Contracts: What we are doing here
P3343R0

Joshua Berne - jberne4@bloomberg.net

2024-06-25

1/41 1/169



ﬂ Definitions

2/41 2/169



What are Contracts?

3/41 3/169



What are Contracts?

o Agreements between multiple parties

3/41 4/169



What are Contracts?

o Agreements between multiple parties
e Implementers and Users of a function or library

3/41 5/169



What are Contracts?

o Agreements between multiple parties

e Implementers and Users of a function or library
e Programmers and the platform they are working on

3/41 6/169



What are Contracts?

o Agreements between multiple parties

e Implementers and Users of a function or library
e Programmers and the platform they are working on
e Users and the programs they run

3/41 7/169



What are Contracts?

o Agreements between multiple parties

e Implementers and Users of a function or library
e Programmers and the platform they are working on
e Users and the programs they run

e Written (or implicit) in plain language

3/41 8/169



What are Contracts?

o Agreements between multiple parties

e Implementers and Users of a function or library
e Programmers and the platform they are working on
e Users and the programs they run

e Written (or implicit) in plain language

@ Contracts define what is and is not correct behavior

3/41 9/169



What is a Correct program?

4/41 10/169



What is a Correct program?

@ One which violates no contracts on any input

4/41 11/169



What is a Correct program?

@ One which violates no contracts on any input

@ Has no behavior not defined by the platform on any input

4/41 12/169



What is a Correct program?

@ One which violates no contracts on any input
@ Has no behavior not defined by the platform on any input

@ Must be well-formed

4/41 13/169



What is a Correct program evaluation?

5/41 14/169



What is a Correct program evaluation?

@ An evaluation of a program (with specific inputs) that violates no contracts

5/41 15/169



What is a Correct program evaluation?

@ An evaluation of a program (with specific inputs) that violates no contracts

@ Has no behavior not defined by the platform

5/41 16/169



What is an Incorrect program?

6/41 17/169



What is an Incorrect program?

@ One which will violate a contract on certain inputs

6/41 18/169



What is an Incorrect program?

@ One which will violate a contract on certain inputs

o Still potentially a well-formed program

6/41 19/169



What is a Contract Check?

7/41 20/169



What is a Contract Check?

@ An algorithm to identify when a contract has been violated

7/41 21/169



What is a Contract Check?

@ An algorithm to identify when a contract has been violated
ex >0

7/41 22/169



What is a Contract Check?

@ An algorithm to identify when a contract has been violated

ex >0
e Call 917-555-5555 to verify you have a license to use this software

7/41 23/169



What is a Contract Check?

@ An algorithm to identify when a contract has been violated

ex >0
e Call 917-555-5555 to verify you have a license to use this software

@ A part of the contract

7/41 24/169



What is a Contract-Checking Facility?

8/41 25/169



What is a Contract-Checking Facility?

@ A tool to describe contract checks

8/41 26/169



What is a Contract-Checking Facility?

@ A tool to describe contract checks
@ Any functionality that leverages those descriptions to do things

8/41 27/169



What is a Contract-Checking Facility?

@ A tool to describe contract checks
@ Any functionality that leverages those descriptions to do things
e documentation — Informing readers what will and won't constitute correct behavior

8/41 28/169



What is a Contract-Checking Facility?

@ A tool to describe contract checks
@ Any functionality that leverages those descriptions to do things

e documentation — Informing readers what will and won't constitute correct behavior
e runtime checking — ldentifying at runtime when a program evaluation is incorrect

8/41 29/169



What is a Contract-Checking Facility?

@ A tool to describe contract checks
@ Any functionality that leverages those descriptions to do things

e documentation — Informing readers what will and won't constitute correct behavior
e runtime checking — ldentifying at runtime when a program evaluation is incorrect
e runtime mitigation — Mitigating the downsides of an incorrect program

8/41 30/169



What is a Contract-Checking Facility?

@ A tool to describe contract checks
@ Any functionality that leverages those descriptions to do things

documentation — Informing readers what will and won't constitute correct behavior
runtime checking — ldentifying at runtime when a program evaluation is incorrect
runtime mitigation — Mitigating the downsides of an incorrect program

static analysis — ldentifying at compile time that a program will be or might be
incorrect

8/41 31/169



What is a Contract-Checking Facility?

