence >

" g-char-sequence "
h-char-sequence:

h-char h-char-sequence,p;

h-char:
any member of the translation character set except new-line and U+003E GREATER-THAN SIGN

g-char-sequence:
g-char g-char-sequence,p;

g-char:
any member of the translation character set except new-line and U+0022 QUOTATION MARK

The sequences in both forms of header-names are mapped in an implementation-defined manner to headers
or to external source file names as specified in 15.3.

[Note 1: Header name preprocessing tokens appear only within a #include preprocessing directive, a __has_include
preprocessing expression, or after certain occurrences of an import token (see 5.5). — end note]

The appearance of either of the characters > or \ or of either of the character sequences /* or // in a
g-char-sequence or an h-char-sequence is conditionally-supported with implementation-defined semantics, as is
the appearance of the character " in an h-char-sequence.

[Note 2: Thus, a sequence of characters that resembles an escape sequence can result in an error, be interpreted
as the character corresponding to the escape sequence, or have a completely different meaning, depending on the
implementation. — end note]

§5.6 ©ISO/IEC
18

N5008

5.7 Preprocessing numbers [lex.ppnumber]|

pp-number:
digit
. digit
pp-number identifier-continue
pp-number ° digit
pp-number ’ nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

1 Preprocessing number tokens lexically include all integer-literal tokens (5.13.2) and all floating-point-literal
tokens (5.13.4).

2 A preprocessing number does not have a type or a value; it acquires both after a successful conversion to an
integer-literal token or a floating-point-literal token.

5.8 Operators and punctuators [lex.operators]

1 The lexical representation of C++ programs includes a number of preprocessing tokens that are used in the
syntax of the preprocessor or are converted into tokens for operators and punctuators:
preprocessing-op-or-punc:
preprocessing-operator
operator-or-punctuator

preprocessing-operator: one of

% %o
operator-or-punctuator: one of

{ } [] ()

<: > <% %> ; .

v H . Lk -> =>% ~

! + - * /) - & |
+= -= *= /= Y= "= = I=

== 1= < > <= >= <=> && [l

<< >> <<= >>= ++ - s

and or xor not bitand Dbitor compl

and_eq or_eq Xor_eq not_eq

Each operator-or-punctuator is converted to a single token in translation phase 7 (5.2).

5.9 Alternative tokens

1 Alternative token representations are provided for some operators and punctuators.!

[lex.digraph]
0

2 In all respects of the language, each alternative token behaves the same, respectively, as its primary token,
except for its spelling.!! The set of alternative tokens is defined in Table 3.

Table 3 — Alternative tokens [tab:lex.digraph]

] Alternative Primary \ Alternative Primary \ Alternative Primary \
<h { and && and_eq &=
%> 3+ bitor | or_eq |=
<: [or [xor_eq =
>] xor - not !
b # compl ~ not_eq I=
hoth ## bitand &

10) These include “digraphs” and additional reserved words. The term “digraph” (token consisting of two characters) is not
perfectly descriptive, since one of the alternative preprocessing-tokens is %:%: and of course several primary tokens contain two
characters. Nonetheless, those alternative tokens that aren’t lexical keywords are colloquially known as “digraphs”.

11) Thus the “stringized” values (15.7.3) of [and <: will be different, maintaining the source spelling, but the tokens can
otherwise be freely interchanged.

§5.9 ©ISO/IEC

19

N5008

5.10 Tokens [lex.token)]

token:
identifier
keyword
literal
operator-or-punctuator

There are five kinds of tokens: identifiers, keywords, literals,'? operators, and other separators. Blanks,
horizontal and vertical tabs, newlines, formfeeds, and comments (collectively, “whitespace”), as described
below, are ignored except as they serve to separate tokens.

[Note 1: Whitespace can separate otherwise adjacent identifiers, keywords, numeric literals, and alternative tokens
containing alphabetic characters. — end note]

5.11 Identifiers [lex.name]
identifier:
identifier-start
identifier identifier-continue

identifier-start:
nondigit
an element of the translation character set with the Unicode property XID_ Start
identifier-continue:
digit
nondigit
an element of the translation character set with the Unicode property XID Continue
nondigit: one of
abcdefghijklm
nopgrstuvwvzxyz
ABCDEFGHTIJKLM
NOPQRSTUVWIXYZ_
digit: one of
0123456789
[Note 1: The character properties XID Start and XID_Continue are described by UAX #44 of the Unicode
Standard.'® — end note]

The program is ill-formed if an identifier does not conform to Normalization Form C as specified in the
Unicode Standard.

[Note 2: Identifiers are case-sensitive. — end note]

[Note 3: Annex E compares the requirements of UAX #31 of the Unicode Standard with the C++ rules for identifiers.
— end note]

[Note 4: In translation phase 4, identifier also includes those preprocessing-tokens (5.5) differentiated as keywords (5.12)
in the later translation phase 7 (5.10). — end note]

The identifiers in Table 4 have a special meaning when appearing in a certain context. When referred to
in the grammar, these identifiers are used explicitly rather than using the identifier grammar production.
Unless otherwise specified, any ambiguity as to whether a given identifier has a special meaning is resolved to
interpret the token as a regular identifier.

Table 4 — Identifiers with special meaning [tab:lex.name.special]
final import post replaceable_if_eligible
override module pre trivially_relocatable_if_eligible

In addition, some identifiers appearing as a token or preprocessing-token are reserved for use by C++ imple-
mentations and shall not be used otherwise; no diagnostic is required.

12) Literals include strings and character and numeric literals.

13) On systems in which linkers cannot accept extended characters, an encoding of the universal-character-name can be used
in forming valid external identifiers. For example, some otherwise unused character or sequence of characters can be used to
encode the \u in a universal-character-name. Extended characters can produce a long external identifier, but C++ does not place
a translation limit on significant characters for external identifiers.

§5.11 ©ISO/IEC
20

(3.1)

(3.2)

1

2

1

N5008

— Each identifier that contains a double underscore __ or begins with an underscore followed by an
uppercase letter, other than those specified in this document (for example, __cplusplus (15.12)), is
reserved to the implementation for any use.

P

— Each identifier that begins with an underscore is reserved to the implementation for use as a name in
the global namespace.

5.12 Keywords [lex.key]

keyword:
any identifier listed in Table 5
import-keyword
module-keyword
export-keyword

The identifiers shown in Table 5 are reserved for use as keywords (that is, they are unconditionally treated as
keywords in phase 7) except in an attribute-token (9.13.1).

[Note 1: The register keyword is unused but is reserved for future use. — end note]

Table 5 — Keywords [tab:lex.key]

alignas constinit extern protected throw
alignof const_cast false public true

asm continue float register try

auto contract_assert for reinterpret_cast typedef
bool co_await friend requires typeid
break co_return goto return typename
case co_yield if short union
catch decltype inline signed unsigned
char default int sizeof using
char8_t delete long static virtual
charl6_t do mutable static_assert void
char32_t double namespace static_cast volatile
class dynamic_cast new struct wchar_t
concept else noexcept switch while
const enum nullptr template

consteval explicit operator this

constexpr export private thread_local

Furthermore, the alternative representations shown in Table 6 for certain operators and punctuators (5.9)
are reserved and shall not be used otherwise.

Table 6 — Alternative representations [tab:lex.key.digraph]

and and_eq bitand bitor compl not

not_eq or or_eq Xor Xor_eq
5.13 Literals [lex.literal]
5.13.1 Kinds of literals [lex.literal.kinds]

There are several kinds of literals.'*

literal:
integer-literal
character-literal
floating-point-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal

14) The term “literal” generally designates, in this document, those tokens that are called “constants” in C.

§5.13.1 ©ISO/IEC
21

N5008

[Note 1: When appearing as an expression, a literal has a type and a value category (7.5.2). — end note]

5.13.2 Integer literals [lex.icon]

integer-literal:
binary-literal integer-suffixopt
octal-literal integer-suffixop;
decimal-literal integer-suffixopt
hexadecimal-literal integer-suffixopt

binary-literal:
Ob binary-digit
OB binary-digit
binary-literal ’ o,y binary-digit

octal-literal:
0
octal-literal ’ ¢ octal-digit

decimal-literal:
nonzero-digit
decimal-literal ’ o digit

hexadecimal-literal:
hexadecimal-prefix hexadecimal-digit-sequence

binary-digit: one of
01

octal-digit: one of
01234567

nonzero-digit: one of
123456789

hexadecimal-prefix: one of
0x 0X

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence ’ .+ hexadecimal-digit

hexadecimal-digit: one of
0123456789
abcdef
ABCDETF

integer-suffix:
unsigned-suffix long-suffix,p:
unsigned-suffix long-long-suffixop:
unsigned-suffix size-suffixopt
long-suffix unsigned-suffix,p:
long-long-suffix unsigned-suffixop:
size-suffix unsigned-suffixops

unsigned-suffix: one of
ul

long-suffix: one of
1L

long-long-suffix: one of
11 LL

size-suffix: one of
z Z

1 In an integer-literal, the sequence of binary-digits, octal-digits, digits, or hexadecimal-digits is interpreted as a
base N integer as shown in Table 7; the lexically first digit of the sequence of digits is the most significant.

[Note 1: The prefix and any optional separating single quotes are ignored when determining the value. — end note]
2 The hexadecimal-digits a through f and A through F have decimal values ten through fifteen.

[Ezample 1: The number twelve can be written 12, 014, 0XC, or 0b1100. The integer-literals 1048576, 1°048°576,
0X100000, 0x10°0000, and 0°004°000°000 all have the same value. — end ezample]

§5.13.2 ©ISO/IEC
22

N5008

Table 7 — Base of integer-literals

[tab:lex.icon.base]

| Kind of integer-literal

base N ‘

binary-literal
octal-literal
decimal-literal
hexadecimal-literal

2
8
10
16

3 The type of an integer-literal is the first type in the list in Table 8 corresponding to its optional integer-suffix
in which its value can be represented.

Table 8 — Types of integer-literals [tab:lex.icon.type]

integer-suffix decimal-literal integer-literal other than decimal-literal \
none int int

long int unsigned int

long long int long int

unsigned long int
long long int
unsigned long long int

uorU unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int
lorl long int long int
long long int unsigned long int
long long int
unsigned long long int
Bothuoru unsigned long int unsigned long int
and 1 or L unsigned long long int unsigned long long int
1l or LL long long int long long int

unsigned long long int

BothuorU unsigned long long int
and 11 or LL

unsigned long long int

zor Z

the signed integer type corresponding
to std::size_t (17.2.4)

the signed integer type

corresponding to std::size_t

std::size_t

Both u or U std::size_t
and z or Z

std::size_t

4 Except for integer-literals containing a size-suffix, if the value of an integer-literal cannot be represented by
any type in its list and an extended integer type (6.8.2) can represent its value, it may have that extended
integer type. If all of the types in the list for the integer-literal are signed, the extended integer type is signed.
If all of the types in the list for the integer-literal are unsigned, the extended integer type is unsigned. If the
list contains both signed and unsigned types, the extended integer type may be signed or unsigned. If an

integer-literal cannot be represented by any of the allowed types, the program is ill-formed.

[Note 2: An integer-literal with a z or Z suffix is ill-formed if it cannot be represented by std::size_t. — end note]

5.13.3 Character literals

character-literal:

encoding-prefixop: ’ c-char-sequence ’

encoding-prefix: one of

u8 u U L

c-char-sequence:

§5.13.3

c-char c-char-sequence,pt

[lex.ccon]

©ISO/IEC
23

N5008

c-char:
basic-c-char
escape-sequence
universal-character-name

basic-c-char:
any member of the translation character set except the U+0027 APOSTROPHE,
U+005C REVERSE SOLIDUS, or new-line character

escape-sequence:
simple-escape-sequence
numeric-escape-sequence
conditional-escape-sequence

simple-escape-sequence:
\ simple-escape-sequence-char

simple-escape-sequence-char: one of
>"?\Nabfnrtyv

numeric-escape-sequence:

octal-escape-sequence

hexadecimal-escape-sequence
simple-octal-digit-sequence:

octal-digit simple-octal-digit-sequencep;
octal-escape-sequence:

\ octal-digit

\ octal-digit octal-digit

\ octal-digit octal-digit octal-digit

\o{ simple-octal-digit-sequence }
hexadecimal-escape-sequence:

\x simple-hexadecimal-digit-sequence

\x{ simple-hexadecimal-digit-sequence }
conditional-escape-sequence:

\ conditional-escape-sequence-char
conditional-escape-sequence-char:

any member of the basic character set that is not an octal-digit, a simple-escape-sequence-char, or the
characters N, o, u, U, or x

1 A multicharacter literal is a character-literal whose c-char-sequence consists of more than one c-char. A
multicharacter literal shall not have an encoding-prefix. If a multicharacter literal contains a c-char that is
not encodable as a single code unit in the ordinary literal encoding, the program is ill-formed. Multicharacter
literals are conditionally-supported.

2 The kind of a character-literal, its type, and its associated character encoding (5.3.1) are determined by its
encoding-prefix and its c-char-sequence as defined by Table 9.

Table 9 — Character literals [tab:lex.ccon.literal]

Encoding Kind Type Associated char- Example
prefix acter encoding
none ordinary character literal | char ordinary literal Yy
multicharacter literal int encoding >abed’
L wide character literal wchar_t wide literal Lw’
encoding
u8 UTF-8 character literal char8_t UTEF-8 u8’x’
u UTF-16 character literal | char16_t | UTF-16 u’y’
) UTF-32 character literal | char32_t | UTF-32 U’z’

3 In translation phase 4, the value of a character-literal is determined using the range of representable values of
the character-literal’s type in translation phase 7. A multicharacter literal has an implementation-defined
value. The value of any other kind of character-literal is determined as follows:

§5.13.3 ©ISO/IEC
24

(3.1)

(3.2)

(3.2.1)

(3.2.2)

(3.2.3)

(3.2.4)

(3.3)

N5008

— A character-literal with a c-char-sequence consisting of a single basic-c-char, simple-escape-sequence, or
universal-character-name is the code unit value of the specified character as encoded in the literal’s
associated character encoding. If the specified character lacks representation in the literal’s associated
character encoding or if it cannot be encoded as a single code unit, then the program is ill-formed.

— A character-literal with a c-char-sequence consisting of a single numeric-escape-sequence has a value as
follows:

Let v be the integer value represented by the octal number comprising the sequence of octal-
digits in an octal-escape-sequence or by the hexadecimal number comprising the sequence of
hexadecimal-digits in a hexadecimal-escape-sequence.

If v does not exceed the range of representable values of the character-literal’s type, then the value
is v.

Otherwise, if the character-literal’s encoding-prefix is absent or L, and v does not exceed the
range of representable values of the corresponding unsigned type for the underlying type of the

character-literal’s type, then the value is the unique value of the character-literal’s type T that is
congruent to v modulo 2V, where N is the width of T.

Otherwise, the program is ill-formed.

— A character-literal with a c-char-sequence consisting of a single conditional-escape-sequence is conditionally-
supported and has an implementation-defined value.

