P3298R0

Implicit user-defined conversion functions

Bengt Gustafsson
St Louis —June 2024

Presentation contents

* Rationale

* History

* Proposed solution
* Resulting behavior

* Design decisions
* Examples

Rationale

* operator.() has been a requested feature for very long.

* To make proxy objects work as their proxied objects
requires more than operator.() seems to provide:

- Costless conversion to the proxied object.*

- Using the proxied type as function parameter.*

- Using nested types and variables of the proxied type.
- Casting pointer to proxy to pointer to proxied object.

* The fact that NO416 does provide this does not change the expectations.

Rationale

* Inheritance offers all desired properties above

* Reusing the name lookup rules of inheritance simplifies
reasoning

* Representing this as an implicit conversion function
offers a logical place to implement the logic and is
Intuitive.

History

* PO416RO _atest actual operator.() proposal, 2016
* PO352R0 ~irst attempt to reuse inheritance, 2016
 PO700R0 Rebuttal of PO352 (with dubious claims).
* N4035 Complementary proposal to avoid

dangling references. Needs an update.

Proposed solution

A conversion function declared implicit allows name lookup
to be done as if the type inherited the return type of the
conversion function.

template<typename T> struct Proxy {
Proxy(T& object) : m_ptr(&object) {}

implicit operator T&() { return *m_ptr; }
implicit operator const T&() const { return *m_ptr; }

private:
T m_ptr;
¥

struct MyClass {
using Type = int;

template<typename T> struct Proxy {
Proxy(T& object) : m_ptr(&object) {}

int x;

void f(); .

static void s(); implicit operator T&() { return *m_ptr; }
h implicit operator const T&() const { return *m_ptr; }
void g(MyClassé& 0); _

private:

MyClass obj; T* m_ptr;

Proxy<MyClass> p(obj); }:

p.f(); Il As Proxy<T> does not have an f check its bases and ICF return types

p.X =43; Il As Proxy<T> does not have an x check its bases and ICF return types

ag(p); I/l As g does not take a Proxy<T> check its bases and ICF return types

I/l All name lookup considers names in bases and ICF return types

typename Proxy<MyClass>::Type anint;
/[operator-> considers names in bases and ICF return types
Proxy<MyClass>* pp = &p;
pp->f();

pp->MyClass::f();
Proxy<MyClass>::s();

Base* bp = p;

/l Not needed with P2669

/[Call static method of MyClass using name lookup.

// pointer to proxy can be converted to pointer to proxied if it is returned by reference.

Nomenclature

To reason about this we introduce the terms and abbreviations:
ICF: Implicit conversion function

Handle: The class containing an ICF.

Value: The type returned by an ICF.

Obvious results

* Members in Value type found unless hidden by Handle
members, as if Handle inherited from Value.

* Calls ICF to convert Handle to Value when needed.

* Access static members and types of Value using ::

* Use hidden members of Value by qualification with ::
* Works equally when -> is applied to Handle*.

Less obvious results

* Multiple levels of ICFs are called when needed.
* Inheritance and ICFs mix as multiple inheritance.

* |CFs returning subclasses need recursion avoidance during
compilation.

* Pointer conversion can cause dangling, forbidden.
* Implicit is only a reserved word when followed by operator.
e Use static_cast to call hidden virtual member function.
* Virtual methods can’t be overridden in proxy.

* No downcasting from Value to Handle.

Design decisions

* Any type can be returned from an implicit conversion
function, including fundamental types, final classes and
array references.

* VVirtual bases not accessible if there are two subobjects.
* Member pointers can work but are cumbersome.

* Incomplete and nested classes can be returned by ICFs.
* sizeof, alignof of Handle is independent of Value type.
* Handle can not access protected members in Value.

* ICFs can be virtual.

Examples

* Proxy-references: vector<bool>, simd, f-literals. *
* Lazy wrapper to use when value is maybe needed.
* Non-nullable smart pointers (aka smart references).