@ A tool to describe contract checks
@ Any functionality that leverages those descriptions to do things

documentation — Informing readers what will and won't constitute correct behavior
runtime checking — ldentifying at runtime when a program evaluation is incorrect
runtime mitigation — Mitigating the downsides of an incorrect program

static analysis — ldentifying at compile time that a program will be or might be
incorrect

optimization — Optimizing based on the presumption that a program is correct

8/41 32/169



What isn't a Contract-Checking facility?

9/41 33/169



What isn't a Contract-Checking facility?

@ A tool to add to what a Contract says a program will do

9/41 34/169



What isn't a Contract-Checking facility?

@ A tool to add to what a Contract says a program will do

@ A tool to add to the correct behaviors of a program

9/41 35/169



What isn't a Contract-Checking facility?

@ A tool to add to what a Contract says a program will do
@ A tool to add to the correct behaviors of a program

@ A new form of flow control

9/41 36/169



What isn't a Contract-Checking facility?

@ A tool to add to what a Contract says a program will do
@ A tool to add to the correct behaviors of a program
@ A new form of flow control

@ A tool to do aspect-oriented programming

9/41 37/169



@ Principles

10/41 38/169



Principles History

11/41 39/169



Principles History

@ Many papers have attempted to identify and motivate the central principles of our
design
e P2834R1 - Semantic Stability Across Contract-Checking Build Modes
e P2932R3 - A Principled Approach to Open Design Questions for Contracts
e P2900R7 - Contracts for C++

11/41 40/169



The use of a Contract-Checking facility should not change the correctness of a
program.

12/41 41/169



Principle: Prime Directive ]

The use of a Contract-Checking facility should not change the correctness of a
program.

o If it does, it is now part of the program and not checking the contract

12/41 42/169



Principle: Prime Directive ]

The use of a Contract-Checking facility should not change the correctness of a
program.

o If it does, it is now part of the program and not checking the contract

@ When possible we aim to prevent this at compile time

12/41 43/169



Principle: Prime Directive ]

The use of a Contract-Checking facility should not change the correctness of a
program.

o If it does, it is now part of the program and not checking the contract
@ When possible we aim to prevent this at compile time

@ When possible we aim to make it harder to do this accidentally

12/41 44/169



Violating the prime directive...

13/41 45/169



Violating the prime directive...

@ The program with checks evaluated tells you nothing about the program with
checks unevaluated

13 /41 46/169



Violating the prime directive...

@ The program with checks evaluated tells you nothing about the program with
checks unevaluated

@ Heisenbugs — bugs appear and disappear when you try to observe them

13 /41 47/169



Violating the prime directive...

@ The program with checks evaluated tells you nothing about the program with
checks unevaluated

@ Heisenbugs — bugs appear and disappear when you try to observe them

e Cannot reason (as a reader or a static analyzer) about the program state locally
without considering all previous contract checks — and thus 2" program states

13 /41 48/169



Following the prime directive...

14/41 49/169



Following the prime directive...

@ Makes ignoring contract checks useful — don't pay to check what you are
confident is true, program will remain correct

14 /41 50/169



Following the prime directive...

@ Makes ignoring contract checks useful — don't pay to check what you are
confident is true, program will remain correct

o Allows static analysis of one program state instead of 2V program states

14 /41 51/169



Following the prime directive...

@ Makes ignoring contract checks useful — don't pay to check what you are
confident is true, program will remain correct
o Allows static analysis of one program state instead of 2V program states

@ Prevents Heisenbugs

14 /41 52/169



Following the prime directive...

