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What are Contracts?

o Agreements between multiple parties

e Implementers and Users of a function or library
e Programmers and the platform they are working on
e Users and the programs they run

e Written (or implicit) in plain language

@ Contracts define what is and is not correct behavior
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What is a Correct program?

@ One which violates no contracts on any input
@ Has no behavior not defined by the platform on any input

@ Must be well-formed
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What is an Incorrect program?

@ One which will violate a contract on certain inputs
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What is an Incorrect program?

@ One which will violate a contract on certain inputs

o Still potentially a well-formed program
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What is a Contract Check?

@ An algorithm to identify when a contract has been violated

ex >0
e Call 917-555-5555 to verify you have a license to use this software

@ A part of the contract
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@ Any functionality that leverages those descriptions to do things
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runtime checking — ldentifying at runtime when a program evaluation is incorrect
runtime mitigation — Mitigating the downsides of an incorrect program

static analysis — ldentifying at compile time that a program will be or might be
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What is a Contract-Checking Facility?

@ A tool to describe contract checks
@ Any functionality that leverages those descriptions to do things

documentation — Informing readers what will and won't constitute correct behavior
runtime checking — ldentifying at runtime when a program evaluation is incorrect
runtime mitigation — Mitigating the downsides of an incorrect program

static analysis — ldentifying at compile time that a program will be or might be
incorrect

optimization — Optimizing based on the presumption that a program is correct
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What isn't a Contract-Checking facility?

@ A tool to add to what a Contract says a program will do
@ A tool to add to the correct behaviors of a program
@ A new form of flow control

@ A tool to do aspect-oriented programming
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@ Principles
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Principles History

@ Many papers have attempted to identify and motivate the central principles of our
design
e P2834R1 - Semantic Stability Across Contract-Checking Build Modes
e P2932R3 - A Principled Approach to Open Design Questions for Contracts
e P2900R7 - Contracts for C++
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Principle: Prime Directive ]

The use of a Contract-Checking facility should not change the correctness of a
program.

o If it does, it is now part of the program and not checking the contract
@ When possible we aim to prevent this at compile time

@ When possible we aim to make it harder to do this accidentally
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Violating the prime directive...

@ The program with checks evaluated tells you nothing about the program with
checks unevaluated

@ Heisenbugs — bugs appear and disappear when you try to observe them

e Cannot reason (as a reader or a static analyzer) about the program state locally
without considering all previous contract checks — and thus 2" program states
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Following the prime directive...
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o Allows static analysis of one program state instead of 2V program states
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Existing contract-checking facilities

@ <cassert>

e Almost complete freedom
e No protection from violating the prime directive

16 /41 65/169



SG21 MVP

17/41 66/169



SG21 MVP

@ P2900 introduces contract assertions

17/41 67/169



SG21 MVP

@ P2900 introduces contract assertions
e Each pre, post, or contract_assert is a contract assertion

17/41 68/169



SG21 MVP

@ P2900 introduces contract assertions

e Each pre, post, or contract_assert is a contract assertion
e Each contract assertion is expected to follow the prime directive
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Principle: Prime Directive (Contract Assertions)

Neither the presence of a contract assertion nor the evaluation of a contract
predicate should alter the correctness of a program’s evaluation.

18/41 70/169



Principle: Prime Directive (Contract Assertions)

Neither the presence of a contract assertion nor the evaluation of a contract
predicate should alter the correctness of a program’s evaluation.

@ The presences alone violating the prime directive would prevent users from not
violating the prime directive

18/41 71/169



Principle: Prime Directive (Contract Assertions)

Neither the presence of a contract assertion nor the evaluation of a contract
predicate should alter the correctness of a program’s evaluation.

@ The presences alone violating the prime directive would prevent users from not
violating the prime directive

@ We cannot prevent all predicates from violating, but we can discourage common
cases where they would

18/41
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© Enforcement
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Prevent violating the prime directive at compile time

Principle: Concepts do not see Contracts

The presence of a contract assertion shall not be observable through the use of
concepts.
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Prevent violating the prime directive at compile time

Principle: Concepts do not see Contracts

The presence of a contract assertion shall not be observable through the use of
concepts.

