
UB? In My Lexer?
Document #: P2621R1
Date: 2022-07-30
Programming Language C++
Audience: EWG, SG-22
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

The mere act of Lexing c++ can result in undefined behavior. This paper removes that unde-
fined behavior. Further work will be needed to remove all undefined behavior in [cpp].

Revisions

Revision 1

• Fix typos

Motivation

According to the standard, the following examples expose undefined behavior:

int \\ // UB : universal character name accross spliced lines
u\
0\
3\
9\
1 = 0;

#define CONCAT(x, y) x ## y
int CONCAT(\, u0393) = 0; // UB: universal character name formed by macro expansion

// UB: unterminated string
const char * foo = "

It does seem unfortunate that lexing C++ would incur UB. As such, we propose to change the
specification to remove the UB by either well-defining the behavior or making it ill-formed,
closely matching implementations. The status-quo, as well as the proposed changes, are
summarized below. The red cell highlights the only impact this paper would have on existing
implementations.

1

mailto:corentin.jabot@gmail.com


GCC CLANG EDG MSVC Proposed

Spliced UCN Supported Supported Supported Error Well-formed

UCN Produced BY ## Supported Supported Supported Supported Well-formed

Unterminated ” or ’ ill-formed ill-formed ill-formed ill-formed ill-formed

We propose that spliced UCNs be supported because, in addition to 3/4 of surveyed compilers
supporting it, it falls off naturally of the specification: splicing happens before any other form
of tokenization and supporting it avoid special-casing this oddity.

Wording

�? Phases of translation [lex.phases]

2. Each sequence of a backslash character (\) immediately followed by zero or more whites-
pace characters other than new-line followed by a new-line character is deleted, splicing
physical source lines to form logical source lines. Only the last backslash on any physical
source line shall be eligible for being part of such a splice. Except for splices reverted in
a raw string literal, if a splice results in a character sequence that matches the syntax of a
universal-character-name, the behavior is undefined. A source file that is not empty and that
does not end in a new-line character, or that ends in a splice, shall be processed as if an
additional new-line character were appended to the file.

A preprocessing token is the minimal lexical element of the language in translation phases
3 through 6. In this document, glyphs are used to identify elements of the basic character
set. The categories of preprocessing token are: header names, placeholder tokens pro-
duced by preprocessing import and module directives (import-keyword,module-keyword, and
export-keyword), identifiers, preprocessing numbers, character literals (including user-defined
character literals), string literals (including user-defined string literals), preprocessing opera-
tors and punctuators, and single non-whitespace characters that do not lexically match the
other preprocessing token categories. If a U+0027 APOSTROPHE or a U+0022 QUOTATION
MARK matches the last category, the behavior is undefined program is ill-formed. If any
character not in the basic character set matches the last category, the program is ill-formed.

�? The ## operator [cpp.concat]

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list
for either form of macro definition.

If, in the replacement list of a function-like macro, a parameter is immediately preceded or
followed by a ## preprocessing token, the parameter is replaced by the corresponding argu-
ment’s preprocessing token sequence; however, if an argument consists of no preprocessing
tokens, the parameter is replaced by a placemarker preprocessing token instead. For both
object-like and function-like macro invocations, before the replacement list is reexamined for

2



more macro names to replace, each instance of a ## preprocessing token in the replacement
list (not from an argument) is deleted and the preceding preprocessing token is concatenated
with the following preprocessing token. Placemarker preprocessing tokens are handled spe-
cially: concatenation of two placemarkers results in a single placemarker preprocessing token,
and concatenation of a placemarker with a non-placemarker preprocessing token results in
the non-placemarker preprocessing token. If the result begins with a sequence matching
the syntax of universal-character-name, the behavior is undefined. [Note: This determination
does not consider the replacement of universal-character-name s in translation phase 3. —end
note ] If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluation of ##

Future work

The reader will have noticed that [cpp] has a few other undefined behaviors. This should
equally be fixed, however, this work is best left to someone with greater preprocessor exper-
tise.

3


	1 Abstract
	2 Revisions
	3 Motivation
	4 Wording
	5 Phases of translation
	5.1 The ## operator

	6 Future work