@ Makes ignoring contract checks useful — don't pay to check what you are
confident is true, program will remain correct

o Allows static analysis of one program state instead of 2V program states
@ Prevents Heisenbugs

14 /41 53/169



Existing contract-checking facilities

15/41 54/169



Existing contract-checking facilities

@ Comments

15/41 55/169



Existing contract-checking facilities

o Comments
e Documentation of a contract can tell you how it can be checked

15/41 56/169



Existing contract-checking facilities

@ Comments

e Documentation of a contract can tell you how it can be checked
e No support for any behavior in the standard

15/41 57/169



Existing contract-checking facilities

@ Comments

e Documentation of a contract can tell you how it can be checked
e No support for any behavior in the standard

@ no runtime checking, minimal static analysis

15/41 58/169



Existing contract-checking facilities

@ Comments

e Documentation of a contract can tell you how it can be checked
e No support for any behavior in the standard

@ no runtime checking, minimal static analysis

o No structure

15/41 59/169



Existing contract-checking facilities

@ Comments

e Documentation of a contract can tell you how it can be checked
e No support for any behavior in the standard

@ no runtime checking, minimal static analysis

o No structure
o Never violates the prime directive

15/41 60/169



Existing contract-checking facilities

@ Comments

e Documentation of a contract can tell you how it can be checked
e No support for any behavior in the standard

@ no runtime checking, minimal static analysis

o No structure
o Never violates the prime directive

15/41 61/169



Existing contract-checking facilities

16/41 62/169



Existing contract-checking facilities

@ <cassert>

16/41 63/169



Existing contract-checking facilities

@ <cassert>
e Almost complete freedom

16/41 64/169



Existing contract-checking facilities

@ <cassert>

e Almost complete freedom
e No protection from violating the prime directive

16 /41 65/169



SG21 MVP

17/41 66/169



SG21 MVP

@ P2900 introduces contract assertions

17/41 67/169



SG21 MVP

@ P2900 introduces contract assertions
e Each pre, post, or contract_assert is a contract assertion

17/41 68/169



SG21 MVP

@ P2900 introduces contract assertions

e Each pre, post, or contract_assert is a contract assertion
e Each contract assertion is expected to follow the prime directive

17/41 69/169



Principle: Prime Directive (Contract Assertions)

Neither the presence of a contract assertion nor the evaluation of a contract
predicate should alter the correctness of a program’s evaluation.

18/41 70/169



Principle: Prime Directive (Contract Assertions)

Neither the presence of a contract assertion nor the evaluation of a contract
predicate should alter the correctness of a program’s evaluation.

@ The presences alone violating the prime directive would prevent users from not
violating the prime directive

18/41 71/169



Principle: Prime Directive (Contract Assertions)

Neither the presence of a contract assertion nor the evaluation of a contract
predicate should alter the correctness of a program’s evaluation.

@ The presences alone violating the prime directive would prevent users from not
violating the prime directive

@ We cannot prevent all predicates from violating, but we can discourage common
cases where they would

18/41

72/169



© Enforcement

19/41 73/169



Prevent violating the prime directive at compile time

Principle: Concepts do not see Contracts

The presence of a contract assertion shall not be observable through the use of
concepts.

20/41 74/169



Prevent violating the prime directive at compile time

Principle: Concepts do not see Contracts

The presence of a contract assertion shall not be observable through the use of
concepts.

@ Guides our decisions on a number of design aspects

20/41 75/169



Prevent violating the prime directive at compile time

Principle: Concepts do not see Contracts

The presence of a contract assertion shall not be observable through the use of
concepts.

@ Guides our decisions on a number of design aspects
o Compile-time evaluation behavior

20/41 76/169



Prevent violating the prime directive at compile time

Principle: Concepts do not see Contracts

The presence of a contract assertion shall not be observable through the use of
concepts.

@ Guides our decisions on a number of design aspects

o Compile-time evaluation behavior
o Implicit lambda captures

20/41 77/169



Prevent violating the prime directive at compile time

Principle: Concepts do not see Contracts

The presence of a contract assertion shall not be observable through the use of
concepts.

