Lifting artificial restrictions on universal character names

Document #: P2620R1

Date: 2022-08-10

Programming Language C++

Audience: EWG, SG-22

Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

We propose to lift restrictions on universal-character-names in identifiers.

Revisions

Revision 1
* Fix typos

* Improve the wording by removing handling of UCNs from phase [lex.charset].

Motivation

There are restrictions on the constitution of universal-character-names that seem artificial, and
we should lift them!

\N{LATIN CAPITAL LETTER I} = 42; // ERROR: I is in the basic character set
\N{LATIN CAPITAL LETTER I WITH DOT ABOVE} = 42 ;// Ok

This is by no mean a major issue in C++, as we don't put restrictions on universal-character-
names in string literals (unlike C), but it is somewhat inconsistent with the lexing model.

Instead of restricting universal-character-names values, we can instead mandate that they are
part of valid identifiers outside of strings.

Comparison With C

C does not allow universal-character-names to designate elements of the basic character set:

2 A universal character name shall not designate a codepoint where the
hexadecimal value is: - less than 00AO other than 0024 ($), 0040 (@), or 0060 ('

"This is a small cleanup that isn't worth doing unless we can spend very little time on it, classified as low priority
bucket 72.

mailto:corentin.jabot@gmail.com

I),

This has been a pain point for users who would like to consistently use \u in string literals as
part of code generation processes.

* LLVM issue: Unicode string literals

* Why C99 has such an odd restriction for universal character names?

* Restrictions to Unicode escape sequences in C11
I hope that both languages regain consistency by:

* Not restricting UCNSs in string literals

* Not putting restrictions on UCNs in identifiers beyond what naturally falls out of the
grammar of identifiers.

Wording

72 Separate translation [lex.separate]

4. The source file is decomposed into preprocessing tokens and sequences of whitespace
characters (including comments). A source file shall not end in a partial preprocessing token
or in a partial comment. Each comment is replaced by one space character. New-line charac-
ters are retained. Whether each nonempty sequence of whitespace characters other than

The process of dividing a source file’s characters into preprocessing tokens is context-dependent.
[Example: See the handling of < within a #include preprocessing directive. — end example]

172 Character sets [lex.charset]

A universal-character-name designates the character in the translation character set whose UCS
scalar value is the hexadecimal number represented by the sequence of hexadecimal-digit s in

[Note: A sequence of characters resembling a universal-character-name in an r-char-sequence
does not form a universal-character-name. — end note]

https://github.com/llvm/llvm-project/issues/36392
https://stackoverflow.com/questions/20158472/why-c99-has-such-an-odd-restriction-for-universal-character-names
https://stackoverflow.com/questions/62759943/restrictions-to-unicode-escape-sequences-in-c11

Y Identifiers [lex.name]

identifier:
identifier-start
identifier identifier-continue

identifier-start:
nondigit
an element of the translation character set of class XID_Start
universal-character-name
designating an element of the translation character set of class XID_Start

identifier-continue:
digit
nondigit
an element of the translation character set of class XID_Continue
universal-character-name
designating an element of the translation character set of class XID_Continue

nondigit: one of

abcdefghijklm
nopgqgrstuvwxyz
ABCDEFGHIIJKLM
NOPQRSTUVWXYZ_

digit: one of
0123456789
The character classes XID_Start and XID_Continue are Derived Core Properties as described
by UAX #44.

universal-character-names are replaced by the designated element of the translation character
set.

The programis ill-formed if an identifier does not conform to Normalization Form C as specified
in ISO/IEC 10646. [Note: Identifiers are case-sensitive. —end note] [Note: In translation
phase 4, identifier also includes those preprocessing-token s differentiated as keywords in the
later translation phase 7. —end note]

	1 Abstract
	2 Revisions
	3 Motivation
	4 Comparison With C
	5 Wording
	6 Character sets
	7 Identifiers

