
ISO/IEC JTC 1/SC 22/WG14
WG 21, SG 22

February 15, 2021

Nyyyy v2
P2312R0

Introduce the nullptr constant
proposal for C23

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

Since more than a decade C++ has already replaced the problematic definition of NULL which might be either

of integer type or void*. By using a new constant nullptr, they achieve a more constrained specification,
that allows much better diagnosis of user code. We propose to integrate this concept into C as far as possible

without putting much strain on implementations.
This is a follow-up of N2394 (which has been a split-off of N2368) that builds on the approval of N2654

and N2655.

1. INTRODUCTION

The macro NULL that goes back quite early, was meant to provide a tool to specify a null
pointer constant such that it is easily visible and such that it makes the intention of the
programmer to specifier a pointer value clear. Unfortunately, the definition as it is given in
the standard misses that goal, because the constant that is hidden behind the macro can
be of very different nature.
A null pointer constant can be any integer constant of value 0 or such a constant converted
to void*. Thereby several types are possible for NULL. Commonly used are 0 with int, 0L
with long and (void*)0 with void*.

(1) This may lead to surprises when invoking a type-generic macro with a NULL argument.
(2) Conditional expressions such as (1 ? 0 : NULL) and (1 ? 1 : NULL) have different sta-

tus depending how NULL is defined. Whereas the first is always defined, the second is a
constraint violation if NULL has type void*, and defined otherwise.

(3) A NULL argument that is passed to a va_arg function that expects a pointer can have
severe consequences. On many architectures nowadays int and void* have different size,
and so if NULL is just 0, a wrongly sized arguments is passed to the function.

2. POSSIBLE SPECIFICATIONS FOR A MORE RESTRICTIVE NULL POINTER CONSTANT

Because of such problems, C++ has long shifted to a different setting, namely the keyword
nullptr. They use a special type nullptr_t for this constant, which allows to analyze and
constrain the use of the constant more precisely:

— The constant can only be used in specific contexts, namely for conversion to pointer
type, initialization, assignment and equality testing. It cannot be used in arithmetic or
comparison.

— This type cannot be converted to an arithmetic type.
— No object can be created with this type.

In addition, a specific nullptr_t type allows C++ to provide neat overloading facilities
such that optimized versions of functions can be accessed when their argument is a null
pointer constant.
WG14 has expressed a clear position (15-1-1) to introduce the nullptr constant into the
C language, but the path to achieve that as proposed in N2394 seemed to be too timid.
So instead of a primarily macro facility, we now propose a complete typed solution, that
is capable to do most deductions at translation time and that also integrates well with C’s
_Generic feature.

© 2021 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2394.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2368.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2654.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2655.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2394.pdf

Nyyyy
P2312R0

:2 Jens Gustedt

3. DESIGN CHOICES

The most important choice in the design of the new feature is to draw the line between
properties of the nullptr constant and its type, nullptr_t. It seemed to us that the most
important feature here is the nullptr constant itself, and that the type is of much less
importance. Therefore we opted to attach most properties to the constant; otherwise all
places in the standard that make sophisticated choices according to a null pointer constant
and/or about a type void* would have to be amended.
To avoid having to talk about the nullptr_t type and expressions with that type we chose
to adjust expressions that contain nullptr as much as possible, see Table I.

Table I. Proposed adjustment rules for nullptr expressions

expression adjustment context
(nullptr) nullptr
_Generic(X, T: nullptr, ...) nullptr if X has type T
x ? nullptr : nullptr nullptr x may be evaluated or not
nullptr false controlling expression
!nullptr true
nullptr == nullptr true
nullptr != nullptr false

Otherwise, nullptr is only allowed where a null pointer constant is converted to a pointer
type, namely, pointer equality, pointer initialization and pointer assignment, including func-
tion arguments for functions with a pointer parameter in their prototype. Forbidden are the
following uses.

— operand of an arithmetic operator,
— operand of relational comparison,
— as second or third operand in a ?: choice, unless the other expression has pointer type,
— any conversion to a type other than a pointer type or bool,
— initialization or assignment other than for a pointer type, not even to objects of nullptr_t,
— argument to a function parameter without prototype.

Only once these choices have been made, we have to minimally design the nullptr_t such
that it is usable in generic selection and function declaration. Thereby it can be used to
improve the possibility of translation time choices through existing C features for type-
generic programming.
As a consequence:

— Declarations of objects of type nullptr_t are only allowed for function parameters.
— Even if defined as a function parameter such an object cannot be evaluated. Such an

evaluation is unnecessary since the type has exactly one possible value, namely nullptr.

By this tricks we avoid any difficulties that could arise if the representation of such an object
would be manipulated. There is no need for a specification of trap representations for the
type, for example. Also, necessary ABI additions are minimized. The only specification that
implementations have to agree upon is if a parameter of such a type is even passed along,
and, if it even is, the size or hardware register for such a parameter.

4. PROPOSED CHANGES

4.1. nullptr

First, we have to anchor nullptr in the syntax. This is not very difficult and requires
additions of nullptr to 6.4.1 p1 and p2, 6.4.4.5 p1, 6.10.8.1 and Annex A.

Introduce the nullptr constant Nyyyy
P2312R0

:3

The most important change is a new clause (6.5.4.4.2) that describes the main properties
of the new constant. In particular it describes the main mechanism according to which it is
used:

p1 is a list of contexts where expressions with nullptr are adjusted to simplify them at
translation time

p2 is a list of contexts in which nullptr is allowed.