@ Guides our decisions on a number of design aspects

o Compile-time evaluation behavior
o Implicit lambda captures
o Function contract assertions are not part of the immediate context (no SFINAE)
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Prevent violating the prime directive at runtime
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Prevent violating the prime directive at runtime

@ A predicate whose evaluation would change the correctness of a program is a
destructive predicate
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Prevent violating the prime directive at runtime

@ A predicate whose evaluation would change the correctness of a program is a
destructive predicate

@ We cannot determine systematically if a predicate is destructive
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Is this destructive i?

void £() pre(true);
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Is this destructive i?

void f() pre(true);

@ It can be:

o Contract: This program will not use C++ contract checking
o Contract: No identifiers will be used that are macros in C
@ In most other cases, not destructive

e Evaluates entirely at compile time
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Is this destructive ii?

int *binary_search(int* begin, int* end, int v)
pre(std::is_sorted(begin,end));
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Is this destructive ii?

int *binary_search(int* begin, int* end, int v)
pre(std::is_sorted(begin,end));

@ VYes if evaluated, complexity is no longer logarithmic
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Is this destructive iii?

bool test(int x)
{
X =x& 1;
return x > O;
}
void f(int x)
pre(test(x));
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bool test(int x)

{
X =x& 1;
return x > O;
}
void f(int x)

pre(test(x));

@ Probably not
@ Has core-language side effects
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Is this destructive iii?

bool test(int x)
{
X =x& 1;
return x > O;

}
void f(int x)
pre(test(x));

@ Probably not
@ Has core-language side effects
e Modifies a variable whose lifetime is within the evaluation
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Is this destructive iii?

bool test(int x)
{
X =x& 1;
return x > O;

}
void f(int x)
pre(test(x));

@ Probably not
@ Has core-language side effects

o Modifies a variable whose lifetime is within the evaluation
o Called “Inside the cone of evaluation”
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pre(m.contains(k));
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Is this destructive iv?

template<typename T, typename U>
void f(const std::map<T,int>% m, const U& k)
pre(m.contains(k));

@ Probably not
@ Might have side effects outside cone of evaluation

o If Tis std::string and U is const charx.
e State change (allocation and deallocation) is reverted after expression
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Is this destructive v?

template<typename T>
void f(std: :map<T,int>& m, const T& k)
pre(m[k] == 0);
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Is this destructive v?

template<typename T>
void f(std: :map<T,int>& m, const T& k)
pre(m[k] == 0);

o If k is not definitely in the map this modifies state

@ If anything depends on the contents of the map, this is destructive
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Is this destructive vi?

bool test() {
printf("Test was called");
return true;

}
void f()
pre(test());
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Is this destructive vi?

bool test() {
printf("Test was called");
return true;

}
void f()
pre(test());

@ Destructive if output to standard output is guaranteed by contract

e Fine if standard output is used for logging and tracing
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Is this destructive vii?

int testCalls = 0;

bool test() {
++testCalls;
return true;

}

void £()
pre(test());
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Is this destructive vii?

int testCalls = 0;

bool test() {
++testCalls;
return true;

}
void £()
pre(test());

@ If correctness depends on the values of testCalls, no

@ Otherwise, fine
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Is this destructive viii?

struct List { int d_data; List * d_next; J};
void f(List *1p)
{
//#ifndef NDEBUG
int index = 0;
//#ends f
while (1p) {
contract_assert(++index < 5);
lp = 1p—>d_next;
+
}
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Is this destructive viii?

struct List { int d_data; List * d_next; J};
void f(List x1p)

{
//#ifndef NDEBUG
int index = 0;
//#ends f
while (1p) {
contract_assert(++index < 5);
lp = 1p—>d_next;
+
}