* Works best with N4035++. (using auto =T;)

Example: simd element reference

terB late<typename T, typename Abi> class simd {
ublic:
P struct reference

using auto = /[NAQ35++

using auto& = reference [/ N4035++

reference(simdé& s, int ix) : m_simd(s), m_ix(ix), m_val(m_simd.get(ix)) {}
~reference {tm simd.set(m_ix, m_val); F
a

implicit oper orT&{return m val"}

. simd& m_simd; int m_ix; T m_val;
y
simd<float> x;
X[3] += 3.14f; /Il Works. +=is done on float.
auto third = x[3]; /[third is a float.
third *= 2; // does not affect x
auto& first = x[1]; /[first is a simd<float>::reference

first -= 2.717f; /I This updates x[1]

Example: f-literals without performance loss

struct formatted_string {
using auto = std::string; // N4035

formatted_string(std::basic_format_string<char, Args...> fmt, Args&&... args) :
m_fmt(fmt), m_args(std::make_format_args(std:.forward<Args>(args)...)) {}

Implicit operator std::string() { return std::vformat(m_fmt.get(), m_args);

std::basic_format_string<CharT, Args...> m_fmt;
decltype(std::make format_args(std::declval<Args>()...)) m_args;

3
inta=17;
auto s = f"Value is {a}’; /[Here vformat runs to produce a std::string

std::printin(f"Value is {a}’); / Here a new println overload uses the members to optimize.

Example: lazy argument type

template<typename F> struct lazy {
lazy(F f) : m_func(std::move(f)) {}

implicit operator auto&() {
iIf (!m_value)
m_value = m_func();
return *m_value;

}
F m_func;
optional<decltype(func())> m_value;
¢
void runlf(auto obj) { // Function unaware of Lazy arguments
if (unlikely_event())
\ obj.raise_alarm(); // obj only created if the alarm has to be sounded.
Lazy pp = &createObjectSlowly; /l With P3312 the function can be overloaded or a ctor.

runlf(pp); /[Calls createObjectSlowly and raise_alarm only if needed.

Example: smart references

template<typename PTR> class universal_ref {
public:
using value_type = pointer_traits<PTR>::element_type;

universal_ref() = default;

I/l Construct from the pointer-like, which must not be null.
universal_ref(const PTR& src) pre (src) : m_ptr(src) {}
universal_ref(PTR&& src) pre (src) : m_ptr(std::move(src)) {}

Il These conversions implement the operator.() functionality:

implicit operator value _typeé&() & { return *m_ptr; }

implicit operator const value _type&() const & { return *m_ptr; }

implicit operator value_type() && { return std::move(*m_ptr); } // Maybe not for shared_ptr!

friend const PTR& unwrap(const universal_ref& src) { return src.m_ptr; }
friend PTR unwrap(universal_ref&& src) { return std::move(src.m_ptr); }

private:
PTR m_ptr;

I3

Example: smart references

Many aspecs to consider for universal_ref.

* Maybe disallow move of universal_ref to avoid empty state.
This makes unique_ptr specializations unmovable.

* Then users must do unwrap(std::move(src)) to get
unigue_ptr.

* Please don’t standardize std::polymorphic and std::indirect as
“pseudo references”. Standardize as cloning_ptr and add
wrapper.

	Slide 1: P3298R0
	Slide 2: Presentation contents
	Slide 3: Rationale
	Slide 4: Rationale
	Slide 5: History
	Slide 6: Proposed solution
	Slide 7
	Slide 8: Nomenclature
	Slide 9: Obvious results
	Slide 10: Less obvious results
	Slide 11: Design decisions
	Slide 12: Examples
	Slide 13: Example: simd element reference
	Slide 14: Example: f-literals without performance loss
	Slide 15: Example: lazy argument type
	Slide 16: Example: smart references
	Slide 17: Example: smart references