Then, some special arrangments are necessary:

(1) For pointer conversion (6.3.2.3) we add it to the list of null pointer constants.
(2) A note (6.4.4.5.2 p5) explains the contexts in which nullptr is not allowed by the

constraints. In particular, for default function argument promotions we stipulate that
nullptr is not a valid argument.

(3) We make the special provisions for nullptr constants that are used in equality testing
(6.5.9 p2 and new p5) and the conditional operator (6.5.15 p3 and new p6).

As an optional change we add a new clause (6.11.3) to mark other constructs for null pointer
constants obsolescent.

4.2. NULL

A second set of changes concern NULL. The new constant nullptr is introduced to phase
this one out, so NULL should be deprecated and replaced (7.19 p3 and new p5, 7.31.12).
In the future even existing usage of NULL should provide all the possible diagnostics, so its
expansion should preferably be set to nullptr (7.19 p5).
In addition, all uses of NULL should be replaced by nullptr. These changes are mainly text
replacement, so we don’t list them in the diffmarks, below.

4.3. nullptr_t

In this proposal the type nullptr_t only plays a minor role and is only needed for user code
that explicitly requests it. Therefore we propose to add it as semantic type to <stddef.h>
much as size_t or ptrdiff_t (7.19 p2). The few details of this type then are added in a
new subclause (7.19.1). It constrains the use of the type to function parameters and inhibits
any evaluation of such a parameter. The presentation of the new type is then accomplished
by a sequence of three examples that illustrate the connection of nullptr_t and _Generic.

5. QUESTIONS FOR WG14

As WG14 has already clearly expressed the wish to add nullptr to the C standard, we
don’t repeat that question here.

Question 1. Does WG14 want to integrate nullptr as proposed in Nyyyy into C23?

Question 2. Does WG14 want to mark the constructs for other null pointer constants
as obsolescent as proposed in Nyyyy for C23?

Question 3. Does WG14 want to mark the NULL macro as obsolescent as proposed in
Nyyyy for C23?

Question 4. Does WG14 want to have a nullptr_t type along the lines of Nyyyy
in C23?

Question 5. Does WG14 want to integrate nullptr_t as proposed in Nyyyy into C23?

http://www.open-std.org/jtc1/sc22/wg14/www/docs/nyyyy.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/nyyyy.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/nyyyy.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/nyyyy.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/nyyyy.pdf

Nyyyy
P2312R0

:4 Jens Gustedt

Appendix: pages with diffmarks of the proposed changes
against proposals N2654 and N2655.
The following page numbers are from the particular snapshot and may vary once the changes
are integrated.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2654.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2655.pdf

yyyy truebool.. § 6.3.2.3, working draft — February 15, 2021 CORE 202101 (E)

6.3.2.3 Pointers
1 A pointer to void may be converted to or from a pointer to any object type. A pointer to any object

type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

2 For any qualifier q, a pointer to a non-q-qualified type may be converted to a pointer to the q-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

3 An integer constant expression with the value 0, or such an expression cast to type void *,
:
or

::::
the

:::::::
constant

:::::::::
nullptr,

:
is called a null pointer constant.68) If a null pointer constant is converted to a

pointer type, the resulting pointer, called a null pointer, is guaranteed to compare unequal to a pointer
to any object or function.

4 Conversion of a null pointer to another pointer type yields a null pointer of that type. Any two null
pointers shall compare equal.

5 An integer may be converted to any pointer type. Except as previously specified, the result is imple-
mentation-defined, might not be correctly aligned, might not point to an entity of the referenced
type, and might be a trap representation.69)

6 Any pointer type may be converted to an integer type. Except as previously specified, the result
is implementation-defined. If the result cannot be represented in the integer type, the behavior is
undefined. The result need not be in the range of values of any integer type.

7 A pointer to an object type may be converted to a pointer to a different object type. If the resulting
pointer is not correctly aligned70) for the referenced type, the behavior is undefined. Otherwise,
when converted back again, the result shall compare equal to the original pointer. When a pointer to
an object is converted to a pointer to a character type, the result points to the lowest addressed byte
of the object. Successive increments of the result, up to the size of the object, yield pointers to the
remaining bytes of the object.

8 A pointer to a function of one type may be converted to a pointer to a function of another type and
back again; the result shall compare equal to the original pointer. If a converted pointer is used to
call a function whose type is not compatible with the referenced type, the behavior is undefined.

Forward references:
:::
the

::::::::
nullptr

::::::::
constant

::::::::::
(6.4.4.5.2),

:
cast operators (6.5.4), equality operators

(6.5.9), integer types capable of holding object pointers (7.20.1.4), simple assignment (6.5.16.1).

6.4 Lexical elements
Syntax

1 token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator

each non-white-space character that cannot be one of the above

68)The
::::::::
obsolescent

:
macro NULL is defined in <stddef.h> (and other headers) as a null pointer constant; see 7.19

:
,
::
but

::::
new

:::
code

::::::
should

::::
prefer

:::
the

:::::::
keyword

::::::
nullptr

:::::::
wherever

:
a
::::

null
:::::
pointer

:::::::
constant

:
is
:::::::
specified.

69)The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to be consistent with
the addressing structure of the execution environment.

70)In general, the concept "correctly aligned" is transitive: if a pointer to type A is correctly aligned for a pointer to type B,
which in turn is correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

Language modifications to ISO/IEC 9899:2018, § 6.4 page 41

1

CORE 202101 (E) § 6.4.1, working draft — February 15, 2021 truebool.. yyyy

Constraints
2 Each preprocessing token that is converted to a token shall have the lexical form of a keyword, an

identifier, a constant, a string literal, or a punctuator.