4 The character specified by a simple-escape-sequence is specified in Table 10.

[Note 1: Using an escape sequence for a question mark is supported for compatibility with C++ 2014 and C. — end
note)
Table 10 — Simple escape sequences [tab:lex.ccon.esc]
character simple-escape-sequence \
U+000A LINE FEED \n
U+0009 CHARACTER TABULATION \t
U+000B LINE TABULATION \v
U+0008 BACKSPACE \b
U+000D CARRIAGE RETURN \r
U+000C FORM FEED \f
U+0007 ALERT \a
U+005C REVERSE SOLIDUS \\
U+003F QUESTION MARK \7?
U+0027 APOSTROPHE \’
U+0022 QUOTATION MARK \"
5.13.4 Floating-point literals [lex.fcon]

floating-point-literal:

decimal-floating-point-literal
hexadecimal-floating-point-literal

decimal-floating-point-literal:

fractional-constant exponent-part,y; floating-point-suffix,pi
digit-sequence exponent-part floating-point-suffixopt

hexadecimal-floating-point-literal:

hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part floating-point-suffixop:
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part floating-point-suffixopt

fractional-constant:

digit-sequence,p; . digit-sequence
digit-sequence .

hexadecimal-fractional-constant:

§ 5.13.4

hexadecimal-digit-sequence,,: . hexadecimal-digit-sequence
hexadecimal-digit-sequence .

©ISO/IEC
25

N5008

exponent-part:

e signop: digit-sequence

E signop: digit-sequence
binary-exponent-part:

p Signop: digit-sequence

P signop: digit-sequence
sign: one of

+ -
digit-sequence:

digit

digit-sequence ’ ,p; digit
floating-point-suffix: one of

f 1 £f16 £32 f64 £128 bfl16 F L F16 F32 F64 F128 BF16

L The type of a floating-point-literal (6.8.2, 6.8.3) is determined by its floating-point-suffix as specified in Table 11.
[Note 1: The floating-point suffixes £16, £32, £64, £128, bf16, F16, F32, F64, F128, and BF16 are conditionally-
supported. See 6.8.3. — end note]

Table 11 — Types of floating-point-literals [tab:lex.fcon.type]

| floating-point-suffix type |
none double
forF float
lorl long double
f16 or F16 std::floatl6_t
£32 or F32 std::float32_t
£64 or F64 std::floatb4_t
£128 or F128 std::float128_t
bf16 or BF16 std::bfloatl6_t

2 The significand of a floating-point-literal is the fractional-constant or digit-sequence of a decimal-floating-point-
literal or the hexadecimal-fractional-constant or hexadecimal-digit-sequence of a hexadecimal-floating-point-literal.
In the significand, the sequence of digits or hexadecimal-digits and optional period are interpreted as a base N
real number s, where N is 10 for a decimal-floating-point-literal and 16 for a hexadecimal-floating-point-literal.

[Note 2: Any optional separating single quotes are ignored when determining the value. — end note]

If an exponent-part or binary-exponent-part is present, the exponent e of the floating-point-literal is the
result of interpreting the sequence of an optional sign and the digits as a base 10 integer. Otherwise, the
exponent e is 0. The scaled value of the literal is s x 10¢ for a decimal-floating-point-literal and s x 2¢ for a
hexadecimal-floating-point-literal.

[Ezample 1: The floating-point-literals 49.625 and 0xC.68p+2 have the same value. The floating-point-literals
1.602°176°565e-19 and 1.602176565e-19 have the same value. — end ezample]

3 If the scaled value is not in the range of representable values for its type, the program is ill-formed. Otherwise,
the value of a floating-point-literal is the scaled value if representable, else the larger or smaller representable
value nearest the scaled value, chosen in an implementation-defined manner.

5.13.5 String literals [lex.string]
string-literal:
encoding-prefixop: " s-char-sequence,p; "
encoding-prefixops R raw-string
s-char-sequence:
s-char s-char-sequence,p

s-char:
basic-s-char
escape-sequence
universal-character-name
§5.13.5 ©ISO/IEC

26

N5008

basic-s-char:
any member of the translation character set except the U+0022 QUOTATION MARK,
U+005C REVERSE SOLIDUS, or new-line character

raw-string:
" d-char-sequence,p: (r-char-sequenceo,:) d-char-sequenceop: "

r-char-sequence:
r-char r-char-sequencep;

r-char:
any member of the translation character set, except a U+0029 RIGHT PARENTHESIS followed by
the initial d-char-sequence (which may be empty) followed by a U+0022 QUOTATION MARK

d-char-sequence:
d-char d-char-sequence,p;

d-char:
any member of the basic character set except:

U+0020 SPACE, U+0028 LEFT PARENTHESIS, U+0029 RIGHT PARENTHESIS, U+005C REVERSE SOLIDUS,
U+0009 CHARACTER TABULATION, U+000B LINE TABULATION, U+000C FORM FEED, and new-line

1 The kind of a string-literal, its type, and its associated character encoding (5.3.1) are determined by its
encoding prefix and sequence of s-chars or r-chars as defined by Table 12 where n is the number of encoded
code units that would result from an evaluation of the string-literal (see below).

Table 12 — String literals [tab:lex.string.literal]

Enco- Kind Type Associated Examples
ding character
prefix encoding
none ordinary string literal array of n ordinary literal "ordinary string"

const char encoding R"(ordinary raw string)"
L wide string literal array of n wide literal L"wide string"

const wchar_t encoding LR"w(wide raw string)w"
u8 UTF-8 string literal array of n UTF-8 u8"UTF-8 string"

const char8_t u8R"x (UTF-8 raw string)x"
u UTF-16 string literal — array of n UTF-16 u"UTF-16 string"

const charl6_t uR"y(UTF-16 raw string)y"
U UTF-32 string literal — array of n UTF-32 U"UTF-32 string"

const char32_t UR"z (UTF-32 raw string)z"

A string-literal that has an R in the prefix is a raw string literal. The d-char-sequence serves as a delimiter. The

terminating d-char-sequence of a raw-string is the same sequence of characters as the initial d-char-sequence.
A d-char-sequence shall consist of at most 16 characters.

3 [Note 1: The characters > (> and ’)’ can appear in a raw-string. Thus, R"delimiter ((a|b))delimiter" is equivalent
to "(alb)". —end note]
4 [Note 2: A source-file new-line in a raw string literal results in a new-line in the resulting execution string literal.

Assuming no whitespace at the beginning of lines in the following example, the assert will succeed:

const char* p = R"(a\

b

C)"'

’

assert(std::strcmp(p, "a\\\nb\nc") == 0);

— end note]

[Ezample 1: The raw string

Rlla(

AN
a"
)all

is equivalent to "\n)\\\na\"\n". The raw string

R" (X = ll\lly\ll ||) n

§5.13.5 ©ISO/IEC

27

10

(10.1)

(10.2)

(10.2.1)

(10.2.2)

(10.2.3)

(10.2.4)

N5008

is equivalent to "x = \"\\\"y\\\"\"". — end ezample]
Ordinary string literals and UTF-8 string literals are also referred to as narrow string literals.

The string-literals in any sequence of adjacent string-literals shall have at most one unique encoding-prefix
among them. The common encoding-prefix of the sequence is that encoding-prefix, if any.

[Note 3: A string-literal’s rawness has no effect on the determination of the common encoding-prefix. — end note]

In translation phase 6 (5.2), adjacent string-literals are concatenated. The lexical structure and grouping of
the contents of the individual string-literals is retained.

[Ezample 2:
"\XA" ngn

represents the code unit >\xA’ and the character ’B’ after concatenation (and not the single code unit ’\xAB?).
Similarly,

Rn(\uoo)u ngqn

represents six characters, starting with a backslash and ending with the digit 1 (and not the single character ’A’
specified by a universal-character-name).

Table 13 has some examples of valid concatenations. — end example]
Table 13 — String literal concatenations [tab:lex.string.concat]
Source Means Source Means Source Means

ullaII ullbll ullabll Ullall Ullbll Ullabll Lllall LlIbIl LlIabll
ullall llbll ullabll Ullall llbll Ullabll Lllall Ilbll Lllabll
llall ull'bll ullabll llall Ullbll Ullabll Ilall Lllbll Lllabll

Evaluating a string-literal results in a string literal object with static storage duration (6.7.6).

[Note 4: String literal objects are potentially non-unique (6.7.2). Whether successive evaluations of a string-literal
yield the same or a different object is unspecified. — end note]

[Note 5: The effect of attempting to modify a string literal object is undefined. — end note]

String literal objects are initialized with the sequence of code unit values corresponding to the string-literal’s
sequence of s-chars (originally from non-raw string literals) and r-chars (originally from raw string literals),
plus a terminating U+0000 NULL character, in order as follows:

— The sequence of characters denoted by each contiguous sequence of basic-s-chars, r-chars, simple-escape-
sequences (5.13.3), and universal-character-names (5.3.1) is encoded to a code unit sequence using
the string-literal’s associated character encoding. If a character lacks representation in the associated
character encoding, then the program is ill-formed.

[Note 6: No character lacks representation in any Unicode encoding form. — end note]

When encoding a stateful character encoding, implementations should encode the first such sequence
beginning with the initial encoding state and encode subsequent sequences beginning with the final
encoding state of the prior sequence.

[Note 7: The encoded code unit sequence can differ from the sequence of code units that would be obtained by
encoding each character independently. — end note]

— Each numeric-escape-sequence (5.13.3) contributes a single code unit with a value as follows:

— Let v be the integer value represented by the octal number comprising the sequence of octal-
digits in an octal-escape-sequence or by the hexadecimal number comprising the sequence of
hexadecimal-digits in a hexadecimal-escape-sequence.

— If v does not exceed the range of representable values of the string-literal’s array element type,
then the value is v.

— Otherwise, if the string-literal’s encoding-prefix is absent or L, and v does not exceed the range of
representable values of the corresponding unsigned type for the underlying type of the string-literal’s
array element type, then the value is the unique value of the string-literal’s array element type T
that is congruent to v modulo 2V, where N is the width of T.

— Otherwise, the program is ill-formed.

§5.13.5 ©ISO/IEC
28

(10.3)

1

N5008

When encoding a stateful character encoding, these sequences should have no effect on encoding state.

— Each conditional-escape-sequence (5.13.3) contributes an implementation-defined code unit sequence.
When encoding a stateful character encoding, it is implementation-defined what effect these sequences
have on encoding state.

5.13.6 Unevaluated strings [lex.string.uneval]

unevaluated-string:
string-literal

An unevaluated-string shall have no encoding-prefix.

Each universal-character-name and each simple-escape-sequence in an unevaluated-string is replaced by the
member of the translation character set it denotes. An unevaluated-string that contains a numeric-escape-
sequence or a conditional-escape-sequence is ill-formed.

An unevaluated-string is never evaluated and its interpretation depends on the context in which it appears.

5.13.7 Boolean literals [lex.bool]
boolean-literal:
false
true

The Boolean literals are the keywords false and true. Such literals have type bool.

5.13.8 Pointer literals [lex.nullptr]
pointer-literal:
nullptr

The pointer literal is the keyword nullptr. It has type std: :nullptr_t.

[Note 1: std::nullptr_t is a distinct type that is neither a pointer type nor a pointer-to-member type; rather, a
prvalue of this type is a null pointer constant and can be converted to a null pointer value or null member pointer
value. See 7.3.12 and 7.3.13. — end note]

5.13.9 User-defined literals [lex.ext]

user-defined-literal:
user-defined-integer-literal
user-defined-floating-point-literal
user-defined-string-literal
user-defined-character-literal

user-defined-integer-literal.:
decimal-literal ud-suffix
octal-literal ud-suffix
hexadecimal-literal ud-suffix
binary-literal ud-suffix

user-defined-floating-point-literal:
fractional-constant exponent-part,p: ud-suffix
digit-sequence exponent-part ud-suffix
hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part ud-suffix
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part ud-suffix

user-defined-string-literal:
string-literal ud-suffix

user-defined-character-literal:
character-literal ud-suffix

ud-suffix:
identifier

If a token matches both user-defined-literal and another literal kind, it is treated as the latter.
[Ezample 1: 123_km is a user-defined-literal, but 12LL is an integer-literal. — end ezample]

The syntactic non-terminal preceding the ud-suffix in a user-defined-literal is taken to be the longest sequence
of characters that could match that non-terminal.

§5.13.9 ©ISO/IEC
29

N5008

A user-defined-literal is treated as a call to a literal operator or literal operator template (12.6). To determine
the form of this call for a given user-defined-literal L with ud-suffix X, first let S be the set of declarations
found by unqualified lookup for the literal-operator-id whose literal suffix identifier is X (6.5.3). S shall not
be empty.

If L is a user-defined-integer-literal, let n be the literal without its ud-suffix. If S contains a literal operator
with parameter type unsigned long long, the literal L is treated as a call of the form

operator ""X (nULL)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template (12.6) but not both.
If S contains a raw literal operator, the literal L is treated as a call of the form

operator ""X("n")

Otherwise (S contains a numeric literal operator template), L is treated as a call of the form
operator ""X<'ci', 'c2', ... 'cx'>0

where n is the source character sequence cqcs...ck.

[Note 1: The sequence cicz...c, can only contain characters from the basic character set. — end note]

If L is a user-defined-floating-point-literal, let f be the literal without its ud-suffix. If S contains a literal
operator with parameter type long double, the literal L is treated as a call of the form

operator ""X (fL)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template (12.6) but not both.
If S contains a raw literal operator, the literal L is treated as a call of the form

operator ""X("f")

Otherwise (S contains a numeric literal operator template), L is treated as a call of the form
operator ""X<'ci', 'c2', ... 'cx'>0

where f is the source character sequence cjcso...cg.

[Note 2: The sequence cicz...c, can only contain characters from the basic character set. — end note]

If L is a user-defined-string-literal, let str be the literal without its ud-suffix and let len be the number of
code units in str (i.e., its length excluding the terminating null character). If S contains a literal operator
template with a constant template parameter for which str is a well-formed template-argument, the literal L
is treated as a call of the form

operator ""X<str>()
Otherwise, the literal L is treated as a call of the form
operator ""X(str, len)

If L is a user-defined-character-literal, let ch be the literal without its ud-suffix. S shall contain a literal
operator (12.6) whose only parameter has the type of ch and the literal L is treated as a call of the form

operator ""X (ch)

[Ezample 2:
long double operator ""_w(long double);
std::string operator ""_w(const charl6_t*, std::size_t);
unsigned operator ""_w(const charx);
int main() {
1.2_w; // calls operator ""_w(1.2L)
u"one" _w; // calls operator ""_w(u"one", 3)
12_w; // calls operator ""_w("12")
"two" _w; // error: no applicable literal operator
}

— end example]

In translation phase 6 (5.2), adjacent string-literals are concatenated and user-defined-string-literals are
considered string-literals for that purpose. During concatenation, ud-suffixes are removed and ignored and the
concatenation process occurs as described in 5.13.5. At the end of phase 6, if a string-literal is the result of a
concatenation involving at least one user-defined-string-literal, all the participating user-defined-string-literals
shall have the same ud-suffix and that suffix is applied to the result of the concatenation.