@ Guides our decisions on a number of design aspects

o Compile-time evaluation behavior
o Implicit lambda captures
o Function contract assertions are not part of the immediate context (no SFINAE)

20/41 78/169



Prevent violating the prime directive at runtime

21/41 79/169



Prevent violating the prime directive at runtime

@ A predicate whose evaluation would change the correctness of a program is a
destructive predicate

21/41 80/169



Prevent violating the prime directive at runtime

@ A predicate whose evaluation would change the correctness of a program is a
destructive predicate

@ We cannot determine systematically if a predicate is destructive

21/41 81/169



Is this destructive i?

void £() pre(true);

22/41 82/169



Is this destructive i?

void f() pre(true);

@ It can be:

22/41 83/169



Is this destructive i?

void f() pre(true);

@ It can be:
o Contract: This program will not use C++ contract checking

22/41 84/169



Is this destructive i?

void f() pre(true);

@ It can be:

o Contract: This program will not use C++ contract checking
o Contract: No identifiers will be used that are macros in C

22/41 85/169



Is this destructive i?

void f() pre(true);

@ It can be:

o Contract: This program will not use C++ contract checking
o Contract: No identifiers will be used that are macros in C
@ In most other cases, not destructive

22/41 86/169



Is this destructive i?

void f() pre(true);

@ It can be:

o Contract: This program will not use C++ contract checking
o Contract: No identifiers will be used that are macros in C
@ In most other cases, not destructive

e Evaluates entirely at compile time

22/41 87/169



Is this destructive ii?

int *binary_search(int* begin, int* end, int v)
pre(std::is_sorted(begin,end));

23/41 88/169



Is this destructive ii?

int *binary_search(int* begin, int* end, int v)
pre(std::is_sorted(begin,end));

@ VYes if evaluated, complexity is no longer logarithmic

23/41 89/169



Is this destructive iii?

bool test(int x)
{
X =x& 1;
return x > O;
}
void f(int x)
pre(test(x));

24 /41 90/169



Is this destructive iii?

bool test(int x)
{
X =x& 1;
return x > O;
}
void f(int x)
pre(test(x));

@ Probably not

24 /41 91/169



Is this destructive iii?

bool test(int x)

{
X =x& 1;
return x > O;
}
void f(int x)

pre(test(x));

@ Probably not
@ Has core-language side effects

24 /41 92/169



Is this destructive iii?

bool test(int x)
{
X =x& 1;
return x > O;

}
void f(int x)
pre(test(x));

@ Probably not
@ Has core-language side effects
e Modifies a variable whose lifetime is within the evaluation

24 /41 93/169



Is this destructive iii?

bool test(int x)
{
X =x& 1;
return x > O;

}
void f(int x)
pre(test(x));

@ Probably not
@ Has core-language side effects

o Modifies a variable whose lifetime is within the evaluation
o Called “Inside the cone of evaluation”

24 /41 94 /169



Is this destructive iv?

template<typename T, typename U>
void f(const std::map<T,int>% m, const U& k)
pre(m.contains(k));

25/41 95/169



Is this destructive iv?

template<typename T, typename U>
void f(const std::map<T,int>% m, const U& k)
pre(m.contains(k));

@ Probably not

25/41 96 /169



Is this destructive iv?

template<typename T, typename U>
void f(const std::map<T,int>% m, const U& k)
pre(m.contains(k));

@ Probably not
@ Might have side effects outside cone of evaluation

25/41 97/169



Is this destructive iv?

template<typename T, typename U>
void f(const std::map<T,int>% m, const U& k)
pre(m.contains(k));

@ Probably not
@ Might have side effects outside cone of evaluation
o If Tis std::string and U is const charx.

25/41 98/169



Is this destructive iv?

template<typename T, typename U>
void f(const std::map<T,int>% m, const U& k)
pre(m.contains(k));

@ Probably not
@ Might have side effects outside cone of evaluation

o If Tis std::string and U is const charx.
e State change (allocation and deallocation) is reverted after expression

25/41 99 /169



Is this destructive v?

template<typename T>
void f(std: :map<T,int>& m, const T& k)
pre(m[k] == 0);

26 /41 100/169



Is this destructive v?

template<typename T>
void f(std: :map<T,int>& m, const T& k)
pre(m[k] == 0);

o If k is not definitely in the map this modifies state

26/41 101/169



Is this destructive v?