Semantics
3 A token is the minimal lexical element of the language in translation phases 7 and 8. The categories of

tokens are: keywords, identifiers, constants, string literals, and punctuators. A preprocessing token
is the minimal lexical element of the language in translation phases 3 through 6. The categories of
preprocessing tokens are: header names, identifiers, preprocessing numbers, character constants,
string literals, punctuators, and single non-white-space characters that do not lexically match the
other preprocessing token categories.71) If a’ or a " character matches the last category, the behavior
is undefined. Preprocessing tokens can be separated by white space; this consists of comments
(described later), or white-space characters (space, horizontal tab, new-line, vertical tab, and form-
feed), or both. As described in 6.10, in certain circumstances during translation phase 4, white
space (or the absence thereof) serves as more than preprocessing token separation. White space
may appear within a preprocessing token only as part of a header name or between the quotation
characters in a character constant or string literal.

4 If the input stream has been parsed into preprocessing tokens up to a given character, the next
preprocessing token is the longest sequence of characters that could constitute a preprocessing
token. There is one exception to this rule: header name preprocessing tokens are recognized only
within #include preprocessing directives and in implementation-defined locations within #pragma
directives. In such contexts, a sequence of characters that could be either a header name or a string
literal is recognized as the former.

5 EXAMPLE 1 The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid floating or integer
constant token), even though a parse as the pair of preprocessing tokens 1 and Ex might produce a valid expression (for
example, if Ex were a macro defined as+1). Similarly, the program fragment 1E1 is parsed as a preprocessing number (one
that is a valid floating constant token), whether or not E is a macro name.

6 EXAMPLE 2 The program fragment x+++++y is parsed as x ++ ++ + y, which violates a constraint on increment operators,
even though the parse x ++ + ++ y might yield a correct expression.

Forward references: character constants (6.4.4.4), comments (6.4.9), expressions (6.5), floating
constants (6.4.4.2), header names (6.4.7), macro replacement (6.10.3), postfix increment and decrement
operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), preprocessing directives (6.10),
preprocessing numbers (6.4.8), string literals (6.4.5).

6.4.1 Keywords
Syntax

1 keyword: one of
alignas
alignof
auto
bool
break
case
char
const
continue
default
do
double

else
enum
extern
false
float
for
goto
if
inline
int
long

::::::::
nullptr

register
restrict
return
short
signed
sizeof
static
static_assert
struct
switch
thread_local
true

typedef
union
unsigned
void
volatile
while
_Atomic
_Complex
_Generic
_Imaginary
_Noreturn

71)An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.3.3); it cannot occur in source
files.

modifications to ISO/IEC 9899:2018, § 6.4.1 page 42 Language

2

yyyy truebool.. § 6.4.2, working draft — February 15, 2021 CORE 202101 (E)

Constraints
2 The keywords

alignas
alignof

bool
false

::::::::
nullptr
static_assert

thread_local
true

may optionally be predefined macro names (6.10.8.4). None of these shall be the subject of a #define
or a #undef preprocessing directive.

Semantics
3 The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as keywords,

and shall not be used otherwise. The keyword _Imaginary is reserved for specifying imaginary
types.72)

4 The following table provides alternate spellings for certain keywords. These can be used wherever
the keyword can.73)

keyword alternative spelling
alignas _Alignas
alignof _Alignof
bool _Bool
static_assert _Static_assert
thread_local _Thread_local

5 The spelling of keywords that are also predefined macros and that are subject to the # and ##
preprocessing operators is unspecified.74)

6.4.2 Identifiers
6.4.2.1 General
Syntax

1 identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit:
nondigit
universal-character-name

other implementation-defined characters

nondigit: one of
_ a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

Semantics
2 An identifier is a sequence of nondigit characters (including the underscore _, the lowercase and

uppercase Latin letters, and other characters) and digits, which designates one or more entities as
72)One possible specification for imaginary types appears in Annex G.
73)These alternative keywords are obsolescent features and should not be used for new code.
74)The intent of these specifications is to allow but not to force the implementation of the correspondig feature by means of

a predefined macro.

Language modifications to ISO/IEC 9899:2018, § 6.4.2.1 page 43

3

yyyy truebool.. § 6.4.4.5, working draft — February 15, 2021 CORE 202101 (E)

Constraints
9 The value of an octal or hexadecimal escape sequence shall be in the range of representable values

for the corresponding type:

Prefix Corresponding Type
none unsigned char
L the unsigned type corresponding to wchar_t
u char16_t
U char32_t

Semantics
10 An integer character constant has type int. The value of an integer character constant containing

a single character that maps to a single-byte execution character is the numerical value of the
representation of the mapped character interpreted as an integer. The value of an integer character
constant containing more than one character (e.g.,’ab’), or containing a character or escape sequence
that does not map to a single-byte execution character, is implementation-defined. If an integer
character constant contains a single character or escape sequence, its value is the one that results
when an object with type char whose value is that of the single character or escape sequence is
converted to type int.

11 A wide character constant prefixed by the letter L has type wchar_t, an integer type defined in the
<stddef.h> header; a wide character constant prefixed by the letter u or U has type char16_t or
char32_t, respectively, unsigned integer types defined in the <uchar.h> header. The value of a
wide character constant containing a single multibyte character that maps to a single member of the
extended execution character set is the wide character corresponding to that multibyte character,
as defined by the mbtowc, mbrtoc16, or mbrtoc32 function as appropriate for its type, with an
implementation-defined current locale. The value of a wide character constant containing more
than one multibyte character or a single multibyte character that maps to multiple members of
the extended execution character set, or containing a multibyte character or escape sequence not
represented in the extended execution character set, is implementation-defined.