§5.13.9 ©ISO/IEC
30

N5008

9 [Example 3:

int main() {

L"A" "B" "C"_x; // OK, same as L"ABC"_x

"P"_x "Q" "R"_y; // error: two different ud-suffixes
}

— end ezxample]

§5.13.9 ©ISO/IEC
31

(5.5)

(5.8)

(5.10)
(5.11)
(5.12)
(5.13)
(5.14)
(5.15)
(5.16)
(5.17)

(5.18)

N5008

6 Basics [basic]

6.1 Preamble [basic.pre]

[Note 1: This Clause presents the basic concepts of the C++ language. It explains the difference between an object
and a name and how they relate to the value categories for expressions. It introduces the concepts of a declaration
and a definition and presents C++’s notion of type, scope, linkage, and storage duration. The mechanisms for starting
and terminating a program are discussed. Finally, this Clause presents the fundamental types of the language and
lists the ways of constructing compound types from these. — end note]

[Note 2: This Clause does not cover concepts that affect only a single part of the language. Such concepts are
discussed in the relevant Clauses. — end note]

A name is an identifier (5.11), conversion-function-id (11.4.8.3), operator-function-id (12.4), or literal-operator-
id (12.6).

Two names are the same if
— they are identifiers composed of the same character sequence, or
— they are conversion-function-ids formed with equivalent (13.7.7.2) types, or
— they are operator-function-ids formed with the same operator, or
— they are literal-operator-ids formed with the same literal suffix identifier.
Every name is introduced by a declaration, which is a
— name-declaration, block-declaration, or member-declaration (9.1, 11.4),
— init-declarator (9.3),
— identifier in a structured binding declaration (9.7),
— identifier in a result-name-introducer in a postcondition assertion (9.4.2),
— init-capture (7.5.6.3),
— condition with a declarator (8.1),
— member-declarator (11.4),
— using-declarator (9.10),
— parameter-declaration (9.3.4.6, 13.2),
— type-parameter (13.2),
— type-tt-parameter (13.2),
— variable-tt-parameter (13.2),
— concept-tt-parameter (13.2),
— elaborated-type-specifier that introduces a name (9.2.9.5),
— class-specifier (11.1),
— enum-specifier or enumerator-definition (9.8.1),
— exception-declaration (14.1), or
— implicit declaration of an injected-class-name (11.1).
[Note 3: The interpretation of a for-range-declaration produces one or more of the above (8.6.5). — end note|

[Note 4: Some names denote types or templates. In general, whenever a name is encountered it is necessary to look it
up (6.5) to determine whether that name denotes one of these entities before continuing to parse the program that
contains it. — end note]

A wariable is introduced by the declaration of a reference other than a non-static data member or of an
object. The variable’s name, if any, denotes the reference or object.

An entity is a value, object, reference, structured binding, result binding, function, enumerator, type, class
member, bit-field, template, template specialization, namespace, or pack. An entity F is denoted by the

§6.1 ©ISO/IEC
32

10

2
(2.1)

(2.2)

(2.3)

(2.4)

(2.9)
(2.10)
(2.11)
(2.12)
(2.13)
(2.14)
(2.15)
(2.16)
(2.17)

(2.18)

(2.19)

(2.20)

N5008

name (if any) that is introduced by a declaration of E or by a typedef-name introduced by a declaration
specifying FE.

A local entity is a variable with automatic storage duration (6.7.6.4), a structured binding (9.7) whose
corresponding variable is such an entity, a result binding (9.4.2), or the *this object (7.5.3).

A name used in more than one translation unit can potentially refer to the same entity in these translation
units depending on the linkage (6.6) of the name specified in each translation unit.
6.2 Declarations and definitions [basic.def]

A declaration (Clause 9) may (re)introduce one or more names and/or entities into a translation unit. If so,
the declaration specifies the interpretation and semantic properties of these names. A declaration of an entity
or typedef-name X is a redeclaration of X if another declaration of X is reachable from it (10.7); otherwise,
it is a first declaration. A declaration may also have effects including;:

— a static assertion (9.1),
— controlling template instantiation (13.9.3),
— guiding template argument deduction for constructors (13.7.2.3),
— use of attributes (9.13), and
— nothing (in the case of an empty-declaration).
Each entity declared by a declaration is also defined by that declaration unless:
— it declares a function without specifying the function’s body (9.6),

— it contains the extern specifier (9.2.2) or a linkage-specification'® (9.12) and neither an initializer nor a
function-body,

— it declares a non-inline static data member in a class definition (11.4, 11.4.9),

— it declares a static data member outside a class definition and the variable was defined within the class
with the constexpr specifier (11.4.9.3) (this usage is deprecated; see D.7),

— it is an elaborated-type-specifier (11.3),
— it is an opaque-enum-declaration (9.8.1),
— it is a template-parameter (13.2),

— it is a parameter-declaration (9.3.4.6) in a function declarator that is not the declarator of a function-
definition,

— it is a typedef declaration (9.2.4),
— it is an alias-declaration (9.2.4),

— it is a using-declaration (9.10),

— it is a deduction-guide (13.7.2.3),

— it is a static_assert-declaration (9.1),
— it is an attribute-declaration (9.1),
— it is an empty-declaration (9.1),

— it is a using-directive (9.9.4),

— it is a using-enum-declaration (9.8.2),

— it is a template-declaration (13.1) whose template-head is not followed by either a concept-definition or a
declaration that defines a function, a class, a variable, or a static data member,

— it is an explicit instantiation declaration (13.9.3), or
— it is an explicit specialization (13.9.4) whose declaration is not a definition.

A declaration is said to be a definition of each entity that it defines.

15) Appearing inside the brace-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a
definition.

§6.2 ©ISO/IEC
33

3

N5008

[Example 1: All but one of the following are definitions:

int a;

extern const int c = 1;

int f(int x) { return x+a; }
struct S { int a; int b; };

// defines a

// defines ¢
// defines £ and defines x

// defines S, S::a, and S::b

struct X { // defines X
int x; // defines non-static data member x
static int y; // declares static data member y
XO: x(0) {1} // defines a constructor of X

};

int X::y = 1; // defines X::y

enum { up, down };
namespace N { int d; }
namespace N1 = N;

X anX;

whereas these are just declarations:

extern int a;
extern const int c;
int f(int);

struct S;

typedef int Int;
extern X anotherX;
using N::d;

— end example]

[Note 1: In some circumstances, C++ implementations implicitly define the default constructor (11.4.5.2), copy
constructor, move constructor (11.4.5.3), copy assignment operator, move assignment operator (11.4.6), or destructor

// defines up and down
// defines N and N: :d

// defines N1
// defines anX

// declares a

// declares ¢

// declares £

// declares 8

// declares Int

// declares anotherX
// declares d

(11.4.7) member functions. — end note]

[Ezample 2: Given

#include <string>

struct C {
std::string s; // std::string is the standard library class (27.4)
}
int main() {
C a;
Cb=a;
b = a;
}
the implementation will implicitly define functions to make the definition of C equivalent to
struct C {
std::string s;
cO :sO {17}

C(const C& x): s(x.s) { }

C(C&& x): s(static_cast<std::string&&>(x.s)) { }
// : s(std::move(x.s)) { }

C& operator=(const C& x) { s = x.s; return *this; }
C& operator=(C&& x) { s = static_cast<std::string&&>(x.s); return *this; }
// { s = std::move(x.s); return xthis; }
~cO {1}
};
— end ezample]

4 [Note 2: A class name can also be implicitly declared by an elaborated-type-specifier (9.2.9.5). — end note]

In the definition of an object, the type of that object shall not be an incomplete type (6.8.1), an abstract
class type (11.7.4), or a (possibly multidimensional) array thereof.

ut

6.3 One-definition rule [basic.def.odr]
1 Each of the following is termed a definable item:
§6.3 ©ISO/IEC

34

(3.1)

(3.2)

(3.3)

(3.7)

N5008

a class type (Clause 11),

an enumeration type (9.8.1),

a function (9.3.4.6),

a variable (6.1),

a templated entity (13.1),

a default argument for a parameter (for a function in a given scope) (9.3.4.7), or

a default template argument (13.2).

No translation unit shall contain more than one definition of any definable item.

An expression or conversion is potentially evaluated unless it is an unevaluated operand (7.2.3), a subexpression
thereof, or a conversion in an initialization or conversion sequence in such a context. The set of potential
results of an expression F is defined as follows:

If E is an id-expression (7.5.5), the set contains only E.

If E is a subscripting operation (7.6.1.2) with an array operand, the set contains the potential results
of that operand.

If E is a class member access expression (7.6.1.5) of the form E; . template,,; Fs naming a non-static
data member, the set contains the potential results of Ej.

If F is a class member access expression naming a static data member, the set contains the id-expression
designating the data member.

If F is a pointer-to-member expression (7.6.4) of the form F; .* Es, the set contains the potential
results of Fj.

If F has the form (FE7), the set contains the potential results of Ej.

If E is a glvalue conditional expression (7.6.16), the set is the union of the sets of potential results of
the second and third operands.

If E is a comma expression (7.6.20), the set contains the potential results of the right operand.

Otherwise, the set is empty.

[Note 1: This set is a (possibly-empty) set of id-expressions, each of which is either E or a subexpression of E.

[Ezample 1: In the following example, the set of potential results of the initializer of n contains the first S::x
subexpression, but not the second S: :x subexpression.

struct S { static const int x = 0; };
const int &f(const int &r);
int n =b ? (1, S::x) // S::x is not odr-used here

1 £(S::x); // S::x is odr-used here, so a definition is required

— end example]

— end note]

4 A function is named by an expression or conversion as follows:

(4.1)

(4.2)

(4.3)

A function is named by an expression or conversion if it is the selected member of an overload set (6.5,
12.2, 12.3) in an overload resolution performed as part of forming that expression or conversion, unless
it is a pure virtual function and either the expression is not an id-expression naming the function with
an explicitly qualified name or the expression forms a pointer to member (7.6.2.2).

[Note 2: This covers taking the address of functions (7.3.4, 7.6.2.2), calls to named functions (7.6.1.3), operator
overloading (Clause 12), user-defined conversions (11.4.8.3), allocation functions for new-expressions (7.6.2.8), as
well as non-default initialization (9.5). A constructor selected to copy or move an object of class type is considered
to be named by an expression or conversion even if the call is actually elided by the implementation (11.9.6).
— end note]

A deallocation function for a class is named by a new-expression if it is the single matching deallocation
function for the allocation function selected by overload resolution, as specified in 7.6.2.8.

— A deallocation function for a class is named by a delete-expression if it is the selected usual deallocation

function as specified in 7.6.2.9 and 11.4.11.

5 A variable is named by an expression if the expression is an id-expression that denotes it. A variable x that is
named by a potentially-evaluated expression N that appears at a point P is odr-used by N unless

§6.3

©ISO/IEC
35

N5008

(51) — x is a reference that is usable in constant expressions at P (7.7) or
(5.2) — N is an element of the set of potential results of an expression E, where
(5.2.1) — FE is a discarded-value expression (7.2.3) to which the lvalue-to-rvalue conversion is not applied or
(5.2.2) — X is a non-volatile object that is usable in constant expressions at P and has no mutable subobjects
and
(5.2.2.1) — FE is a class member access expression (7.6.1.5) naming a non-static data member of reference
type and whose object expression has non-volatile-qualified type or
(5.2.2.2) — the Ivalue-to-rvalue conversion (7.3.2) is applied to F and E has non-volatile-qualified non-class
type
[Ezample 2:
int f£(int);
int g(int&);
struct A {
int x;
};
struct B {
int& r;
};

int h(bool cond)
constexpr A a =

{

{1};

constexpr const volatile A& r

int _ = f(cond
int x, y;

constexpr B bl
int _ = g(cond
int _ = ((cond

return [] {
return bl.r;

}0;
}

— end example]

?

?
?

a.x

{x}, b2 = {y};
bl.r :
T y), 0);

X

T r.x);

b2.1r);

// odr-uses a
// does not odr-use a or r

// odr-uses x and y
// does not odr-use bl or b2
// does not odr-use x or y

// error: bl is odr-used here because the object
// referred to by bl.r is not constexpr-referenceable here

6 A structured binding is odr-used if it appears as a potentially-evaluated expression.

7 this is odr-used if this appears as a potentially-evaluated expression (including as the result of any implicit
transformation to a class member access expression (7.5.5.1)).

8 A virtual member function is odr-used if it is not pure. A function is odr-used if it is named by a potentially-
evaluated expression or conversion. A non-placement allocation or deallocation function for a class is odr-used
by the definition of a constructor of that class. A non-placement deallocation function for a class is odr-used
by the definition of the destructor of that class, or by being selected by the lookup at the point of definition
of a virtual destructor (11.4.7).16

9 An assignment operator function in a class is odr-used by an implicitly-defined copy assignment or move
assignment function for another class as specified in 11.4.6. A constructor for a class is odr-used as specified
in 9.5. A destructor for a class is odr-used if it is potentially invoked (11.4.7).

10 A local entity (6.1) is odr-usable in a scope (6.4.1) if

(10.1) — either the local entity is not *this, or an enclosing class or non-lambda function parameter scope exists
and, if the innermost such scope is a function parameter scope, it corresponds to a non-static member

function, and

(10.2) — for each intervening scope (6.4.1) between the point at which the entity is introduced and the scope
(where *this is considered to be introduced within the innermost enclosing class or non-lambda function
definition scope), either

(10.2.1) — the intervening scope is a block scope,

(10.2.2) — the intervening scope is a contract-assertion scope (6.4.10),

16) An implementation is not required to call allocation and deallocation functions from constructors or destructors; however,

this is a permissible implementation technique.

§6.3

©ISO/IEC
36

(10.2.3)

(10.2.4)

11

N5008

— the intervening scope is the function parameter scope of a lambda-expression or requires-expression,
or

— the intervening scope is the lambda scope of a lambda-expression that has a simple-capture naming
the entity or has a capture-default, and the block scope of the lambda-expression is also an intervening
scope.

If a local entity is odr-used in a scope in which it is not odr-usable, the program is ill-formed.

[Ezample 3:
void f(int n) {
0{n=1; 13 // error: n is not odr-usable due to intervening lambda-expression
struct A {
void £() { n = 2; } // error: n is not odr-usable due to intervening function definition scope
};
void g(int = n); // error: n is not odr-usable due to intervening function parameter scope
[=](int k = n) {}; // error: n is not odr-usable due to being

// outside the block scope of the lambda-expression
[&] { [n]{ return n; }; }; // OK

}
— end ezample]
[Example 4:
void g() {
constexpr int x = 1;
auto lambda = [] <typename T, int = ((T)x, 0)> {}; // OK
lambda.operator()<int, 1>(); // OK, does not consider x at all
lambda.operator ()<int>() ; // OK, does not odr-use x
lambda.operator()<const int&>(); // error: odr-uses x from a context where x is not odr-usable
}
void h() {
constexpr int x = 1;
auto lambda = [] <typename T> { (T)x; }; // OK
lambda.operator()<int>(); // OK, does not odr-use x
lambda.operator ()<void>() ; // OK, does not odr-use x
lambda.operator()<const int&>(); // error: odr-uses x from a context where x is not odr-usable
}

— end example]

12 Every program shall contain at least one definition of every function or variable that is odr-used in that
program outside of a discarded statement (8.5.2); no diagnostic required. The definition can appear explicitly
in the program, it can be found in the standard or a user-defined library, or (when appropriate) it is implicitly
defined (see 11.4.5.2, 11.4.5.3, 11.4.7, and 11.4.6).