template<typename T>
void f(std: :map<T,int>& m, const T& k)
pre(m[k] == 0);

o If k is not definitely in the map this modifies state

@ If anything depends on the contents of the map, this is destructive

26 /41 102/169



Is this destructive vi?

bool test() {
printf("Test was called");
return true;

}
void f()
pre(test());

27 /41 103/169



Is this destructive vi?

bool test() {
printf("Test was called");
return true;

}
void f()
pre(test());

@ Destructive if output to standard output is guaranteed by contract

27 /41 104 /169



Is this destructive vi?

bool test() {
printf("Test was called");
return true;

}
void f()
pre(test());

@ Destructive if output to standard output is guaranteed by contract

e Fine if standard output is used for logging and tracing

27 /41 105/169



Is this destructive vii?

int testCalls = 0;

bool test() {
++testCalls;
return true;

}

void £()
pre(test());

28 /41 106/169



Is this destructive vii?

int testCalls = 0;

bool test() {
++testCalls;
return true;

}
void £()
pre(test());

@ If correctness depends on the values of testCalls, no

28 /41 107/169



Is this destructive vii?

int testCalls = 0;

bool test() {
++testCalls;
return true;

}
void £()
pre(test());

@ If correctness depends on the values of testCalls, no

@ Otherwise, fine

28 /41 108/169



Is this destructive viii?

struct List { int d_data; List * d_next; J};
void f(List *1p)
{
//#ifndef NDEBUG
int index = 0;
//#ends f
while (1p) {
contract_assert(++index < 5);
lp = 1p—>d_next;
+
}

29/41 109/169



Is this destructive viii?

struct List { int d_data; List * d_next; J};
void f(List x1p)

{
//#ifndef NDEBUG
int index = 0;
//#ends f
while (1p) {
contract_assert(++index < 5);
lp = 1p—>d_next;
+
}

@ Always destructive — correctness of future evaluations changes each time
++index is evaluated

29 /41 110/169



Is this destructive viii?

struct List { int d_data; List * d_next; J};
void f(List x1p)

{
//#ifndef NDEBUG
int index = 0;
//#ends f
while (1p) {
contract_assert(++index < 5);
lp = 1p—>d_next;
+
}

@ Always destructive — correctness of future evaluations changes each time
++index is evaluated
@ No protection from using index and depending on it for correctness

29/41 111/169



Takeaways about Destructive Predicates

30/41 112/169



Takeaways about Destructive Predicates

@ No predicate is non-destructive in all contexts

30/41 113/169



Takeaways about Destructive Predicates

@ No predicate is non-destructive in all contexts

@ Changes to local objects are likely to be destructive

30/41 114/169



Takeaways about Destructive Predicates

@ No predicate is non-destructive in all contexts
@ Changes to local objects are likely to be destructive

@ Side effects within the cone of evaluation are likely to not be destructive

30/41 115/169



Takeaways about Destructive Predicates

@ No predicate is non-destructive in all contexts
@ Changes to local objects are likely to be destructive
@ Side effects within the cone of evaluation are likely to not be destructive

o Side effects outside the cone of evaluation are not always destructive

30/41 116/169



Prevent violating the prime directive at runtime

31/41 117/169



Prevent violating the prime directive at runtime

@ Discourage any dependance on evaluation

31/41 118/169



Prevent violating the prime directive at runtime

@ Discourage any dependance on evaluation

@ Minimize the chance of non-encapsulated modifications of existing objects

31/41 119/169



Prevent violating the prime directive at runtime

@ Discourage any dependance on evaluation
@ Minimize the chance of non-encapsulated modifications of existing objects

@ Trust that const means state does not change

31/41 120/169



@ Design Decisions

32/41 121/169



Elision

@ A non-destructive predicate is always fine to elide

33/41 122/169



Elision

@ A non-destructive predicate is always fine to elide

@ Ignoring a contract assertion gives you the same program state as elision

33/41 123/169



Elision

@ A non-destructive predicate is always fine to elide
@ Ignoring a contract assertion gives you the same program state as elision
@ A platform could provide elision of non-violated contract assertions already