12 EXAMPLE 1 The construction’\0’ is commonly used to represent the null character.

13 EXAMPLE 2 Consider implementations that use two’s complement representation for integers and eight bits for objects
that have type char. In an implementation in which type char has the same range of values as signed char, the integer
character constant’\xFF’ has the value −1; if type char has the same range of values as unsigned char, the character
constant’\xFF’ has the value +255.

14 EXAMPLE 3 Even if eight bits are used for objects that have type char, the construction’\x123’ specifies an integer character
constant containing only one character, since a hexadecimal escape sequence is terminated only by a non-hexadecimal
character. To specify an integer character constant containing the two characters whose values are’\x12’ and’3’ , the
construction’\0223’ can be used, since an octal escape sequence is terminated after three octal digits. (The value of this
two-character integer character constant is implementation-defined.)

15 EXAMPLE 4 Even if 12 or more bits are used for objects that have type wchar_t, the construction L’\1234’ specifies the
implementation-defined value that results from the combination of the values 0123 and’4’ .

Forward references: common definitions <stddef.h> (7.19), the mbtowc function (7.22.7.2), Uni-
code utilities <uchar.h> (7.28).

6.4.4.5 Predefined constants
Syntax

1 predefined-constant:
:::
one

::
of

false
true

::::::
false

::::::::::::
nullptr

:::::::::
true

Description
Some keywords represent constants of a specific value and type.

Language modifications to ISO/IEC 9899:2018, § 6.4.4.5 page 51

4

CORE 202101 (E) § 6.4.4.5.1, working draft — February 15, 2021 truebool.. yyyy

6.4.4.5.1 The false and true constants
Description

1 The keywords false and true represent constants of type bool that are suitable for use as are integer
literals. Their values are 0 for false and 1 for true.82) When used in preprocessor conditional
expressions, the keywords false and true behave as if replaced with the pp-numbers 0 and 1,
respectively.83)

6.4.4.5.2 The nullptr constant
Constraints

1
:
If
::::
the nullptr constant

:::::::
appears

::
as

::::
the

::::::
subject

::::::::::
expression

:::
of

:
a
:::::::::::::
parenthesized

::::::::::
expression

:::
or

::
as

::::
the

::::::
chosen

:::::::::::
assignment

::::::::::
expression

:::
of

::
a
:::::::
generic

:::::::::
selection,

::::
the

::::::::::::::
corresponding

::::::::::
expression

::
is
:::::::::

adjusted

::
to

:::::::::
nullptr;

::
if

::
it

::::::::
appears

::
as

:::::
both

::::
the

::::
first

::::
and

::::
the

:::::::
second

::::::::
operand

::
of

:::
an

::::::::
equality

:::::::::
operator,

::::
the

:::::::::::::
corresponding

::::::::::
expression

::
is

::::::::
adjusted

:::
to

:::::
true

::::
(for

:::
==)

:::
or

::::::
false

::::
(for

::::
!=);

::
if

:
it
::::::::

appears
:::
as

::::
both

::::
the

::::::
second

::::
and

:::::
third

::::::::
operand

:::
of

:
a
:::::::::::
conditional

::::::::
operator,

::::
the

:::::::::::::
corresponding

::::::::::
expression

:::
is

::::::::
adjusted

::
to

:

::::::::
nullptr.

:

2
:::::
After

:::::
such

::::::::::::
adjustments,

:::
the

:
nullptr constant

::::
shall

:::::
only

:::
be

:::::
used

::
as

::::::::
follows:

:::
as

::
a
:::::
null

:::::::
pointer

:::::::
constant

::::::
when

::
it
::::::::
appears

::
as

::::
the

::::::::
operand

::
of

::
a
:::::::::::
conversion

::
to

::
a

:::::::
pointer

:::::
type;

:::
as

:::
the

:::::
only

::::::::
possible

:::::
value

:::
for

::
a

::::::::
function

:::
call

:::::::::
argument

:::
to

:
a
::::::::::
parameter

::
of

:::::
type

:::::::::::
nullptr_t;

::
as

::
a

:::::
void

::::::::::
expression;

::::::
when

::::
used

:::
for

::::
the

:::::::::::::
determination

::
of

::
a

:::::::
Boolean

::::::
value

::
or

::
a

::::
type

::
in

::
a
::::::::::
controlling

:::::::::::
expression;

::
as

:::
an

::::::::
operand

::
of

::
an

::::::::
equality

:::::::::
operator,

::
of

:
a
:::::::::::
conversion

::
to

:::::
bool

::
or

::
of

::
a

::::::
logical

:::::::::
negation.

Description
3

:::
The

:::::::::
keyword

::::::::
nullptr

:::::::::
represents

::
a
::::
null

:::::::
pointer

::::::::
constant

::
of

:::::
type

::::::::::
nullptr_t.

:

4
:
If
::
a
::::::::::
conditional

::::::::
operator

::
is
::::::::
adjusted

:::
as

::
in

:::
the

:::::::::::
constraints,

::
it

::
is

::::::::::
unspecified

::
if

:::
the

::::
first

::::::::
operand

::
of

::::
the

::::::::
operator

::
is

:::::::::
evaluated.