[Ezample 5:
auto £() {

13

14

}

struct A {};
return A{};

decltype(£()) gO;
auto x = g();

A program containing this translation unit is ill-formed because g is odr-used but not defined, and cannot be defined
in any other translation unit because the local class A cannot be named outside this translation unit. — end ezample]

A definition domain is a private-module-fragment or the portion of a translation unit excluding its private-
module-fragment (if any). A definition of an inline function or variable shall be reachable from the end of
every definition domain in which it is odr-used outside of a discarded statement.

A definition of a class shall be reachable in every context in which the class is used in a way that requires the
class type to be complete.

[Ezample 6: The following complete translation unit is well-formed, even though it never defines X:

struct X; // declare X as a struct type
struct X* x1; // use X in pointer formation
§6.3 ©ISO/IEC

37

(14.1)
(14.2)
(14.3)
(14.4)
(14.5)

(14.6)

(14.7)
(14.8)
(14.9)
(14.10)
(14.11)
(14.12)

(14.13)

15
(15.1)

(15.2)

(15.3)

(15.4)

(15.5)

(15.5.1)

(15.5.1.1)

(15.5.1.2)

(15.5.1.3)

(15.5.1.4)

(15.5.2)

(15.6)

(15.7)

(15.8)

(15.9)

N5008

X* x2; // use X in pointer formation

— end ezample]

[Note 8: The rules for declarations and expressions describe in which contexts complete class types are required. A
class type T must be complete if

an object of type T is defined (6.2), or

a non-static class data member of type T is declared (11.4), or

T is used as the allocated type or array element type in a new-expression (7.6.2.8), or

an lvalue-to-rvalue conversion is applied to a glvalue referring to an object of type T (7.3.2), or

an expression is converted (either implicitly or explicitly) to type T (7.3, 7.6.1.4, 7.6.1.7, 7.6.1.9, 7.6.3), or

an expression that is not a null pointer constant, and has type other than cv voidx, is converted to the type pointer
to T or reference to T using a standard conversion (7.3), a dynamic_cast (7.6.1.7) or a static_cast (7.6.1.9), or

a class member access operator is applied to an expression of type T (7.6.1.5), or

the typeid operator (7.6.1.8) or the sizeof operator (7.6.2.5) is applied to an operand of type T, or
a function with a return type or argument type of type T is defined (6.2) or called (7.6.1.3), or

a class with a base class of type T is defined (11.7), or

an lvalue of type T is assigned to (7.6.19), or

the type T is the subject of an alignof expression (7.6.2.6), or

an exception-declaration has type T, reference to T, or pointer to T (14.4).

— end note]

For any definable item D with definitions in multiple translation units,

if D is a non-inline non-templated function or variable, or

if the definitions in different translation units do not satisfy the following requirements,

the program is ill-formed; a diagnostic is required only if the definable item is attached to a named module
and a prior definition is reachable at the point where a later definition occurs. Given such an item, for all
definitions of D, or, if D is an unnamed enumeration, for all definitions of D that are reachable at any given
program point, the following requirements shall be satisfied.

§6.3

Each such definition shall not be attached to a named module (10.1).

Each such definition shall consist of the same sequence of tokens, where the definition of a closure type
is considered to consist of the sequence of tokens of the corresponding lambda-expression.

In each such definition, corresponding names, looked up according to 6.5, shall refer to the same entity,
after overload resolution (12.2) and after matching of partial template specializations (13.7.6.2), except
that a name can refer to

— a non-volatile const object with internal or no linkage if the object
— has the same literal type in all definitions of D,
— is initialized with a constant expression (7.7),
— is not odr-used in any definition of D, and
— has the same value in all definitions of D,
or

— a reference with internal or no linkage initialized with a constant expression such that the reference
refers to the same entity in all definitions of D.

In each such definition, except within the default arguments and default template arguments of D,
corresponding lambda-expressions shall have the same closure type (see below).

In each such definition, corresponding entities shall have the same language linkage.

In each such definition, const objects with static or thread storage duration shall be constant-initialized
if the object is constant-initialized in any such definition.

In each such definition, corresponding manifestly constant-evaluated expressions that are not value-
dependent shall have the same value (7.7, 13.8.3.4).

©ISO/IEC
38

N5008

(15.10) — In each such definition, the overloaded operators referred to, the implicit calls to conversion functions,
constructors, operator new functions and operator delete functions, shall refer to the same function.

(15.11) — Tn each such definition, a default argument used by an (implicit or explicit) function call or a default
template argument used by an (implicit or explicit) template-id or simple-template-id is treated as if its
token sequence were present in the definition of D; that is, the default argument or default template
argument is subject to the requirements described in this paragraph (recursively).

16 For the purposes of the preceding requirements:

(16.1) — If D is a class with an implicitly-declared constructor (11.4.5.2, 11.4.5.3), it is as if the constructor was
implicitly defined in every translation unit where it is odr-used, and the implicit definition in every
translation unit shall call the same constructor for a subobject of D.

[Ezample 7:

// translation unit 1:
struct X {

X(int, int);

X(int, int, int);
};
X::X(int, int = 0) { }
class D {

X x =0;

D di; // X(int, int) called by D)

// translation unit 2:
struct X {
X(int, int);
X(int, int, int);
};
X::X(int, int = 0, int = 0) { }
class D {
X x =0;

D d2; // X(int, int, int) called by DQO);
// DO ’s implicit definition violates the ODR

— end example]

(162) — If D is a class with a defaulted three-way comparison operator function (11.10.3), it is as if the operator
was implicitly defined in every translation unit where it is odr-used, and the implicit definition in every
translation unit shall call the same comparison operators for each subobject of D.

(16.3) — If D is a template and is defined in more than one translation unit, the requirements apply both to
names from the template’s enclosing scope used in the template definition, and also to dependent names
at the point of instantiation (13.8.3).

17 These requirements also apply to corresponding entities defined within each definition of D (including the
closure types of lambda-expressions, but excluding entities defined within default arguments or default template
arguments of either D or an entity not defined within D). For each such entity and for D itself, the behavior is
as if there is a single entity with a single definition, including in the application of these requirements to
other entities.

[Note 4: The entity is still declared in multiple translation units, and 6.6 still applies to these declarations. In
particular, lambda-expressions (7.5.6) appearing in the type of D can result in the different declarations having distinct
types, and lambda-expressions appearing in a default argument of D might still denote different types in different
translation units. — end note]

18 [Ezample 8:

inline void f(bool cond, void (¥p)()) {
if (cond) f(false, [1{});

}

inline void g(bool cond, void (¥p)() = [1{}) {
if (cond) g(false);

}

§6.3 ©ISO/IEC
39

N5008

struct X {
void h(bool cond, void (¥p)() = [1{}) {
if (cond) h(false);
}
};
If the definition of £ appears in multiple translation units, the behavior of the program is as if there is only one
definition of f. If the definition of g appears in multiple translation units, the program is ill-formed (no diagnostic
required) because each such definition uses a default argument that refers to a distinct lambda-expression closure type.
The definition of X can appear in multiple translation units of a valid program; the lambda-expressions defined within
the default argument of X::h within the definition of X denote the same closure type in each translation unit. — end
ezample]

19 If, at any point in the program, there is more than one reachable unnamed enumeration definition in the same
scope that have the same first enumerator name and do not have typedef names for linkage purposes (9.8.1),
those unnamed enumeration types shall be the same; no diagnostic required.

6.4 Scope [basic.scope]

6.4.1 General [basic.scope.scope]

1 The declarations in a program appear in a number of scopes that are in general discontiguous. The global scope
contains the entire program; every other scope S is introduced by a declaration, parameter-declaration-clause,
statement, handler, or contract assertion (as described in the following subclauses of 6.4) appearing in another
scope, which thereby contains S. An enclosing scope at a program point is any scope that contains it; the
smallest such scope is said to be the immediate scope at that point. A scope intervenes between a program
point P and a scope S (that does not contain P) if it is or contains S but does not contain P.

2 Unless otherwise specified:

(2.1) — The smallest scope that contains a scope S is the parent scope of S.

(22) — No two declarations (re)introduce the same entity.

(23) — A declaration inhabits the immediate scope at its locus (6.4.2).

(2.4) — A declaration’s target scope is the scope it inhabits.

(25) — Any names (re)introduced by a declaration are bound to it in its target scope.

An entity belongs to a scope S if S is the target scope of a declaration of the entity.
[Note 1: Special cases include that:

(2.6) — Template parameter scopes are parents only to other template parameter scopes (6.4.9).

(2.7) — Corresponding declarations with appropriate linkage declare the same entity (6.6).

(2.8) — The declaration in a template-declaration inhabits the same scope as the template-declaration.

(2.9) — Friend declarations and declarations of template specializations do not bind names (9.3.4); those with qualified

names target a specified scope, and other friend declarations and certain elaborated-type-specifiers (9.2.9.5)
target a larger enclosing scope.

(2.10) — Block-scope extern or function declarations target a larger enclosing scope but bind a name in their immediate
scope (9.3.4.1).
(2.11) — The names of unscoped enumerators are bound in the two innermost enclosing scopes (9.8.1).
(2.12) — A class’s name is also bound in its own scope (11.1).
(2.13) — The names of the members of an anonymous union are bound in the union’s parent scope (11.5.2).
— end note]

3 Two non-static member functions have corresponding object parameters if

(3.1) — exactly one is an implicit object member function with no ref-qualifier and the types of their object
parameters (9.3.4.6), after removing references, are the same, or

(3.2) — their object parameters have the same type.

Two non-static member function templates have corresponding object parameters if

(3.3) — exactly one is an implicit object member function with no ref-qualifier and the types of their object
parameters, after removing any references, are equivalent, or
(3.4) — the types of their object parameters are equivalent.
§6.4.1 ©ISO/IEC

40

(4.1)

(4.2)

(4.3)

(4.4)

5
(5.1)
(5.2)
(5.3)

(5.4)

N5008

Two function templates have corresponding signatures if their template-parameter-lists have the same length,
their corresponding template-parameters are equivalent, they have equivalent non-object-parameter-type-lists
and return types (if any), and, if both are non-static members, they have corresponding object parameters.

Two declarations correspond if they (re)introduce the same name, both declare constructors, or both declare
destructors, unless

— either is a using-declarator, or

— one declares a type (not a typedef-name) and the other declares a variable, non-static data member
other than of an anonymous union (11.5.2), enumerator, function, or function template, or

— each declares a function or function template and they do not declare corresponding overloads.
Two function or function template declarations declare corresponding overloads if

— both declare functions with the same non-object-parameter-type-list,'” equivalent (13.7.7.2) trailing
requires-clauses (if any, except as specified in 13.7.5), and, if both are non-static members, they have
corresponding object parameters, or

— both declare function templates with corresponding signatures and equivalent template-heads and
trailing requires-clauses (if any).
[Note 2: Declarations can correspond even if neither binds a name.
[Ezample 1:

struct A {
friend void £(); /) #1
};
struct B {
friend void £() {} // corresponds to, and defines, #1
};

— end ezample]
— end note]
[Ezample 2:

typedef int Int;
enum E : int { a };

void f(int); /) #1
void f(Int) {} // defines #1
void f(E) {} // OK, another overload
struct X {
static void £();
void f() const; // error: redeclaration
void g(O);
void g() const; // OK
void g() &; // error: redeclaration

void h(this X&, int);

void h(int) &&; // OK, another overload
void j(this const X&) ;

void j() const &; // error: redeclaration
void k();

void k(this X&); // error: redeclaration

};
— end ezample]
A declaration is name-independent if its name is _ (U+005F LOW LINE) and it declares
— a variable with automatic storage duration,
— a structured binding with no storage-class-specifier and not inhabiting a namespace scope,
— a result binding (9.4.2),

— the variable introduced by an init-capture, or

17) An implicit object parameter (12.2.2) is not part of the parameter-type-list.

§6.4.1 ©ISO/IEC
41

(5.5)

N5008

— a non-static data member of other than an anonymous union.

Recommended practice: Implementations should not emit a warning that a name-independent declaration is
used or unused.

Two declarations potentially conflict if they correspond and cause their shared name to denote different
entities (6.6). The program is ill-formed if, in any scope, a name is bound to two declarations A and B that
potentially conflict and A precedes B (6.5), unless B is name-independent.

[Note 3: An id-expression that names a unique name-independent declaration is usable until an additional declaration

of the same name is introduced in the same scope (6.5.1). — end note]
[Note 4: Overload resolution can consider potentially conflicting declarations found in multiple scopes (e.g., via
using-directives or for operator functions), in which case it is often ambiguous. — end note]
[Ezample 3:
void £() {
int x,y;
void x(); // error: different entity for x
int y; // error: redefinition
}
enum { f }; // error: different entity for ::f
namespace A {}
namespace B = A;
namespace B = A; // OK, no effect
namespace B = B; // OK, no effect
namespace A = B; // OK, no effect
namespace B {} // error: different entity for B
void g() {
int _;
_=0; // OK
int _; // OK, name-independent declaration
_=0; // error: two non-function declarations in the lookup set
}
void h) {
int _; /) #1
4 // OK
static int _; // error: conflicts with #1 because static variables are not name-independent
}

— end ezample]

7 A declaration is nominable in a class, class template, or namespace E at a point P if it precedes P, it does

not inhabit a block scope, and its target scope is the scope associated with E or, if F is a namespace, any
element of the inline namespace set of E (9.9.2).
[Example 4:
namespace A {
void £() {void g();}
inline namespace B {
struct S {
friend void h();
static int i;
};
}
}

At the end of this example, the declarations of f, B, S, and h are nominable in A, but those of g and i are not. —end
example)

When instantiating a templated entity (13.1), any scope S introduced by any part of the template definition
is considered to be introduced by the instantiated entity and to contain the instantiations of any declarations
that inhabit S.

6.4.2 Point of declaration [basic.scope.pdecl]

The locus of a declaration (6.1) that is a declarator is immediately after the complete declarator (9.3).

§6.4.2 ©ISO/IEC
42

10

11

12

13

14

15

N5008

[Example 1:

unsigned char x = 12;
{ unsigned char x = x; }

Here, the initialization of the second x has undefined behavior, because the initializer accesses the second x outside its
lifetime (6.7.4). — end ezample]

[Note 1: A name from an outer scope remains visible up to the locus of the declaration that hides it.
[Ezample 2:

const int i = 2;

{ int i[il; %
declares a block-scope array of two integers. — end ezample]

— end note]

The locus of a class-specifier is immediately after the identifier or simple-template-id (if any) in its class-
head (11.1). The locus of an enum-specifier is immediately after its enum-head; the locus of an opaque-enum-
declaration is immediately after it (9.8.1). The locus of an alias-declaration is immediately after it.