@ Always destructive — correctness of future evaluations changes each time
++index is evaluated
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Is this destructive viii?

struct List { int d_data; List * d_next; J};
void f(List x1p)

{
//#ifndef NDEBUG
int index = 0;
//#ends f
while (1p) {
contract_assert(++index < 5);
lp = 1p—>d_next;
+
}

@ Always destructive — correctness of future evaluations changes each time
++index is evaluated
@ No protection from using index and depending on it for correctness
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Takeaways about Destructive Predicates

@ No predicate is non-destructive in all contexts
@ Changes to local objects are likely to be destructive
@ Side effects within the cone of evaluation are likely to not be destructive

o Side effects outside the cone of evaluation are not always destructive
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Prevent violating the prime directive at runtime

@ Discourage any dependance on evaluation
@ Minimize the chance of non-encapsulated modifications of existing objects

@ Trust that const means state does not change
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@ Design Decisions
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@ A non-destructive predicate is always fine to elide
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Elision

@ A non-destructive predicate is always fine to elide
@ Ignoring a contract assertion gives you the same program state as elision

@ A platform could provide elision of non-violated contract assertions already
e Define the semantic of any check that can be proven as ignore
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Repetition

@ A non-destructive predicate is usually fine to evaluate again

o Overly-specific contracts that limit the number of operations might make this
destructive
o Those same contracts might make a single evaluation destructive

@ Repetition gives implementation freedom and user choice as to where code is
generated for checks

@ Repetition allows detecting many destructive side effects
@ Experience reports
e P3336R0 — only issues were pedantic testing

34 /41 132/169



const-ification

@ Prevents accidental modification of state in a contract assertion
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const-ification

@ Prevents accidental modification of state in a contract assertion

o Allows encapsulated changes that say they are const
@ Experience reports

e P3268R0 — manual analysis of one large codebase
o P3336R0 — uses current implementation in gcc
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Throwing Violation Handlers

@ Throwing is the primary mitigation strategy available without terminating
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Throwing Violation Handlers

@ Throwing is the primary mitigation strategy available without terminating

@ Termination for many C++ users is never an option (P2698R0)
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The observe semantic

@ Introducing a contract check into existing programs requires observing

e Crashing users depending on Hyrum's law is often unacceptable
o Narrowing contracts is often needed for evolution
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Compile Time Semantics

@ ignore is needed as an option
o Algorithmically expensive checks can make a program un-compilable
e constexpr evaluations tuned to the limit of operations will fail if contract assertions
are checked
@ observe is needed as an option
e For any library used at compile time code must still compile with new releases
e Just like runtime libraries require observe so code still runs at runtime with new
releases
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Undefined Behavior in Contract Predicates

@ If semantics change we have a hard time talking about what a predicate will do
@ Spreading UB to the context around a contract predicate can be bad

o P1494R3 gives us a mechanism to prevent this
e P3328R0 applies that mechanism to P2900
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40/41 162/169



Too much implementation-defined behavior

@ Only 5 points of implementation-defined behavior:
Selection of contract semantic

Methods of termination

Selection of number of repetitions

Replaceability of the contract-violation handler
When elision might happen

40/41 163/169



Too much implementation-defined behavior

@ Only 5 points of implementation-defined behavior:
Selection of contract semantic

Methods of termination

Selection of number of repetitions

Replaceability of the contract-violation handler
When elision might happen

o Upcoming paper P3321R0

40/41 164 /169



Too much implementation-defined behavior

@ Only 5 points of implementation-defined behavior:
Selection of contract semantic

Methods of termination

Selection of number of repetitions

Replaceability of the contract-violation handler
When elision might happen

o Upcoming paper P3321R0

@ All of these are for different
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No starship may interfere with the normal development of any alien life or society.
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Principle: General Order One (Contracts)

No contract check may interfere with the correctness of a program.

@ The contract-checking facility is Starfleet
@ Each individual contract check is the starship

@ The program is the non-warp-capable alien life or society
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