:

5 NOTE
:::
The

:::::::
syntactical

:::::::::
adjustments

:::::
ensure

:::
that

:::
the

:::
use

:
of
:::::::
nullptr

::
as

:
a
:::
null

:::::
pointer

:::::::
constant

::
can

::
be

:::::::
detected

:::
and

::::
acted

::::
upon

:::::
during

::::::::
translation

::::
time.

:::
The

:::::::::
constraints

::::::
prohibit

::
the

:::
use

::
of

:::::::
nullptr

::
as

::
an

::::::
operand

::
of

:::
any

::::::::
arithmetic

::::::::
operation,

:::::::
relational

:::::::::
comparison,

::::::::::
initialization,

::::::::
assignment

::
or

::
as

::
an

:::::::
argument

::
to

:
a
:::::::
function

:::::::
parameter

:::
for

::::
which

:::
no

:::::::
prototype

::
is

:::::
visible.

Forward references:
:::
the

:::::::::::
nullptr_t

::::
type

:::::::
(7.19.1)

6 EXAMPLE

:::::
(
:
x
::
?
::::::::
nullptr

:
:
::::::::
nullptr

:
)
:
;
::::::::::

//
::::::
valid

:
,

::::::::
adjusted

:::
to

:
nullptr

:
,
::
x
::::
may

:::
be

::::::::::
evaluated

::::::::::
double

::* ::
a

::
=

:::::::
nullptr

:
;
:::::::::::::

//
:::::::::
implicit

::::::::::
conversion

:::
to

:
double*:,::::::

valid

::::::::
free

:
(

:::::::
nullptr

:
);

: :::::::::::::::::::
//

:::::::::
implicit

::::::::::
conversion

:::
to

:
void*:,::::::::

useless
:
,
::::
but

::::::
valid

::::::::::
printf

:::
("%

:
p

:
\

:
n

:
",

::::::::
nullptr

:
)
:
;
::::::::::

//
::::::::
invalid

:
,

::::
use

::
of

:
nullptr

::::::::
without

:::::::::::
conversion

::::::::::
printf

:::
("%

:
p

:
\

:
n

:
",

::
(
::::
void

::*):::::::
nullptr

:
)
:
;
:::
//

::::::
valid

:
,

::::::::
explicit

:::::::::::
conversion

:::
to

:
void*

6.4.5 String literals
Syntax

1 string-literal:
encoding-prefixopt " s-char-sequenceopt "

82)When used in arithmetic expressions after translation phase 4 the values of the keywords are promoted to type int.
83)Therefore, arithmetic with false and true in translation phase 4 presents results that are generally consistent with later

translation phases.

modifications to ISO/IEC 9899:2018, § 6.4.5 page 52 Language

5

yyyy truebool.. § 6.5.9, working draft — February 15, 2021 CORE 202101 (E)

4 For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

5 When two pointers are compared, the result depends on the relative locations in the address space
of the objects pointed to. If two pointers to object types both point to the same object, or both point
one past the last element of the same array object, they compare equal. If the objects pointed to
are members of the same aggregate object, pointers to structure members declared later compare
greater than pointers to members declared earlier in the structure, and pointers to array elements
with larger subscript values compare greater than pointers to elements of the same array with lower
subscript values. All pointers to members of the same union object compare equal. If the expression
P points to an element of an array object and the expression Q points to the last element of the same
array object, the pointer expression Q+1 compares greater than P. In all other cases, the behavior is
undefined.

6 Each of the operators< (less than), > (greater than),<= (less than or equal to), and >= (greater than or
equal to) shall yield 1 if the specified relation is true and 0 if it is false.115) The result has type int.

6.5.9 Equality operators
Syntax

1 equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

Constraints
2 One of the following shall hold:

— both operands have arithmetic type;

—
::::
both

:::::::::
operands

:::
are

:::::::::
nullptr;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void; or

— one operand is a pointer and the other is a null pointer constant.

Semantics
3 The == (equal to) and != (not equal to) operators are analogous to the relational operators except for

their lower precedence.116) Each of the operators yields 1 if the specified relation is true and 0 if it is
false. The result has type int. For any pair of operands, exactly one of the relations is true.

4 If both of the operands have arithmetic type, the usual arithmetic conversions are performed. Values
of complex types are equal if and only if both their real parts are equal and also their imaginary parts
are equal. Any two values of arithmetic types from different type domains are equal if and only
if the results of their conversions to the (complex) result type determined by the usual arithmetic
conversions are equal.

5
:
If
:::::

both
::::::::::

operands
:::
are

:::::::::
nullptr

::::
the

::::::::::
expression

:::
is

::::::::
adjusted

:::
to

:::::
true

::::
(for

::::
==)

:::
or

::::::
false

:::::
(for

::::
!=),

:::
see

::::::::
6.4.4.5.2.

6 Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a null
pointer constant, the null pointer constant is converted to the type of the pointer. If one operand is a

115)The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it means (a<b)<c; in other
words, "if a is less than b, compare 1 to c; otherwise, compare 0 to c".

116)Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.

Language modifications to ISO/IEC 9899:2018, § 6.5.9 page 71

6

CORE 202101 (E) § 6.5.16, working draft — February 15, 2021 truebool.. yyyy

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;

—
::::
both

:::::::::
operands

:::
are

:::::::::
nullptr;

— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void.

Semantics
4 The first operand is evaluated; there is a sequence point between its evaluation and the evaluation

of the second or third operand (whichever is evaluated). The second operand is evaluated only if
the first compares unequal to 0; the third operand is evaluated only if the first compares equal to 0;
the result is the value of the second or third operand (whichever is evaluated), converted to the type
described below.118)

5 If both the second and third operands have arithmetic type, the result type that would be determined
by the usual arithmetic conversions, were they applied to those two operands, is the type of the
result. If both the operands have structure or union type, the result has that type. If both operands
have void type, the result has void type.