The locus of a using-declarator that does not name a constructor is immediately after the using-declarator (9.10).
The locus of an enumerator-definition is immediately after it.
[Ezample 3:

const int x = 12;
{enum {x=x13} }

Here, the enumerator x is initialized with the value of the constant x, namely 12. — end example]

[Note 2: After the declaration of a class member, the member name can be found in the scope of its class even if the
class is an incomplete class.

[Ezample 4:

struct X {

enum E { z = 16 };

int b[X::z]; // OK
};

— end ezample]
— end note]
The locus of an elaborated-type-specifier that is a declaration (9.2.9.5) is immediately after it.

The locus of an injected-class-name declaration (11.1) is immediately following the opening brace of the class
definition.

The locus of the implicit declaration of a function-local predefined variable (9.6.1) is immediately before the
function-body of its function’s definition.

The locus of the declaration of a structured binding (9.7) is immediately after the identifier-list of the
structured binding declaration.

The locus of a for-range-declaration of a range-based for statement (8.6.5) is immediately after the for-range-
initializer.

The locus of a template-parameter is immediately after it.

[Ezample 5:

typedef unsigned char T;
template<class T
=T // lookup finds the typedef-name
, T // lookup finds the template parameter
N = 0> struct A { };

— end ezample]

The locus of a result-name-introducer (9.4.2) is immediately after it.

The locus of a concept-definition is immediately after its concept-name (13.7.9).
[Note 3: The constraint-expression cannot use the concept-name. — end note]

The locus of a namespace-definition with an identifier is immediately after the identifier.

§6.4.2 ©ISO/IEC
43

16

17

(1.1)

(1.2)

N5008

[Note 4: An identifier is invented for an unnamed-namespace-definition (9.9.2.2). — end note]

[Note 5: Friend declarations can introduce functions or classes that belong to the nearest enclosing namespace or block
scope, but they do not bind names anywhere (11.8.4). Function declarations at block scope and variable declarations
with the extern specifier at block scope declare entities that belong to the nearest enclosing namespace, but they do
not bind names in it. — end note]

[Note 6: For point of instantiation of a template, see 13.8.4.1. — end note]
6.4.3 Block scope [basic.scope.block]
Each

— selection or iteration statement (8.5, 8.6),
— substatement of such a statement,
— handler (14.1), or
— compound statement (8.4) that is not the compound-statement of a handler
introduces a block scope that includes that statement or handler.
[Note 1: A substatement that is also a block has only one scope. — end note]
A variable that belongs to a block scope is a block variable.
[Ezample 1:
int i = 42;

int a[10];

for (int i = 0; i < 10; i++)
alil = i;
int j = i; /)i = 42
— end ezample]
If a declaration that is not a name-independent declaration and that binds a name in the block scope S of a
— compound-statement of a lambda-expression, function-body, or function-try-block,
— substatement of a selection or iteration statement that is not itself a selection or iteration statement, or
— handler of a function-try-block

potentially conflicts with a declaration whose target scope is the parent scope of S, the program is ill-formed.

[Ezample 2:
if (int x = £O) {
int x; // error: redeclaration of x
}
else {
int x; // error: redeclaration of x
}

— end example]

6.4.4 Function parameter scope [basic.scope.param]
A parameter-declaration-clause P introduces a function parameter scope that includes P.

[Note 1: A function parameter cannot be used for its value within the parameter-declaration-clause (9.3.4.7). —end
note)

— If P is associated with a declarator and is preceded by a (possibly-parenthesized) noptr-declarator of the
form declarator-id attribute-specifier-seq ¢, its scope extends to the end of the nearest enclosing init-
declarator, member-declarator, declarator of a parameter-declaration or a nodeclspec-function-declaration,
or function-definition, but does not include the locus of the associated declarator.

[Note 2: In this case, P declares the parameters of a function (or a function or template parameter declared
with function type). A member function’s parameter scope is nested within its class’s scope. — end note]

— If P is associated with a lambda-declarator, its scope extends to the end of the compound-statement in
the lambda-expression.

§6.4.4 ©ISO/IEC
44

(1.3)

(1.4)

N5008

— If P is associated with a requirement-parameter-list, its scope extends to the end of the requirement-body
of the requires-expression.

— If P is associated with a deduction-guide, its scope extends to the end of the deduction-guide.

6.4.5 Lambda scope [basic.scope.lambda]

A lambda-expression E introduces a lambda scope that starts immediately after the lambda-introducer of E
and extends to the end of the compound-statement of E.

6.4.6 Namespace scope [basic.scope.namespace]

Any namespace-definition for a namespace N introduces a namespace scope that includes the namespace-body
for every namespace-definition for N. For each non-friend redeclaration or specialization whose target scope is
or is contained by the scope, the portion after the declarator-id, class-head-name, or enum-head-name is also
included in the scope. The global scope is the namespace scope of the global namespace (9.9).

[Ezample 1:

namespace Q {
namespace V { void £(); }
void V::£() { // in the scope of V
void h(); // declares Q::V::h
}
¥

— end ezample]

6.4.7 Class scope [basic.scope.class]

Any declaration of a class or class template C' introduces a class scope that includes the member-specification
of the class-specifier for C (if any). For each non-friend redeclaration or specialization whose target scope is
or is contained by the scope, the portion after the declarator-id, class-head-name, or enum-head-name is also
included in the scope.

[Note 1: Lookup from a program point before the class-specifier of a class will find no bindings in the class scope.
[Ezample 1:

template<class D>
struct B {

D::type x; /) #1
3

struct A { using type = int; };
struct C : A, B<C> {}; //error at #1: C::type not found
— end ezample]

— end note]

6.4.8 Enumeration scope [basic.scope.enum]|

Any declaration of an enumeration F introduces an enumeration scope that includes the enumerator-list of
the enum-specifier for E (if any).

6.4.9 Template parameter scope [basic.scope.temp]

Each type-tt-parameter, variable-tt-parameter, and concept-tt-parameter introduces a template parameter scope
that includes the template-head of the template-parameter.

Each template-declaration D introduces a template parameter scope that extends from the beginning of its
template-parameter-list to the end of the template-declaration. Any declaration outside the template-parameter-
list that would inhabit that scope instead inhabits the same scope as D. The parent scope of any scope S
that is not a template parameter scope is the smallest scope that contains S and is not a template parameter
scope.

[Note 1: Therefore, only template parameters belong to a template parameter scope, and only template parameter
scopes have a template parameter scope as a parent scope. — end note]

§6.4.9 ©ISO/IEC
45

(2.3)

N5008

6.4.10 Contract-assertion scope [basic.scope.contract]
Each contract assertion (6.10) C introduces a contract-assertion scope that includes C.

If a result-name-introducer (9.4.2) that is not name-independent (6.4.1) and whose enclosing postcondition
assertion is associated with a function F potentially conflicts with a declaration whose target scope is

— the function parameter scope of F or

— if associated with a lambda-declarator, the nearest enclosing lambda scope of the precondition assertion
(7.5.6),

the program is ill-formed.

6.5 Name lookup [basic.lookup]
6.5.1 General [basic.lookup.general]

Name lookup associates the use of a name with a set of declarations (6.2) of that name. The name lookup rules
apply uniformly to all names (including typedef-names (9.2.4), namespace-names (9.9), and class-names (11.3))
wherever the grammar allows such names in the context discussed by a particular rule. Unless otherwise
specified, the program is ill-formed if no declarations are found. If the declarations found by name lookup
all denote functions or function templates, the declarations are said to form an overload set. Otherwise,
if the declarations found by name lookup do not all denote the same entity, they are ambiguous and the
program is ill-formed. Overload resolution (12.2, 12.3) takes place after name lookup has succeeded. The
access rules (11.8) are considered only once name lookup and function overload resolution (if applicable) have
succeeded. Only after name lookup, function overload resolution (if applicable) and access checking have
succeeded are the semantic properties introduced by the declarations used in further processing.

A program point P is said to follow any declaration in the same translation unit whose locus (6.4.2) is before
P.

[Note 1: The declaration might appear in a scope that does not contain P. — end note]

A declaration X precedes a program point P in a translation unit L if P follows X, X inhabits a class scope
and is reachable from P, or else X appears in a translation unit D and

— P follows a module-import-declaration or module-declaration that imports D (directly or indirectly), and

— X appears after the module-declaration in D (if any) and before the private-module-fragment in D (if
any), and

— either X is exported or else D and L are part of the same module and X does not inhabit a namespace
with internal linkage or declare a name with internal linkage.

[Note 2: Names declared by a using-declaration have no linkage. — end note]

[Note 3: A module-import-declaration imports both the named translation unit(s) and any modules named by exported
module-import-declarations within them, recursively.

[Ezample 1:

Translation unit #1:

export module Q;

export int sq(int i) { return ixi; }
Translation unit #2:

export module R;

export import Q;
Translation unit #3:

import R;
int main() { return sq(9); } // OK, sq from module Q

— end ezample]
— end note]

A single search in a scope S for a name N from a program point P finds all declarations that precede P
to which any name that is the same as N (6.1) is bound in S. If any such declaration is a using-declarator
whose terminal name (7.5.5.2) is not dependent (13.8.3.2), it is replaced by the declarations named by the
using-declarator (9.10).

§6.5.1 ©ISO/IEC
46

4

N5008

In certain contexts, only certain kinds of declarations are included. After any such restriction, any declarations
of classes or enumerations are discarded if any other declarations are found.

[Note 4: A type (but not a typedef-name or template) is therefore hidden by any other entity in its scope. — end note]

However, if a lookup is type-only, only declarations of types and templates whose specializations are types
are considered; furthermore, if declarations of a typedef-name and of the type to which it refers are found,
the declaration of the typedef-name is discarded instead of the type declaration.

6.5.2 Member name lookup [class.member.lookup]

A search in a scope X for a name M from a program point P is a single search in X for M from P unless X
is the scope of a class or class template T, in which case the following steps define the result of the search.

[Note 1: The result differs only if M is a conversion-function-id or if the single search would find nothing. — end note]

The lookup set for a name N in a class or class template C, called S(N, C), consists of two component sets:
the declaration set, a set of members named IN; and the subobject set, a set of subobjects where declarations
of these members were found (possibly via using-declarations). In the declaration set, type declarations
(including injected-class-names) are replaced by the types they designate. S(N, C) is calculated as follows:

The declaration set is the result of a single search in the scope of C' for N from immediately after the
class-specifier of C' if P is in a complete-class context of C or from P otherwise. If the resulting declaration
set is not empty, the subobject set contains C' itself, and calculation is complete.

Otherwise (i.e., C' does not contain a declaration of N or the resulting declaration set is empty), S(N,C) is
initially empty. Calculate the lookup set for N in each direct non-dependent (13.8.3.2) base class subobject
B, and merge each such lookup set S(N, B;) in turn into S(N, C).

[Note 2: If C is incomplete, only base classes whose base-specifier appears before P are considered. If C is an
instantiated class, its base classes are not dependent. — end note]

The following steps define the result of merging lookup set S(N, B;) into the intermediate S(NV, C):

— If each of the subobject members of S(N, B;) is a base class subobject of at least one of the subobject
members of S(N,C), or if S(N,B;) is empty, S(N,C) is unchanged and the merge is complete.
Conversely, if each of the subobject members of S(INV,C) is a base class subobject of at least one of the
subobject members of S(N, B;), or if S(N,C) is empty, the new S(N, C) is a copy of S(N, B;).

— Otherwise, if the declaration sets of S(N, B;) and S(N, C) differ, the merge is ambiguous: the new

S(N,C) is a lookup set with an invalid declaration set and the union of the subobject sets. In subsequent
merges, an invalid declaration set is considered different from any other.

— Otherwise, the new S(N, C) is a lookup set with the shared set of declarations and the union of the
subobject sets.

The result of the search is the declaration set of S(M,T). If it is an invalid set, the program is ill-formed.
If it differs from the result of a search in T for M in a complete-class context (11.4) of T, the program is
ill-formed, no diagnostic required.

[Ezample 1:

struct A { int x; }; J/ S A) ={{A::x}, {A}}
struct B { float x; }; //S(xB)={{B::x }, { B}}
struct C: public A, public B { }; // S(z,C) = { invalid, { A inC,BinC } }
struct D: public virtual C { }; // S(x,D) = S(z,C)
struct E: public virtual C { char x; }; //S(zE)={{E:x },{E}}
struct F: public D, public E { }; // S(x,F) = S(z,E)
int main() {

F f;

f.x = 0; // OK, lookup finds E: :x
}

S(x,F) is unambiguous because the A and B base class subobjects of D are also base class subobjects of E, so S(x,D) is
discarded in the first merge step. — end ezample]

If M is a non-dependent conversion-function-id, conversion function templates that are members of T are
considered. For each such template F, the lookup set S(¢,T) is constructed, considering a function template
declaration to have the name ¢ only if it corresponds to a declaration of F' (6.4.1). The members of the
declaration set of each such lookup set, which shall not be an invalid set, are included in the result.

[Note 3: Overload resolution will discard those that cannot convert to the type specified by M (13.10.4). — end note]

§6.5.2 ©ISO/IEC
a7

N5008

8 [Note 4: A static member, a nested type or an enumerator defined in a base class T can unambiguously be found even
if an object has more than one base class subobject of type T. Two base class subobjects share the non-static member
subobjects of their common virtual base classes. — end note]

[Example 2:

struct V {
int v;
};
struct A {
int a;
static int s;
enum { e };
};
struct B : A, virtual V { };
struct C : A, virtual V { };
struct D : B, C { };

void £(D* pd) {

pd->v+t; // OK, only one v (virtual)
pd->s++; // OK, only one s (static)
int i = pd->e; // OK, only one e (enumerator)
pd->a++; // error: ambiguous: two as in D

}
— end example]

9 [Note 5: When virtual base classes are used, a hidden declaration can be reached along a path through the subobject
lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical use with non-virtual
base classes is an ambiguity; in that case there is no unique instance of the name that hides all the others. — end
note|

[Ezample 3:

struct V { int £0; int x; };
struct W { int g(); int y; };
struct B : virtual V, W {

int £(); int x;

int g(); int y;

};
struct C : virtual V, W { };

struct D : B, C { void glorp(); };

W\B/V\C/W
N

Figure 1 — Name lookup [fig:class.lookup]

As illustrated in Figure 1, the names declared in V and the left-hand instance of W are hidden by those in B, but the
names declared in the right-hand instance of W are not hidden at all.

void D::glorp() {

X+t // OK, B::x hides V::x

£0; // OK, B::£() hides V::£()
yt+; // error: B::y and C’s W::y
gO; // error: B::g() and C’s W::g()

}

— end ezample]

§6.5.2 ©ISO/IEC
48

10

11

(2.1)

(2.2)

N5008

An explicit or implicit conversion from a pointer to or an expression designating an object of a derived class
to a pointer or reference to one of its base classes shall unambiguously refer to a unique object representing
the base class.