33/41 124 /169



Elision

@ A non-destructive predicate is always fine to elide
@ Ignoring a contract assertion gives you the same program state as elision

@ A platform could provide elision of non-violated contract assertions already
e Define the semantic of any check that can be proven as ignore

33/41 125/169



Repetition

@ A non-destructive predicate is usually fine to evaluate again

34 /41 126/169



Repetition

@ A non-destructive predicate is usually fine to evaluate again

o Overly-specific contracts that limit the number of operations might make this
destructive

34 /41 127 /169



Repetition

@ A non-destructive predicate is usually fine to evaluate again

o Overly-specific contracts that limit the number of operations might make this
destructive
e Those same contracts might make a single evaluation destructive

34 /41 128 /169



Repetition

@ A non-destructive predicate is usually fine to evaluate again

o Overly-specific contracts that limit the number of operations might make this
destructive
o Those same contracts might make a single evaluation destructive

@ Repetition gives implementation freedom and user choice as to where code is
generated for checks

34/41 129/169



Repetition

@ A non-destructive predicate is usually fine to evaluate again

o Overly-specific contracts that limit the number of operations might make this
destructive
o Those same contracts might make a single evaluation destructive

@ Repetition gives implementation freedom and user choice as to where code is
generated for checks

@ Repetition allows detecting many destructive side effects

34 /41 130/169



Repetition

@ A non-destructive predicate is usually fine to evaluate again

o Overly-specific contracts that limit the number of operations might make this
destructive
o Those same contracts might make a single evaluation destructive

@ Repetition gives implementation freedom and user choice as to where code is
generated for checks

@ Repetition allows detecting many destructive side effects
e Experience reports

34 /41 131/169



Repetition

@ A non-destructive predicate is usually fine to evaluate again

o Overly-specific contracts that limit the number of operations might make this
destructive
o Those same contracts might make a single evaluation destructive

@ Repetition gives implementation freedom and user choice as to where code is
generated for checks

@ Repetition allows detecting many destructive side effects
@ Experience reports
e P3336R0 — only issues were pedantic testing

34 /41 132/169



const-ification

@ Prevents accidental modification of state in a contract assertion

35/41 133/169



const-ification

@ Prevents accidental modification of state in a contract assertion

o Allows encapsulated changes that say they are const

35/41 134 /169



const-ification

@ Prevents accidental modification of state in a contract assertion

o Allows encapsulated changes that say they are const
@ Experience reports

35/41 135/169



const-ification

@ Prevents accidental modification of state in a contract assertion

o Allows encapsulated changes that say they are const
@ Experience reports
e P3268R0 — manual analysis of one large codebase

35/41 136/169



const-ification

@ Prevents accidental modification of state in a contract assertion

o Allows encapsulated changes that say they are const
@ Experience reports

e P3268R0 — manual analysis of one large codebase
o P3336R0 — uses current implementation in gcc

35/41 137/169



Throwing Violation Handlers

36/41 138/169



Throwing Violation Handlers

@ Throwing is the primary mitigation strategy available without terminating

36/41 139/169



Throwing Violation Handlers

@ Throwing is the primary mitigation strategy available without terminating

@ Termination for many C++ users is never an option (P2698R0)

36/41 140/169



The observe semantic

37/41 141/169



The observe semantic

@ Introducing a contract check into existing programs requires observing

37/41 142 /169



The observe semantic

@ Introducing a contract check into existing programs requires observing
e Crashing users depending on Hyrum's law is often unacceptable

37/41 143/169



The observe semantic

@ Introducing a contract check into existing programs requires observing

e Crashing users depending on Hyrum's law is often unacceptable
o Narrowing contracts is often needed for evolution

37/41 144 /169



Compile Time Semantics

38/41 145/169



Compile Time Semantics

@ ignore is needed as an option

38/41 146/169



Compile Time Semantics

@ ignore is needed as an option
o Algorithmically expensive checks can make a program un-compilable

38/41 147/169



Compile Time Semantics

@ ignore is needed as an option

o Algorithmically expensive checks can make a program un-compilable
e constexpr evaluations tuned to the limit of operations will fail if contract assertions
are checked