:

6
:
If
:::::
both

:::
the

:::::::
second

::::
and

:::::
third

:::::::::
operands

:::
are

::::::::
nullptr,

::::
the

::::::::::
expression

::
is

::::::::
adjusted

::
to

::::::::
nullptr

::::
and

::
it

::
is

::::::::::
unspecified

::
if

:::
the

::::
first

::::::::
operand

::
is

::::::::::
evaluated,

:::
see

::::::::
6.4.4.5.2.

7 If both the second and third operands are pointers or one is a null pointer constant and the other
is a pointer, the result type is a pointer to a type qualified with all the type qualifiers of the types
referenced by both operands. Furthermore, if both operands are pointers to compatible types or to
differently qualified versions of compatible types, the result type is a pointer to an appropriately
qualified version of the composite type; if one operand is a null pointer constant, the result has the
type of the other operand; otherwise, one operand is a pointer to void or a qualified version of void,
in which case the result type is a pointer to an appropriately qualified version of void.

8 EXAMPLE The common type that results when the second and third operands are pointers is determined in two independent
stages. The appropriate qualifiers, for example, do not depend on whether the two pointers have compatible types.

9 Given the declarations

const void *c_vp;
void *vp;
const int *c_ip;
volatile int *v_ip;
int *ip;
const char *c_cp;

the third column in the following table is the common type that is the result of a conditional expression in which the first two
columns are the second and third operands (in either order):

c_vp c_ip const void *
v_ip 0 volatile int *
c_ip v_ip const volatile int *
vp c_cp const void *
ip c_ip const int *
vp ip void *

6.5.16 Assignment operators
Syntax

1 assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

118)A conditional expression does not yield an lvalue.

modifications to ISO/IEC 9899:2018, § 6.5.16 page 74 Language

7

yyyy truebool.. § 6.10.8.4, working draft — February 15, 2021 CORE 202101 (E)

__STDC_IEC_559__ The integer constant 1, intended to indicate conformance to the specifications
in Annex F (IEC 60559 floating-point arithmetic).

__STDC_IEC_559_COMPLEX__ The integer constant 1, intended to indicate adherence to the specifi-
cations in Annex G (IEC 60559 compatible complex arithmetic).

__STDC_LIB_EXT1__ The integer constant 202101L, intended to indicate support for the extensions
defined in Annex K (Bounds-checking interfaces).187)

__STDC_NO_ATOMICS__ The integer constant 1, intended to indicate that the implementation does
not support atomic types (including the _Atomic type qualifier) and the <stdatomic.h>
header.

__STDC_NO_COMPLEX__ The integer constant 1, intended to indicate that the implementation does
not support complex types or the <complex.h> header.

__STDC_NO_THREADS__ The integer constant 1, intended to indicate that the implementation does
not support the <threads.h> header.

__STDC_NO_VLA__ The integer constant 1, intended to indicate that the implementation does not
support variable length arrays or variably modified types.

2 An implementation that defines__STDC_NO_COMPLEX__ shall not define__STDC_IEC_559_COMPLEX__.

6.10.8.4 Optional macros
1 The keywords

alignas
alignof

bool
false

::::::::
nullptr
static_assert

thread_local
true

optionally are also predefined macro names that expand to unspecified tokens.

6.10.9 Pragma operator
Semantics

1 A unary operator expression of the form:
_Pragma (string-literal)

is processed as follows: The string literal is destringized by deleting any encoding prefix, deleting
the leading and trailing double-quotes, replacing each escape sequence \" by a double-quote, and
replacing each escape sequence \\ by a single backslash. The resulting sequence of characters
is processed through translation phase 3 to produce preprocessing tokens that are executed as if
they were the pp-tokens in a pragma directive. The original four preprocessing tokens in the unary
operator expression are removed.

2 EXAMPLE A directive of the form:

#pragma listing on "..\listing.dir"

can also be expressed as:

_Pragma ("listing on \"..\\listing.dir\"")

The latter form is processed in the same way whether it appears literally as shown, or results from macro replacement, as in:

#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x) _Pragma(#x)

LISTING (..\listing.dir)

187)The intention is that this will remain an integer constant of type long int that is increased with each revision of this
document.

Language modifications to ISO/IEC 9899:2018, § 6.10.9 page 131

8

CORE 202101 (E) § 6.11, working draft — February 15, 2021 truebool.. yyyy

6.11 Future language directions
6.11.1 Floating types

1 Future standardization may include additional floating-point types, including those with greater
range, precision, or both than long double.

6.11.2 Linkages of identifiers
1 Declaring an identifier with internal linkage at file scope without the static storage-class specifier

is an obsolescent feature.

6.11.3 Null pointer constants
1

:::
The

:::::::::
property

::
of

:::::::
integer

::::::::
constant

:::::::::::
expressions

:::::
with

:::
the

:::::
value

:::
0,

::::
and

::::
such

:::::::::::
expressions

::::
cast

:::
to

::::
type

:

::::::
void*,

::
to

::::::
stand

::
in

::
as

::
a

::::
null

:::::::
pointer

::::::::
constant

::
is

::
an

:::::::::::
obsolescent

:::::::
feature.

:

6.11.4 External names
1 Restriction of the significance of an external name to fewer than 255 characters (considering each

universal character name or extended source character as a single character) is an obsolescent feature
that is a concession to existing implementations.