[Example 4:

struct
struct
struct
struct
struct

(ool e

, virtual V { };
, virtual V { };
,C{ X

oaQwe=<

void g() {

D d;

B* pb = &d;

Ax pa = &d; // error: ambiguous: C’s A or B’s A?
&d; // OK, only one V subobject

Vx pv
}

— end ezample]

[Note 6: Even if the result of name lookup is unambiguous, use of a name found in multiple subobjects might still be
ambiguous (7.3.13, 7.6.1.5, 11.8.3). — end note]

[Ezample 5:

struct Bl {
void f();
static void f(int);
int i;
};
struct B2 {
void f(double);
}s
struct I1: Bl { };
struct I2: Bl { };

struct D: I1, I2, B2 {

using Bl::f;

using B2::f;

void g() {
£0; // Ambiguous conversion of this
£(0); // Unambiguous (static)
£(0.0); // Unambiguous (only one B2)
int Bl::* mpBl = &D::i; // Unambiguous
int D::* mpD = &D::i; // Ambiguous conversion

}

}s

— end example]

6.5.3 Unqualified name lookup [basic.lookup.unqual]
A using-directive is active in a scope S at a program point P if it precedes P and inhabits either S or the
scope of a namespace nominated by a using-directive that is active in S at P.
An unqualified search in a scope S from a program point P includes the results of searches from P in

— S, and

— for any scope U that contains P and is or is contained by S, each namespace contained by S that is

nominated by a using-directive that is active in U at P.

If no declarations are found, the results of the unqualified search are the results of an unqualified search in
the parent scope of S, if any, from P.
[Note 1: When a class scope is searched, the scopes of its base classes are also searched (6.5.2). If it inherits from a

single base, it is as if the scope of the base immediately contains the scope of the derived class. Template parameter
scopes that are associated with one scope in the chain of parents are also considered (13.8.2). — end note]

§6.5.3 ©ISO/IEC
49

N5008

3 Unqualified name lookup from a program point performs an unqualified search in its immediate scope.

4 An unqualified name is a name that does not immediately follow a nested-name-specifier or the . or -=> in a
class member access expression (7.6.1.5), possibly after a template keyword or ~. Unless otherwise specified,
such a name undergoes unqualified name lookup from the point where it appears.

5 An unqualified name

that is a component name (7.5.5.2) of a type-specifier or ptr-operator of a conversion-

type-id is looked up in the same fashion as the conversion-function-id in which it appears. If that lookup finds
nothing, it undergoes unqualified name lookup; in each case, only names that denote types or templates

whose specializations

[Example 1:

are types are considered.

struct T1 { struct U { int i; }; };

struct T2 { };
struct Ul {};
struct U2 {};

struct B {
using T = T1;
using U = Ul;
operator Ul T1::x();
operator Ul T2::x();
operator U2 T1::x();
operator U2 T2::x();
}
template<class X, class T>
int g(O) {
using U = U2;
X() .operator U T::x(); // #1, searches for T in the scope of X first
X() .operator U decltype(T())::*(); /) #2
return O;
}

int x = g<B, T2>()

— end ezample]

; // #1 calls B: :operator Ul Ti::*
// #2 calls B: :operator Ul T2::*

6 In a friend declaration declarator whose declarator-id is a qualified-id whose lookup context (6.5.5) is a class or

namespace S, lookup

for an unqualified name that appears after the declarator-id performs a search in the

scope associated with S. If that lookup finds nothing, it undergoes unqualified name lookup.

[Ezample 2:

using I = int;
using D = double;
namespace A {

inline namespace N {using C = char; }

using F = float;
void f(I);
void £(D);
void £(C);
void f(F);
}

struct X0 {using F = float; };

struct W {
using D = void;
struct X : X0 {
void g(I);
void g(::D);
void g(F);
};
3
namespace B {
typedef short I,
class Y {
friend void A:

§6.5.3

F;

(D) ; // error: no void A::f(short)

©ISO/IEC
50

(1.1)
(1.2)

(1.3)

N5008

friend void A::£(D); // OK

friend void A::£(C); // error: A::N::C not found
friend void A::f(F); // OK

friend void W::X::g(I); // error: no void X::g(short)
friend void W::X::g(D); // OK

friend void W::X::g(F); // OK

};
}

— end ezample]

6.5.4 Argument-dependent name lookup [basic.lookup.argdep]

When the postfix-expression in a function call (7.6.1.3) is an unqualified-id, and unqualified lookup (6.5.3) for
the name in the unqualified-id does not find any

— declaration of a class member, or
— function declaration inhabiting a block scope, or
— declaration not of a function or function template

then lookup for the name also includes the result of argument-dependent lookup in a set of associated
namespaces that depends on the types of the arguments (and for type template template arguments, the
namespace of the template argument), as specified below.

[Example 1:

namespace N {
struct S { };

void £(S);
}
void g() {

N::S s;

f(s); // OK, calls N: : £

(£) (s); // error: N::f not considered; parentheses prevent argument-dependent lookup
}

— end ezample]

[Note 1: For purposes of determining (during parsing) whether an expression is a postfix-expression for a function call,
the usual name lookup rules apply. In some cases a name followed by < is treated as a template-name even though
name lookup did not find a template-name (see 13.3). For example,

int h;

void g();

namespace N {
struct A {};

template <class T> int f£(T);
template <class T> int g(T);
template <class T> int h(T);

}

int x = £<N::A>(N::AQ)); // OK, lookup of £ finds nothing, £ treated as template name
int y = g<N::A>(N::A0); // OK, lookup of g finds a function, g treated as template name
int z = h<N::A>(N::AQ0)); // error: h< does not begin a template-id

The rules have no effect on the syntactic interpretation of an expression. For example,

typedef int f;
namespace N {
struct A {
friend void f(A &);
operator int();
void g(A a) {
int i = f(a); // £ is the typedef, not the friend function: equivalent to int(a)
}
};
}

§6.5.4 ©ISO/IEC
51

(3.1)

(3.2)

N5008

Because the expression is not a function call, argument-dependent name lookup does not apply and the friend function
£ is not found. — end note]

For each argument type T in the function call, there is a set of zero or more associated entities to be considered.
The set of entities is determined entirely by the types of the function arguments (and any type template
template arguments). Any typedef-names and using-declarations used to specify the types do not contribute
to this set. The set of entities is determined in the following way:

— If T is a fundamental type, its associated set of entities is empty.

— If T is a class type (including unions), its associated entities are: the class itself; the class of which it is
a member, if any; and, if it is a complete type, its direct and indirect base classes. Furthermore, if T
is a class template specialization, its associated entities also include: the entities associated with the
types of the template arguments provided for template type parameters; the templates used as type
template template arguments; and the classes of which any member templates used as type template
template arguments are members.

[Note 2: Constant template arguments, variable template template arguments, and concept template arguments
do not contribute to the set of associated entities. — end note]

— If T is an enumeration type, its associated entities are T and, if it is a class member, the member’s class.
— If T is a pointer to U or an array of U, its associated entities are those associated with U.

— If T is a function type, its associated entities are those associated with the function parameter types
and those associated with the return type.

— If T is a pointer to a member function of a class X, its associated entities are those associated with the
function parameter types and return type, together with those associated with X.

— If T is a pointer to a data member of class X, its associated entities are those associated with the
member type together with those associated with X.

In addition, if the argument is an overload set or the address of such a set, its associated entities are the union
of those associated with each of the members of the set, i.e., the entities associated with its parameter types
and return type. Additionally, if the aforementioned overload set is named with a template-id, its associated
entities also include its template template arguments and those associated with its type template arguments.

The associated namespaces for a call are the innermost enclosing non-inline namespaces for its associated
entities as well as every element of the inline namespace set (9.9.2) of those namespaces. Argument-dependent
lookup finds all declarations of functions and function templates that

— are found by a search of any associated namespace, or

— are declared as a friend (11.8.4) of any class with a reachable definition in the set of associated entities,
or

— are exported, are attached to a named module M (10.2), do not appear in the translation unit containing
the point of the lookup, and have the same innermost enclosing non-inline namespace scope as a
declaration of an associated entity attached to M (6.6).

If the lookup is for a dependent name (13.8.3, 13.8.4.2), the above lookup is also performed from each point in
the instantiation context (10.6) of the lookup, additionally ignoring any declaration that appears in another
translation unit, is attached to the global module, and is either discarded (10.4) or has internal linkage.

[Ezample 2:

Translation unit #1:

export module M;
namespace R {
export struct X {};
export void £(X);
}
namespace S {
export void f(R::X, R::X);
}

Translation unit #2:

export module N;
import M;

§6.5.4 ©ISO/IEC
52

N5008

export R::X make();

namespace R { static int g(X); }

export template<typename T, typename U> void apply(T t, U u) {
£f(t, u);
g(t);

}

Translation unit #3:

module Q;
import N;
namespace S {
struct Z { template<typename T> operator T(); };

}
void test() {
auto x = make(); // OK, decltype(x) is R::X in module M
R::f(x); // error: R and R::f are not visible here
£(x); // OK, calls R: :£ from interface of M
f(x, S::20); // error: S::f in module M not considered
// even though S is an associated namespace
apply(x, S::Z0)); // error: S::f is visible in instantiation context, but
// R::g has internal linkage and cannot be used outside TU #2
}
— end example]
[Note 3: The associated namespace can include namespaces already considered by ordinary unqualified lookup. — end
note)
[Example 3:
namespace NS {
class T { };
void £(T);
void g(T, int);
}
NS::T parm;

void g(NS::T, float);
int main() {

f (parm) ; // OK, calls NS: :f
extern void g(NS::T, float);
g(parm, 1); // OK, calls g(NS::T, float)
}
— end example]
6.5.5 Qualified name lookup [basic.lookup.qual]
6.5.5.1 General [basic.lookup.qual.general]

Lookup of an identifier followed by a :: scope resolution operator considers only namespaces, types, and
templates whose specializations are types. If a name, template-id, or computed-type-specifier is followed by a
: 1, it shall designate a namespace, class, enumeration, or dependent type, and the :: is never interpreted as

a complete nested-name-specifier.
[Example 1:

class A {
public:
static int n;
I
int main() {
int A;
A::n = 42; // OK
A b; // error: A does not name a type
}
template<int> struct B : A {};
namespace N {
template<int> void BQ);

§6.5.5.1 ©ISO/IEC
53

N5008

int £O {
return B<0>::n; // error: N: :B<O0> is not a type
}
}

— end ezample]

2 A member-qualified name is the (unique) component name (7.5.5.2), if any, of

(2.1)

(2.2)

— an unqualified-id or
— a nested-name-specifier of the form type-name :: or namespace-name : :
in the id-expression of a class member access expression (7.6.1.5). A qualified name is
— a member-qualified name or
— the terminal name of
— a qualified-id,
— a using-declarator,
— a typename-specifier,
— a qualified-namespace-specifier, or

— a nested-name-specifier, elaborated-type-specifier, or class-or-decltype that has a nested-name-
specifier (7.5.5.3).

The lookup context of a member-qualified name is the type of its associated object expression (considered
dependent if the object expression is type-dependent). The lookup context of any other qualified name is the
type, template, or namespace nominated by the preceding nested-name-specifier.

[Note 1: When parsing a class member access, the name following the -> or . is a qualified name even though it is
not yet known of which kind. — end note]

[Ezample 2: In
N::C::m.Base::f()
Base is a member-qualified name; the other qualified names are C, m, and £. — end ezample]

Qualified name lookup in a class, namespace, or enumeration performs a search of the scope associated with
it (6.5.2) except as specified below. Unless otherwise specified, a qualified name undergoes qualified name
lookup in its lookup context from the point where it appears unless the lookup context either is dependent
and is not the current instantiation (13.8.3.2) or is not a class or class template. If nothing is found by
qualified lookup for a member-qualified name that is the terminal name (7.5.5.2) of a nested-name-specifier
and is not dependent, it undergoes unqualified lookup.

[Note 2: During lookup for a template specialization, no names are dependent. — end note]
[Example 3:

int £Q;

struct A {
int B, C;
template<int> using D = void;
using T = void;

void f();
};
using B = A;
template<int> using C = A;
template<int> using D = A;
template<int> using X = A;
template<class T>
void g(T *p) { // as instantiated for g<A>:
p—>X<0>::£(); // error: A::X not found in ((p=>X) < 0) > ::£(Q)
p->template X<0>::£(); // OK, ::X found in definition context
p—>B::£f0); // OK, non-type A::B ignored
p—>template C<0>::£f(); // error: A::C is not a template
p->template D<0>::f(); // error: A::D<0> is not a class type
p—>T::£0); // error: A::T is not a class type
}
§6.5.5.1 ©ISO/IEC

54

N5008

template void g(A%);
— end ezample]

4 If a qualified name @ follows a ~:

(4.1) — If @ is a member-qualified name, it undergoes unqualified lookup as well as qualified lookup.

(4.2) — Otherwise, its nested-name-specifier N shall nominate a type. If N has another nested-name-specifier S,
Q is looked up as if its lookup context were that nominated by S.

(4.3) — Otherwise, if the terminal name of N is a member-qualified name M, @ is looked up as if ~@) appeared
in place of M (as above).

(4.4) — Otherwise, (Q undergoes unqualified lookup.

(4.5) — Each lookup for @ considers only types (if @ is not followed by a <) and templates whose specializations
are types. If it finds nothing or is ambiguous, it is discarded.

(4.6) — The type-name that is or contains @ shall refer to its (original) lookup context (ignoring cv-qualification)
under the interpretation established by at least one (successful) lookup performed.

[Example 4:
struct C {

typedef int I;
};
typedef int I1, I2;
extern int* p;
extern int* q;

void £() {
p—>C::I1::~10); // 1 is looked up in the scope of C
q—>I1::~12Q); // 12 is found by unqualified lookup
}
struct A {
~A0);
};

typedef A AB;
int main() {

AB* p;
p->AB::~ABQ); // explicitly calls the destructor for A
}
— end ezample]
6.5.5.2 Class members [class.qual]
1 In a lookup for a qualified name N whose lookup context is a class C' in which function names are not
ignored,'®
(1.1) — if the search finds the injected-class-name of C (11.1), or
(1.2) — if N is dependent and is the terminal name of a using-declarator (9.10) that names a constructor,

N is instead considered to name the constructor of class C. Such a constructor name shall be used only in the
declarator-id of a (friend) declaration of a constructor or in a using-declaration.
[Example 1:

struct A { AQ; };
struct B: public A { BO; };

A::AOQ {7}

B::BO { }

B::A ba; // object of type A

A::A a; // error: A::A is not a type name
struct A::A a2; // object of type A

— end ezample]

18) Lookups in which function names are ignored include names appearing in a nested-name-specifier, an elaborated-type-specifier,
or a base-specifier.

§6.5.5.2 ©ISO/IEC
55

N5008

6.5.5.3 Namespace members [namespace.qual]

1 Qualified name lookup in a namespace N additionally searches every element of the inline namespace set
of N (9.9.2). If nothing is found, the results of the lookup are the results of qualified name lookup in each
namespace nominated by a using-directive that precedes the point of the lookup and inhabits NV or an element
of N’s inline namespace set.