38/41 148/169



Compile Time Semantics

@ ignore is needed as an option

o Algorithmically expensive checks can make a program un-compilable
e constexpr evaluations tuned to the limit of operations will fail if contract assertions
are checked

@ observe is needed as an option

38/41 149/169



Compile Time Semantics

@ ignore is needed as an option

o Algorithmically expensive checks can make a program un-compilable
e constexpr evaluations tuned to the limit of operations will fail if contract assertions
are checked

@ observe is needed as an option
e For any library used at compile time code must still compile with new releases

38/41 150/169



Compile Time Semantics

@ ignore is needed as an option
o Algorithmically expensive checks can make a program un-compilable
e constexpr evaluations tuned to the limit of operations will fail if contract assertions
are checked
@ observe is needed as an option
e For any library used at compile time code must still compile with new releases
e Just like runtime libraries require observe so code still runs at runtime with new
releases

38/41 151/169



Undefined Behavior in Contract Predicates

39/41 152/169



Undefined Behavior in Contract Predicates

@ If semantics change we have a hard time talking about what a predicate will do

39/41 153/169



Undefined Behavior in Contract Predicates

@ If semantics change we have a hard time talking about what a predicate will do
@ Spreading UB to the context around a contract predicate can be bad

39/41 154/169



Undefined Behavior in Contract Predicates

@ If semantics change we have a hard time talking about what a predicate will do
@ Spreading UB to the context around a contract predicate can be bad
o P1494R3 gives us a mechanism to prevent this

39/41 155/169



Undefined Behavior in Contract Predicates

@ If semantics change we have a hard time talking about what a predicate will do
@ Spreading UB to the context around a contract predicate can be bad

o P1494R3 gives us a mechanism to prevent this
e P3328R0 applies that mechanism to P2900

39/41 156/169



Too much implementation-defined behavior

40/41 157/169



Too much implementation-defined behavior

@ Only 5 points of implementation-defined behavior:

40/41 158/169



Too much implementation-defined behavior

@ Only 5 points of implementation-defined behavior:
o Selection of contract semantic

40/41 159/169



Too much implementation-defined behavior

@ Only 5 points of implementation-defined behavior:

o Selection of contract semantic
e Methods of termination

40/41 160/169



Too much implementation-defined behavior

@ Only 5 points of implementation-defined behavior:

o Selection of contract semantic
o Methods of termination
e Selection of number of repetitions

40/41 161/169



Too much implementation-defined behavior

@ Only 5 points of implementation-defined behavior:
Selection of contract semantic

Methods of termination

Selection of number of repetitions

]
o
o
o Replaceability of the contract-violation handler

40/41 162/169



Too much implementation-defined behavior

@ Only 5 points of implementation-defined behavior:
Selection of contract semantic

Methods of termination

Selection of number of repetitions

Replaceability of the contract-violation handler
When elision might happen

40/41 163/169



Too much implementation-defined behavior

@ Only 5 points of implementation-defined behavior:
Selection of contract semantic

Methods of termination

Selection of number of repetitions

Replaceability of the contract-violation handler
When elision might happen

o Upcoming paper P3321R0

40/41 164 /169



Too much implementation-defined behavior

@ Only 5 points of implementation-defined behavior:
Selection of contract semantic

Methods of termination

Selection of number of repetitions

Replaceability of the contract-violation handler
When elision might happen

o Upcoming paper P3321R0

@ All of these are for different

40/41 165/169



No starship may interfere with the normal development of any alien life or society.

41/41 166/169



No contract check may interfere with the correctness of a program.

@ The contract-checking facility is Starfleet

41/41 167/169



Principle: General Order One (Contracts)

No contract check may interfere with the correctness of a program.

@ The contract-checking facility is Starfleet

@ Each individual contract check is the starship

41/41 168/169



Principle: General Order One (Contracts)

No contract check may interfere with the correctness of a program.

@ The contract-checking facility is Starfleet
@ Each individual contract check is the starship

@ The program is the non-warp-capable alien life or society

41/41 169 /169



	Definitions
	Principles
	Enforcement
	Design Decisions