6.11.5 Character escape sequences
1 Lowercase letters as escape sequences are reserved for future standardization. Other characters may

be used in extensions.

6.11.6 Storage-class specifiers
1 The placement of a storage-class specifier other than at the beginning of the declaration specifiers in

a declaration is an obsolescent feature.

6.11.7 Function declarators
1 The use of function declarators with empty parentheses (not prototype-format parameter type

declarators) is an obsolescent feature.

6.11.8 Function definitions
1 The use of function definitions with separate parameter identifier and declaration lists (not prototype-

format parameter type and identifier declarators) is an obsolescent feature.

6.11.9 Pragma directives
1 Pragmas whose first preprocessing token is STDC are reserved for future standardization.

6.11.10 Predefined macro names
1 Macro names beginning with __STDC_ are reserved for future standardization.

modifications to ISO/IEC 9899:2018, § 6.11.10 page 132 Language

9

yyyy truebool.. § 7.19, working draft — February 15, 2021 CORE 202101 (E)

7.19 Common definitions <stddef.h>
1 The header <stddef.h> defines the following macros and declares the following types. Some are

also defined in other headers, as noted in their respective subclauses.

2 The types are

nullptr_t

:::::
which

::
is
::::
the

::::
type

::
of

::::
the

::::::::
nullptr

::::::::
constant,

:::
see

:::::::
below;

:: ::: :::::::::
ptrdiff_t

:::::
which

::
is
::::
the

::::::
signed

:::::::
integer

::::
type

::
of

::::
the

:::::
result

::
of

:::::::::::
subtracting

::::
two

::::::::
pointers;

:

:: ::: ::::::
size_t

:::::
which

::
is
::::
the

::::::::
unsigned

:::::::
integer

:::::
type

::
of

:::
the

::::::
result

::
of

:::
the

:::::::
sizeof

:::::::::
operator;

:: ::: :::::::::::
max_align_t

:::::
which

::
is
:::
an

::::::
object

::::
type

::::::
whose

::::::::::
alignment

::
is

:::
the

:::::::
greatest

::::::::::::
fundamental

::::::::::
alignment;

::::
and

:

:: ::: :::::::
wchar_t

:::::
which

::
is
:::
an

:::::::
integer

::::
type

:::::::
whose

:::::
range

::
of

:::::::
values

:::
can

:::::::::
represent

:::::::
distinct

::::::
codes

:::
for

::
all

:::::::::
members

::
of

::::
the

::::::
largest

:::::::::
extended

::::::::
character

:::
set

:::::::::
specified

::::::
among

::::
the

:::::::::
supported

:::::::
locales;

::::
the

::::
null

::::::::
character

:::::
shall

:::::
have

:::
the

:::::
code

:::::
value

:::::
zero.

:::::
Each

::::::::
member

:::
of

:::
the

:::::
basic

:::::::::
character

:::
set

:::::
shall

:::::
have

::
a

:::::
code

:::::
value

::::::
equal

::
to

:::
its

:::::
value

:::::
when

:::::
used

:::
as

:::
the

::::
lone

:::::::::
character

::
in

:::
an

:::::::
integer

:::::::::
character

::::::::
constant

::
if

::
an

:::::::::::::::
implementation

:::::
does

:::
not

::::::
define

:::::::::::::::::::::::::::
__STDC_MB_MIGHT_NEQ_WC__.

:

3
:::
The

:::::::
macros

:::
are

:

:: ::: ::::
NULL

:::::
which

::::::::
expands

:::
to

::
an

:::::::
imple

::::
men

::
ta

:::::::::::
tion-defined

::::
null

:::::::
pointer

:::::::::
constant;269)

:::
and

:

:: ::: ::::::::
offsetof

:
(type

:
,
:
member-designator

:
)

which expands to an integer constant expression that has type size_t, the value of which is the
offset in bytes, to the structure member (designated by member-designator), from the beginning of its
structure (designated by type). The type and member designator shall be such that given

static type t;

then the expression &(t. member-designator) evaluates to an address constant. (If the specified
member is a bit-field, the behavior is undefined.)

Recommended practice
4 The types used for size_t and ptrdiff_t should not have an integer conversion rank greater than

that of signed long int unless the implementation supports objects large enough to make this
necessary.

5
:::
The

::::::
macro

:::::
NULL

:::::::
should

:::::::
expand

::
to

:::::::::
nullptr.

269)
:::
The

:::
NULL

:::::
macro

::
is

::
an

::::::::
obsolescent

::::::
feature.

Library modifications to ISO/IEC 9899:2018, § 7.19 page 213

10

CORE 202101 (E) § 7.19.1, working draft — February 15, 2021 yyyy

7.19.1 The nullptr_t type
Constraints

1 The nullptr_t type shall only be used to declare objects if they are function parameters. Such a
parameter with nullptr_t type shall not be subject to lvalue conversion.

Description
2 The nullptr_t type is a complete object type that is not a pointer type itself and that is different

from any other object type. It has only a very limited use in contexts where this type is needed to
distinguish nullptr from other expression types. By the constraints, objects of this type may only
occur as parameters, and even as such their particular value (known to be nullptr) will never be
read.

3 EXAMPLE 1 Consider a function func that receives a pointer parameter that can either be valid or a null pointer to indicate
a default choice.

// header "func.h"
void func(toto*);

// define a default action
// no parameter name, parameter is never read
inline void func_nullptr(nullptr_t) {
...