[Note 1: If a using-directive refers to a namespace that has already been considered, it does not affect the result.
— end note]

[Example 1:
int x;
namespace Y {
void f(float);
void h(int);
}

namespace Z {
void h(double);
}

namespace A {
using namespace Y;
void f(int);
void g(int);
int i;

}

namespace B {
using namespace Z;
void f(char);
int i;

}

namespace AB {
using namespace A;
using namespace B;

void g();
}
void h()
{
AB::g(); // & is declared directly in AB, therefore S is {AB::g()} and AB::g() is chosen
AB::f(1); // £ is not declared directly in AB so the rules are applied recursively to A and B;
// mamespace Y is not searched and Y: :f(float) is not considered;
// 8 is {A::£(int),B::f(char) } and overload resolution chooses A::f (int)
AB::f('c"); // as above but resolution chooses B: : £ (char)
AB: :x++; // x is not declared directly in AB, and is not declared in A or B, so the rules
// are applied recursively to Y and Z, S is {} so the program is ill-formed
AB::i++; // i is not declared directly in AB so the rules are applied recursively to A and B,
// S s {A::1,B::1i} so the use is ambiguous and the program is ill-formed
AB::h(16.8); // h is not declared directly in AB and not declared directly in A or B so the rules
// are applied recursively to Y and Z, S is {Y::h(int),Z: :h(double)} and
// overload resolution chooses Z::h(double)
}

— end example]
2 [Note 2: The same declaration found more than once is not an ambiguity (because it is still a unique declaration).

[Example 2:

§6.5.5.3 ©ISO/IEC
56

N5008

namespace A {
int a;

}

namespace B {
using namespace A;

}

namespace C {
using namespace A;

}

namespace BC {
using namespace B;
using namespace C;

}
void f()
{
BC::a++; // OK, 8 is {A::a,A::a}
¥

namespace D {
using A::a;

}

namespace BD {
using namespace B;
using namespace D;

}
void g()
{
BD: :a++; // OK, S is {A::a,A::a}
}

— end ezample]
— end note]
3 [Example 3: Because each referenced namespace is searched at most once, the following is well-defined:
namespace B {
int b;
}

namespace A {
using namespace B;
int a;

}

namespace B {
using namespace A;

}

void £()

{
A:zat+; // OK, a declared directly in A, S is {A::a}
B::at+; // OK, both A and B searched (once), S is {A::a}
A: b+ // OK, both A and B searched (once), S is {B::b}
B::bt+; // OK, b declared directly in B, S is {B::b}

}

— end example]

4 [Note 8: Class and enumeration declarations are not discarded because of other declarations found in other searches.
— end note]

§6.5.5.3 ©ISO/IEC
57

3

N5008

[Example 4:
namespace A {
struct x { };
int x;
int y;
}

namespace B {
struct y { };
}

namespace C {
using namespace A;
using namespace B;
int i = C::x; // OK, A::x (of type int)
int j = C::y; // ambiguous, A::y or B::y
}

— end ezample]

6.5.6 Elaborated type specifiers [basic.lookup.elab]

If the class-key or enum keyword in an elaborated-type-specifier is followed by an identifier that is not followed
by ::, lookup for the identifier is type-only (6.5.1).

[Note 1: In general, the recognition of an elaborated-type-specifier depends on the following tokens. If the identifier is
followed by ::, see 6.5.5. — end note]

If the terminal name of the elaborated-type-specifier is a qualified name, lookup for it is type-only. If the
name lookup does not find a previously declared type-name, the elaborated-type-specifier is ill-formed.

[Example 1:
struct Node {
struct Nodex Next; // OK, refers to injected-class-name Node
struct Datax Data; // OK, declares type Data at global scope and member Data
};
struct Data {
struct Nodex Node; // OK, refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared, cannot introduce a qualified type (9.2.9.5)
friend struct Glob; // OK, refers to (as yet) undeclared Glob at global scope.
VA B Y
};
struct Base {
struct Data; // OK, declares nested Data
struct ::Datax thatData; // OK, refers to ::Data
struct Base::Datax thisData; // OK, refers to nested Data
friend class ::Data; // OK, global Data is a friend
friend class Data; // OK, nested Data is a friend
struct Data { /* ... */ }; // Defines nested Data
};
struct Data; // OK, redeclares Data at global scope
struct ::Data; // error: cannot introduce a qualified type (9.2.9.5)
struct Base::Data; // error: cannot introduce a qualified type (9.2.9.5)
struct Base::Datum; // error: Datum undefined
struct Base::Data* pBase; // OK, refers to nested Data
— end example]
6.5.7 Using-directives and namespace aliases [basic.lookup.udir]

In a wusing-directive or namespace-alias-definition, during the lookup for a namespace-name or for a name in a
nested-name-specifier only namespace names are considered.

§6.5.7 ©ISO/IEC
58

(3.1)
(3.2)

(3.2.1)

(3.2.2)
(3.2.3)
(3.2.4)

(3.3)

4

(4.9)

(4.10)

(4.11)

N5008

6.6 Program and linkage [basic.link]

A program consists of one or more translation units (5.1) linked together. A translation unit consists of a
sequence of declarations.

translation-unit:
declaration-seqop¢
global-module-fragment,,; module-declaration declaration-seq.p: private-module-fragment,p;

A name can have external linkage, module linkage, internal linkage, or no linkage, as determined by the rules
below.

[Note 1: All declarations of an entity with a name with internal linkage appear in the same translation unit. All
declarations of an entity with module linkage are attached to the same module. — end note]

The name of an entity that belongs to a namespace scope (6.4.6) has internal linkage if it is the name of
— a variable, variable template, function, or function template that is explicitly declared static; or
— a non-template variable of non-volatile const-qualified type, unless

— it is declared in the purview of a module interface unit (outside the private-module-fragment, if
any) or module partition, or

— it is explicitly declared extern, or

— it is inline, or

— it was previously declared and the prior declaration did not have internal linkage; or
— a data member of an anonymous union.

[Note 2: An instantiated variable template that has const-qualified type can have external or module linkage, even if
not declared extern. — end note]

An unnamed namespace or a namespace declared directly or indirectly within an unnamed namespace has
internal linkage. All other namespaces have external linkage. The name of an entity that belongs to a
namespace scope, that has not been given internal linkage above, and that is the name of

— a variable; or
— a function; or

— a named class (11.1), or an unnamed class defined in a typedef declaration in which the class has the
typedef name for linkage purposes (9.2.4); or

— a named enumeration (9.8.1), or an unnamed enumeration defined in a typedef declaration in which
the enumeration has the typedef name for linkage purposes (9.2.4); or

— an unnamed enumeration that has an enumerator as a name for linkage purposes (9.8.1); or
— a template
has its linkage determined as follows:

— if the entity is a function or function template first declared in a friend declaration and that declaration
is a definition and the enclosing class is defined within an export-declaration, the name has the same
linkage, if any, as the name of the enclosing class (11.8.4);

— otherwise, if the entity is a function or function template declared in a friend declaration and a
corresponding non-friend declaration is reachable, the name has the linkage determined from that prior
declaration,

— otherwise, if the enclosing namespace has internal linkage, the name has internal linkage;

— otherwise, if the declaration of the name is attached to a named module (10.1) and is not exported (10.2),
the name has module linkage;
— otherwise, the name has external linkage.

In addition, a member function, a static data member, a named class or enumeration that inhabits a class
scope, or an unnamed class or enumeration defined in a typedef declaration that inhabits a class scope such
that the class or enumeration has the typedef name for linkage purposes (9.2.4), has the same linkage, if any,
as the name of the class of which it is a member.

[Ezample 1:

static void £();

§ 6.6 ©ISO/IEC
59

(8.1)
(8.2)

(8.3)

10

11
(11.1)
(11.2)
(11.3)

(11.4)

N5008

extern "C" void h();

static int i = 0; /) #1
void q() {
extern void f£(); // internal linkage
extern void g(); // ::g, external linkage
extern void h(); // C language linkage
int i; // #2: 1 has no linkage
{
extern void £(); // internal linkage
extern int i; // #3: internal linkage
}
}

Even though the declaration at line #2 hides the declaration at line #1, the declaration at line #3 still redeclares #1
and receives internal linkage. — end ezample]

Names not covered by these rules have no linkage. Moreover, except as noted, a name declared at block
scope (6.4.3) has no linkage.

Two declarations of entities declare the same entity if, considering declarations of unnamed types to introduce
their names for linkage purposes, if any (9.2.4, 9.8.1), they correspond (6.4.1), have the same target scope
that is not a function or template parameter scope, neither is a name-independent declaration, and either

— they appear in the same translation unit, or
— they both declare names with module linkage and are attached to the same module, or
— they both declare names with external linkage.
[Note 3: There are other circumstances in which declarations declare the same entity (9.12, 13.6, 13.7.6). — end note]

If a declaration H that declares a name with internal linkage precedes a declaration D in another translation
unit U and would declare the same entity as D if it appeared in U, the program is ill-formed.

[Note 4: Such an H can appear only in a header unit. — end note]

If two declarations of an entity are attached to different modules, the program is ill-formed; no diagnostic is
required if neither is reachable from the other.

[Ezample 2:

"decls.h":
int £Q); // #1, attached to the global module
int gO; // #2, attached to the global module

Module interface of M:

module;

#include "decls.h"

export module M;

export using ::f; // OK, does not declare an entity, exports #1

int g(O); // error: matches #2, but attached to M
export int h(); /) #3
export int k(Q); /) #4
Other translation unit:
import M;
static int hQ); // error: matches #3
int kQ; // error: matches #/

— end ezample]

As a consequence of these rules, all declarations of an entity are attached to the same module; the entity is
said to be attached to that module.

For any two declarations of an entity E:
— If one declares F to be a variable or function, the other shall declare E as one of the same type.
— If one declares FE to be an enumerator, the other shall do so.
— If one declares FE to be a namespace, the other shall do so.

— 1If one declares E to be a type, the other shall declare E to be a type of the same kind (9.2.9.5).

§ 6.6 ©ISO/IEC
60

N5008

(11.5) — If one declares E to be a class template, the other shall do so with the same kind and an equivalent
template-head (13.7.7.2).
[Note 5: The declarations can supply different default template arguments. — end note]

(11.6) — If one declares E to be a function template or a (partial specialization of a) variable template, the other

shall declare E to be one with an equivalent template-head and type.

(11.7) — If one declares E to be an alias template, the other shall declare E to be one with an equivalent
template-head and defining-type-id.

(11.8) — If one declares E to be a concept, the other shall do so.

Types are compared after all adjustments of types (during which typedefs (9.2.4) are replaced by their
definitions); declarations for an array object can specify array types that differ by the presence or absence of
a major array bound (9.3.4.5). No diagnostic is required if neither declaration is reachable from the other.

[Ezample 3:
int f(int x, int x); // error: different entities for x
void g(Q); /) #1
void g(int); // OK, different entity from #1
int gO; // error: same entity as #1 with different type
void hQ); /) #2
namespace h {} // error: same entity as #2, but not a function

— end example]
12 [Note 6: Linkage to non-C++ declarations can be achieved using a linkage-specification (9.12). — end note]
13 A declaration D names an entity E if
(13.1) — D contains a lambda-expression whose closure type is F,

(13.2) — FE is not a function or function template and D contains an id-expression, type-specifier, nested-name-
specifier, template-name, or concept-name denoting E, or

(13.3) — F is a function or function template and D contains an expression that names E (6.3) or an id-expression
that refers to a set of overloads that contains E.

[Note 7: Non-dependent names in an instantiated declaration do not refer to a set of overloads (13.8). —end
note]

14 A declaration is an exposure if it either names a TU-local entity (defined below), ignoring

(14.1) — the function-body for a non-inline function or function template (but not the deduced return type for

a (possibly instantiated) definition of a function with a declared return type that uses a placeholder
type (9.2.9.7)),

(14.2) — the initializer for a variable or variable template (but not the variable’s type),
(14.3) — friend declarations in a class definition, and
(144) — any reference to a non-volatile const object or reference with internal or no linkage initialized with a

constant expression that is not an odr-use (6.3),
or defines a constexpr variable initialized to a TU-local value (defined below).

[Note 8: An inline function template can be an exposure even though certain explicit specializations of it would be
usable in other translation units. — end note]

15 An entity is TU-local if it is

(15.1) — a type, function, variable, or template that
(15.1.1) — has a name with internal linkage, or
(15.1.2) — does not have a name with linkage and is declared, or introduced by a lambda-expression, within
the definition of a TU-local entity,
(15.2) — a type with no name that is defined outside a class-specifier, function body, or initializer or is introduced
by a defining-type-specifier that is used to declare only TU-local entities,
(15.3) — a specialization of a TU-local template,
(15.4) — a specialization of a template with any TU-local template argument, or
(15.5) — a specialization of a template whose (possibly instantiated) declaration is an exposure.
§ 6.6 ©ISO/IEC

61

(16.1)

(16.2)

17

18

19

N5008

[Note 9: A specialization can be produced by implicit or explicit instantiation. — end note]

A value or object is T'U-local if either

— it is, or is a pointer to, a TU-local function or the object associated with a TU-local variable, or

— it is an object of class or array type and any of its subobjects or any of the objects or functions to which
its non-static data members of reference type refer is TU-local and is usable in constant expressions.

If a (possibly instantiated) declaration of, or a deduction guide for, a non-TU-local entity in a module
interface unit (outside the private-module-fragment, if any) or module partition (10.1) is an exposure, the
program is ill-formed. Such a declaration in any other context is deprecated (D.2).

If a declaration that appears in one translation unit names a TU-local entity declared in another translation
unit that is not a header unit, the program is ill-formed. A declaration instantiated for a template
specialization (13.9) appears at the point of instantiation of the specialization (13.8.4.1).

[Example 4:

Translation unit #1:

export module A;
static void £() {}
inline void it() { £Q; 2}

static inline void its() { £Q; }
template<int> void g() { its(; }

template void g<0>();

decltype(f) *fp;

auto &fr = f;

constexpr auto &fr2 = fr;
constexpr static auto fp2

struct S { void (&ref)();
constexpr extern struct W

static auto x = [1{f();};
auto x2 = x;

int y = ([0{£0;30,0);
int y2 = (x,0);

namespace N {

struct A {3};

void adl(A);

static void adl(int);
}
void adl(double);

{

fr;

s{f};
S &s; }

inline void h(auto x) { adl(x); }

Translation unit #2:

module A;
void other() {
g<0>();
g<1>0);
h(N::A{});
h(0);
adl(N::A{});
frQ;
constexpr auto ptr = fr;

}

— end ezxample]

§ 6.6

// error: is an exposure of £

// OK

// OK

// error: £ (though not its type) is TU-local
// OK

// error: is an exposure of f

// OK

// OK, wvalue is TU-local

wrap{s}; // OK, wvalue is not TU-local
// OK

// error: the closure type is TU-local
// error: the closure type is not TU-local

// OK

// OK, but certain specializations are exposures

// OK, specialization is explicitly instantiated

// error: instantiation uses TU-local its

// error: overload set contains TU-local N: :adl(int)
// OK, calls adl(double)

// OK; N::adl(int) not found, calls N::ad1(N::A)
// OK, calls £

// error: fr is not usable in constant expressions here

©ISO/IEC
62

N5008

6.7 Memory and objects [basic.memobj]
6.7.1 Memory model [intro.memory]

The fundamental storage unit in the C++ memory model is the byte. A byte is at least large enough to
contain the ordinary literal encoding of any element of the basic literal character set (5.3.1) and the eight-bit
code units of the Unicode UTF-8 encoding form and is composed of a contiguous sequence of bits,'® the
number of which is implementation-defined. The memory available to a C++ program consists of one or more
sequences of contiguous bytes. Every byte has a unique address.

[Note 1: The representation of types is described in 6.8.1. — end note]

A memory location is the storage occupied by the object representation of either an object of scalar type that
is not a bit-field or a maximal sequence of adjacent bit-fields all having nonzero width.

[Note 2: Various features of the language, such as references and virtual functions, might involve additional memory
locations that are not accessible to programs but are managed by the implementation. — end note]

Two or more threads of execution (6.9.2) can access separate memory locations without interfering with each
other.

[Note 3: Thus a bit-field and an adjacent non-bit-field are in separate memory locations, and therefore can be
concurrently updated by two threads of execution without interference. The same applies to two bit-fields, if one is
declared inside a nested struct declaration and the other is not, or if the two are separated by a zero-length bit-field
declaration, or if they are separated by a non-bit-field declaration. It is not safe to concurrently update two bit-fields
in the same struct if all fields between them are also bit-fields of nonzero width. — end note]

[Example 1: A class declared as

struct {
char a;
int b:5,
c:11,
:0,
d:8;
struct {int ee:8;} e;

};

contains four separate memory locations: The member a and bit-fields d and e.ee are each separate memory locations,
and can be modified concurrently without interfering with each other. The bit-fields b and ¢ together constitute the
fourth memory location. The bit-fields b and ¢ cannot be concurrently modified, but b and a, for example, can be.
— end example]

6.7.2 Object model [intro.object]

1 The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object is

created by a definition (6.2), by a new-expression (7.6.2.8), by an operation that implicitly creates objects
(see below), when implicitly changing the active member of a union (11.5), or when a temporary object is
created (7.3.5, 6.7.7). An object occupies a region of storage in its period of construction (11.9.5), throughout
its lifetime (6.7.4), and in its period of destruction (11.9.5).

[Note 1: A function is not an object, regardless of whether or not it occupies storage in the way that objects do.
— end note]

The properties of an object are determined when the object is created. An object can have a name (6.1). An
object has a storage duration (6.7.6) which influences its lifetime (6.7.4). An object has a type (6.8).

[Note 2: Some objects are polymorphic (11.7.3); the implementation generates information associated with each such
object that makes it possible to determine that object’s type during program execution. — end note]

2 Objects can contain other objects, called subobjects. A subobject can be a member subobject (11.4), a base

(2.1)
(2.2)

(2.3)

class subobject (11.7), or an array element. An object that is not a subobject of any other object is called a
complete object. If an object is created in storage associated with a member subobject or array element e
(which may or may not be within its lifetime), the created object is a subobject of e’s containing object if

— the lifetime of e’s containing object has begun and not ended, and
— the storage for the new object exactly overlays the storage location associated with e, and

— the new object is of the same type as e (ignoring cv-qualification).

19) The number of bits in a byte is reported by the macro CHAR_BIT in the header <climits> (17.3.6).

§6.7.2 ©ISO/IEC
63

(3.1)
(3.2)

(3.3)

(7.1)

(7.2)

(8.1)
(8.2)
(8.3)

(8.4)

N5008

If a complete object is created (7.6.2.8) in storage associated with another object e of type “array of N
unsigned char” or of type “array of N std::byte” (17.2.1), that array provides storage for the created
object if

— the lifetime of e has begun and not ended, and

— the storage for the new object fits entirely within e, and

— there is no array object that satisfies these constraints nested within e.

[Note 8: If that portion of the array previously provided storage for another object, the lifetime of that object ends
because its storage was reused (6.7.4). — end note|

[Ezample 1:
// assumes that sizeof (int) is equal to 4
template<typename ...T>

struct AlignedUnion {
alignas(T...) unsigned char data[max(sizeof(T)...)];

};
int £ {
AlignedUnion<int, char> au;
int *p = new (au.data) int; // OK, au.data provides storage
char *c = new (au.data) char(); // OK, ends lifetime of *p
char *d = new (au.data + 1) char();
return *c + *d; // OK
}

struct A { unsigned char a[32]; };

struct B { unsigned char b[16]; };

alignas(int) A a;

B *b = new (a.a + 8) B; // a.a provides storage for *b

int *p = new (b->b + 4) int; // b=>b provides storage for *p
// a.a does not provide storage for *p (directly),
// but *p is nested within a (see below)

— end example]
An object a is nested within another object b if
— a is a subobject of b, or
— b provides storage for a, or
— there exists an object ¢ where a is nested within ¢, and c is nested within b.
For every object x, there is some object called the complete object of x, determined as follows:
— If x is a complete object, then the complete object of x is itself.
— Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

If a complete object, a member subobject, or an array element is of class type, its type is considered the most
derived class, to distinguish it from the class type of any base class subobject; an object of a most derived
class type or of a non-class type is called a most derived object.

A potentially-overlapping subobject is either:

— a base class subobject, or

— a non-static data member declared with the no_unique_address attribute (9.13.11).
An object has nonzero size if it

— is not a potentially-overlapping subobject, or

— is not of class type, or

— is of a class type with virtual member functions or virtual base classes, or

— has subobjects of nonzero size or unnamed bit-fields of nonzero length.

Otherwise, if the object is a base class subobject of a standard-layout class type with no non-static data
members, it has zero size. Otherwise, the circumstances under which the object has zero size are implementa-
tion-defined. Unless it is a bit-field (11.4.10), an object with nonzero size shall occupy one or more bytes of

§6.7.2 ©ISO/IEC
64

10

(10.1)
(10.2)

(10.3)

11

12

13

N5008

storage, including every byte that is occupied in full or in part by any of its subobjects. An object of trivially
copyable or standard-layout type (6.8.1) shall occupy contiguous bytes of storage.

An object is a potentially non-unique object if it is a string literal object (5.13.5), the backing array of an
initializer list (9.5.4), or a subobject thereof.

Unless an object is a bit-field or a subobject of zero size, the address of that object is the address of the first
byte it occupies. Two objects with overlapping lifetimes that are not bit-fields may have the same address if

— one is nested within the other,
— at least one is a subobject of zero size and they are not of similar types (7.3.6), or
— they are both potentially non-unique objects;

otherwise, they have distinct addresses and occupy disjoint bytes of storage.2’

[Ezample 2:
static const char testl = 'x';
static const char test2 = 'x';
const bool b = &testl != &test2; // always true
static const char (&r) [] = "x";
static const char *s = "x";
static std::initializer_list<char> il = { 'x' };
const bool b2 = r != il.begin(); // unspecified result
const bool b3 = r != s; // unspecified result
const bool b4 = il.begin() != &testl; // always true
const bool b5 = r != &testl; // always true

— end example]

The address of a non-bit-field subobject of zero size is the address of an unspecified byte of storage occupied
by the complete object of that subobject.

Some operations are described as implicitly creating objects within a specified region of storage. For each
operation that is specified as implicitly creating objects, that operation implicitly creates and starts the
lifetime of zero or more objects of implicit-lifetime types (6.8.1) in its specified region of storage if doing
so would result in the program having defined behavior. If no such set of objects would give the program
defined behavior, the behavior of the program is undefined. If multiple such sets of objects would give the
program defined behavior, it is unspecified which such set of objects is created.

[Note 4: Such operations do not start the lifetimes of subobjects of such objects that are not themselves of implicit-
lifetime types. — end note]

Further, after implicitly creating objects within a specified region of storage, some operations are described as
producing a pointer to a suitable created object. These operations select one of the implicitly-created objects
whose address is the address of the start of the region of storage, and produce a pointer value that points
to that object, if that value would result in the program having defined behavior. If no such pointer value
would give the program defined behavior, the behavior of the program is undefined. If multiple such pointer
values would give the program defined behavior, it is unspecified which such pointer value is produced.

[Ezample 3:

#include <cstdlib>

struct X { int a, b; };

X *make_x() {
// The call to std: :malloc implicitly creates an object of type X
// and its subobjects a and b, and returns a pointer to that X object
// (or an object that is pointer-interconvertible (6.8.4) with it),
// in order to give the subsequent class member access operations
// defined behavior.

X *p = (Xx)std::malloc(sizeof (struct X));
p—>a =1;
p~>b = 2;
return p;

20) Under the “as-if” rule an implementation is allowed to store two objects at the same machine address or not store an object
at all if the program cannot observe the difference (6.9.1).

§6.7.2 ©ISO/IEC
65

14

(7.3)

N5008

— end ezample]

Except during constant evaluation, an operation that begins the lifetime of an array of unsigned char or
std: :byte implicitly creates objects within the region of storage occupied by the array.

[Note 5: The array object provides storage for these objects. — end note]

Except during constant evaluation, any implicit or explicit invocation of a function named operator new
or operator new[] implicitly creates objects in the returned region of storage and returns a pointer to a
suitable created object.

[Note 6: Some functions in the C++ standard library implicitly create objects (20.2.6, 20.2.12, 20.5.2.2, 22.11.3, 27.5.1).
— end note]

6.7.3 Alignment [basic.align]

Object types have alignment requirements (6.8.2, 6.8.4) which place restrictions on the addresses at which an
object of that type may be allocated. An alignment is an implementation-defined integer value representing
the number of bytes between successive addresses at which a given object can be allocated. An object type
imposes an alignment requirement on every object of that type; stricter alignment can be requested using
the alignment specifier (9.13.2). Attempting to create an object (6.7.2) in storage that does not meet the
alignment requirements of the object’s type is undefined behavior.

A fundamental alignment is represented by an alignment less than or equal to the greatest alignment supported
by the implementation in all contexts, which is equal to alignof (std: :max_align_t) (17.2). The alignment
required for a type may be different when it is used as the type of a complete object and when it is used as
the type of a subobject.

[Ezample 1:

struct B { long double d; };
struct D : virtual B { char c; };

When D is the type of a complete object, it will have a subobject of type B, so it must be aligned appropriately for a
long double. If D appears as a subobject of another object that also has B as a virtual base class, the B subobject
might be part of a different subobject, reducing the alignment requirements on the D subobject. — end ezample]

The result of the alignof operator reflects the alignment requirement of the type in the complete-object case.

An extended alignment is represented by an alignment greater than alignof (std::max_align_t). It is
implementation-defined whether any extended alignments are supported and the contexts in which they are
supported (9.13.2). A type having an extended alignment requirement is an over-aligned type.

[Note 1: Every over-aligned type is or contains a class type to which extended alignment applies (possibly through a
non-static data member). — end note]

A new-extended alignment is represented by an alignment greater than __STDCPP_DEFAULT_NEW_ALIGNMENT__
(15.12).

Alignments are represented as values of the type std: :size_t. Valid alignments include only those values
returned by an alignof expression for the fundamental types plus an additional implementation-defined set
of values, which may be empty. Every alignment value shall be a non-negative integral power of two.

Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have larger
alignment values. An address that satisfies an alignment requirement also satisfies any weaker valid alignment
requirement.

The alignment requirement of a complete type can be queried using an alignof expression (7.6.2.6).
Furthermore, the narrow character types (6.8.2) shall have the weakest alignment requirement.

[Note 2: This enables the ordinary character types to be used as the underlying type for an aligned memory
area (9.13.2). — end note]

Comparing alignments is meaningful and provides the obvious results:
— Two alignments are equal when their numeric values are equal.
— Two alignments are different when their numeric values are not equal.

— When an alignment is larger than another it represents a stricter alignment.

[Note 3: The runtime pointer alignment function (20.2.5) can be used to obtain an aligned pointer within a buffer; an
alignment-specifier (9.13.2) can be used to align storage explicitly. — end note]
§6.7.3 ©ISO/IEC

66

(2.3)
(2.4)

(2.5)

N5008

If a request for a specific extended alignment in a specific context is not supported by an implementation,
the program is ill-formed.

6.7.4 Lifetime [basic.life]
In this subclause, “before” and “after” refer to the “happens before” relation (6.9.2).

The lifetime of an object or reference is a runtime property of the object or reference. A variable is said to
have vacuous initialization if it is default-initialized, no other initialization is performed, and, if it is of class
type or a (possibly multidimensional) array thereof, a trivial constructor of that class type is selected for the
default-initialization. The lifetime of an object of type T begins when:

— storage with the proper alignment and size for type T is obtained, and
— its initialization (if any) is complete (including vacuous initialization) (9.5),

except that if the object is a union member or subobject thereof, its lifetime only begins if that union member
is the initialized member in the union (9.5.2, 11.9.3), or as described in 11.5, 11.4.5.3, and 11.4.6, and except
as described in 20.2.10.2. The lifetime of an object o of type T ends when:

— if T is a non-class type, the object is destroyed, or
— if T is a class type, the destructor call starts, or

— the storage which the object occupies is released, or is reused by an object that is not nested within
0 (6.7.2).

When evaluating a new-expression, storage is considered reused after it is returned from the allocation function,
but before the evaluation of the new-initializer (7.6.2.8).

[Ezample 1:

struct S {
int m;

};

void £() {

S x{1};

new(&x) S(x.m); // undefined behavior
}

— end ezample]

The lifetime of a reference begins when its initialization is complete. The lifetime of a reference ends as if it
were a scalar object requiring storage.

[Note 1: 11.9.3 describes the lifetime of base and member subobjects. — end note]

The properties ascribed to objects and references throughout this document apply for a given object or
reference only during its lifetime.

[Note 2: In particular, before the lifetime of an object starts and after its lifetime ends there are significant restrictions
on the use of the object, as described below, in 11.9.3, and in 11.9.5. Also, the behavior of an object under construction
and destruction can differ from the behavior of an object whose lifetime has started and not ended. 11.9.3 and 11.9.5
describe the behavior of an object during its periods of construction and destruction. — end note]

A program may end the lifetime of an object of class type without invoking the destructor, by reusing or
releasing the storage as described above.

[Note 3: A delete-expression (7.6.2.9) invokes the destructor prior to releasing the storage. — end note]
In this case, the destructor is not implicitly invoked.

[Note 4: The correct behavior of a program often depends on the destructor being invoked for each object of class
type. — end note]

Before the lifetime of an object has started but after the storage which the object will occupy has been
allocated?! or, after the lifetime of an object has ended and before the storage which the object occupied
is reused or released, any pointer that represents the address of the storage location where the object will
be or was located may be used but only in limited ways. For an object under construction or destruction,
see 11.9.5. Otherwise, such a pointer refers to allocated storage (6.7.6.5.2), and using the pointer as if the

21) For example, before the dynamic initialization of an object with static storage duration (6.9.