}

#define func(P) \
_Generic((P), \

nullptr_t: func_nullptr, \
default: func)(P)

--
// one translation unit
#include "func.h"
// emit an external definition
extern void func_nullptr(nullptr_t);

// define the general action
void (func)(toto* p) {
// p may still have value null
if (!p) func_nullptr(nullptr); // may only be called with nullptr
else {
...

}
}

Here, a function func_nullptr is defined that receives a nullptr_t type. The function needs no access to the parameter,
since that parameter can only hold one specific value and it may not even be evaluated. A type-generic macro func then
chooses this function or the general function func. The translation unit that defines func may then emit an external definition
of func_nullptr and also use it within the definition for the case that func receives a parameter value that is null without
being recognized as such at translation time of the call.

4 EXAMPLE 2

#include "func.h"
...

func(0); // ok, but uses the general function and may issue a diagnostic
func(nullptr); // uses default action directly

The use of the macro with a null pointer constant of integer type then uses the general function and sets the parameter to null;
implementations that chose to diagnose the use of null pointer constants of integer type may do so for this call. In contrast to
that, a call that uses nullptr as an argument directly resolves to func_nullptr, may or may not inline the corresponding
action, and will not trigger such a diagnosis.

5 EXAMPLE 3

#define func_strict(P) \

modifications to ISO/IEC 9899:2018, § 7.19.1 page 214 Library

11

yyyy § 7.19.1, working draft — February 15, 2021 CORE 202101 (E)

_Generic((P), \
nullptr_t: func_nullptr, \
toto*: func)(P)

...
func_strict(0); // invalid, int not a valid choice, constraint violation
func_strict(nullptr); // uses default action directly

The emission of a diagnosis can be forced by restricting the admissible type as shown in the definition of func_strict.

Library modifications to ISO/IEC 9899:2018, § 7.19.1 page 215

12

yyyy truebool.. § 7.31, working draft — February 15, 2021 CORE 202101 (E)

7.31 Future library directions
1 The following names are grouped under individual headers for convenience. All external names

described below are reserved no matter what headers are included by the program.

7.31.1 Complex arithmetic <complex.h>
1 The function names

cerf
cerfc
cexp2

cexpm1
clog10
clog1p

clog2
clgamma
ctgamma

and the same names suffixed with f or l may be added to the declarations in the <complex.h>
header.

7.31.2 Character handling <ctype.h>
1 Function names that begin with either is or to, and a lowercase letter may be added to the declara-

tions in the <ctype.h> header.

7.31.3 Errors <errno.h>
1 Macros that begin with E and a digit or E and an uppercase letter may be added to the macros

defined in the <errno.h> header.

7.31.4 Floating-point environment <fenv.h>
1 Macros that begin with FE_ and an uppercase letter may be added to the macros defined in the

<fenv.h> header.

7.31.5 Format conversion of integer types <inttypes.h>
1 Macros that begin with either PRI or SCN, and either a lowercase letter or X may be added to the

macros defined in the <inttypes.h> header.

7.31.6 Localization <locale.h>
1 Macros that begin with LC_ and an uppercase letter may be added to the macros defined in the

<locale.h> header.

7.31.7 Signal handling <signal.h>
1 Macros that begin with either SIG and an uppercase letter or SIG_ and an uppercase letter may be

added to the macros defined in the <signal.h> header.

7.31.8 Alignment <stdalign.h>
1 The header <stdalign.h> together with its defined macros __alignas_is_defined and

__alignas_is_defined is an obsolescent feature.

7.31.9 Atomics <stdatomic.h>
1 Macros that begin with ATOMIC_ and an uppercase letter may be added to the macros defined

in the <stdatomic.h> header. Typedef names that begin with either atomic_ or memory_, and
a lowercase letter may be added to the declarations in the <stdatomic.h> header. Enumeration
constants that begin with memory_order_ and a lowercase letter may be added to the definition
of the memory_order type in the <stdatomic.h> header. Function names that begin with atomic_

and a lowercase letter may be added to the declarations in the <stdatomic.h> header.

2 The macro ATOMIC_VAR_INIT is an obsolescent feature.

7.31.10 Common definitions <stddef.h>
1

:::
The

::::::
macro

:::::
NULL

::
is

:::
an

::::::::::
obsolescent

::::::::
feature.

Library modifications to ISO/IEC 9899:2018, § 7.31.10 page 337

13

CORE 202101 (E) § A.1.5.1, working draft — February 15, 2021 truebool.. yyyy

(6.4.4.3) enumeration-constant:
identifier

(6.4.4.4) character-constant:
’ c-char-sequence ’
L’ c-char-sequence ’
u’ c-char-sequence ’
U’ c-char-sequence ’

(6.4.4.4) c-char-sequence:
c-char
c-char-sequence c-char

(6.4.4.4) c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence

(6.4.4.4) escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

(6.4.4.4) simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

(6.4.4.4) octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

(6.4.4.4) hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A.1.5.1 Predefined constants

(6.4.4.5) predefined-constant:
:::
one

:::
of

false
true

::::::
false

::::::::::::
nullptr

:::::::::
true

A.1.6 String literals

(6.4.5) string-literal:
encoding-prefixopt " s-char-sequenceopt "

(6.4.5) encoding-prefix:
u8
u
U
L

(6.4.5) s-char-sequence:
s-char
s-char-sequence s-char

modifications to ISO/IEC 9899:2018, § A.1.6 page 342 Language syntax summary

14

	Introduction
	Possible specifications for a more restrictive null pointer constant
	Design choices
	Proposed changes
	[basicstyle=]nullptr
	[basicstyle=]NULL
	[basicstyle=]nullptrt

	Questions for WG14

