
Remove Default Candidate Executor
Document Number: P2161R0
Date: 2020-04-30
Reply-to: Robert Leahy <rleahy@rleahy.ca>
Audience: SG4

Abstract
This paper proposes that ​associated_executor​ not provide a default candidate type.

Background
The Networking TS [1] introduces “associators:” Binary class templates whose arguments are
the “source type” and the “candidate type” (respectively) (§13.2.7.8 [async.reqmts.associator]).
A default (the “default candidate type”) is required to be provided for the “candidate type” (i.e. an
associator must be usable as if it were a unary class template).

The purpose of an associator is to obtain an instance of an “associated object” based on a
“source object” (an instance of the source type) and optionally a “candidate object” (an instance
of the candidate type). The type of the associated object (i.e. the “associated type”) is available
through the ​type​ member type alias and the actual computation of the associated object may
be performed via the ​get​ static member function. This member function must be invocable as if
it were a unary or binary function (in the unary case only the source object is accepted whereas
the binary case accepts both the source object and candidate object).

There are two associators provided by the Networking TS: ​associated_executor​ (§13.12
[async.assoc.exec]) and ​associated_allocator​ (§13.5 [async.assoc.alloc]) which obtain
objects whose types satisfy the ​Executor​ (§13.2.2 [async.reqmts.executor]) and
ProtoAllocator​ (§13.2.1 [async.reqmts.proto.allocator]) named type requirements
(respectively). They have default candidate types ​system_executor​ and ​allocator<void>
(respectively).

P2149R0 [2] was written in response to discussion in Prague 2020 SG4 which brought the
design and usability of ​system_executor​ into question. P2149R0 proposed a two pronged
solution:

● Add ​inline_executor​ to replace ​system_executor​ as the default candidate type for
associated_executor​ and

● Remove ​system_executor

Subsequent discussion of P2149R0 on the reflector made it obvious that this two pronged
approach was coupling two separable questions:

● Should ​system_executor​ be the default candidate type for ​associated_executor​?
● Should ​system_executor​ exist at all?

This paper provides a vehicle to consider the former question with subsequent revisions of
P2149 being a vehicle to consider the latter.

Motivation
In general the presence of a default implies that there is both:

● A choice to be made and
● A certain choice (the default) which is likely to be correct

In choosing either a model of ​Executor​ or ​ProtoAllocator​ it is clear that the former of these is
satisfied. If this was not the case either:

● Associators for these named type requirements would not exist or
● Those associators would be completely unused

Neither of which is the case.

When applied to the selection of a module of ​ProtoAllocator​ there is a strong argument to be
made that the latter implication is satisfied. Overwhelmingly users do not choose models of
Allocator​ other than ​allocator<T>​. This strongly indicates that ​allocator<void>​ is likely to
be the correct choice whenever someone would be faced with a choice of ​ProtoAllocator​.
The standard library already reifies this by defaulting ​Allocator​ template parameters to
allocator<T>​ seemingly at every turn.

The argument for a default ​Executor​ is much weaker. In the formulation above it is supposed
that a default must be “likely to be correct.” There are two meanings of “correct” which we
should consider:

● What the user would choose anyway
● Having properties such that it is an acceptable choice notwithstanding

Based on the author’s experience ​io_context::executor_type​ is much more likely to be
used than ​system_executor​. However much current experience (including most of the
author’s) with the Networking TS (and Asio) is from a time before P1322 [3].

Post-P1322 a persuasive argument could be made that ​system_executor​ is what the user
chooses in most cases. Discussion in SG4 in Prague 2020 and on the reflector indicates that
the raison d'être of ​system_executor​ is to encapsulate the operating system’s global thread

pool. This global thread pool may have access to information and functionality the user does not
which may make it optimal in most situations.

This is where the second meaning of “correct” becomes relevant. Even if users would
overwhelmingly choose ​system_executor​ there are still users who would not and if
system_executor​ has properties which make it a surprising, bug prone default it is ill fitted to
that role.

system_executor​ has several such properties.

system_context​ is permitted to execute any number of submitted work items in parallel. Users
may have strict parallelism requirements enforced by their choice of executor (e.g. the
underlying execution context forms an “implicit strand” [4]). Silently falling back to
system_executor​ introduces data races (i.e. undefined behavior) in such situations.

system_context​ makes progress on work items in the background detached from any user
controlled thread. The user’s chosen executor on the other hand may have an underlying
execution context which permits the user to control precisely when work is and is not executing
(e.g. the “run functions” of ​io_context​ (§14.2 [io_context.io_context])). If work is silently
submitted via ​system_executor​ then work items may be making progress when the user
reasonably believes no such thing can occur. This is another source of accidental data races
(i.e. undefined behavior).

system_context​ may arbitrarily extend the lifetime of submitted work items and associated
services. While the Networking TS provides a way to ensure that the Networking TS no longer
makes forward progress on work items (​system_context::stop​ and ​system_context::join
(§13.19 [async.system.context])) there is no way to ensure that the lifetimes of all submitted
work items and associated services have ended. By contrast a user may intend to use an
executor whose underlying execution context allows them to precisely control when the lifetime
of work items and services shall end (e.g. ​io_context​ by way of the ​ExecutionContext
named type requirement (§13.2.3 [async.reqmts.executioncontext]) (in the case of work items)
and deriving from ​execution_context​ (§13.7.1 [async.exec.ctx.dtor]) (in the case of services)).
Inadvertently submitting work items to ​system_executor​ may therefore lead to all manner of
lifetime bugs (i.e. undefined behavior).

Notably each of these properties stems from the fact that the singleton instance of
execution_context​ is as such a global variable.

P2149R0 proposes ​inline_executor​ as a default candidate type for ​associated_executor​.
However as it lacks a stateful execution context instances of this type are unable to provide a
satisfactory implementation of ​post​ and its implementation thereof simply throws an exception.
There’s no reason to move what is logically a programming mistake (not concretely specifying
where you want code to execute) to runtime.

In trying to synthesize an executor analogue of ​std::allocator<void>​ the Networking TS has
encountered a problem: Memory and execution agents [5] are both be resources which
programs must manage but there’s a fundamental difference between the two making the
former amenable to a default, global implementation but not the latter: Memory is static and
does not perform actions independent being acted upon.

Proposed Changes

Associator
§13.2.7.8/2-5 [async.reqmts.associator]:

An associator shall be a class template that takes two template type arguments. The first
template argument is the source type ​S​. The second template argument is the candidate type ​C​.
The second template argument shall be defaulted to some default candidate type ​D​ that
satisfies the type requirements ​R​.

An associator shall additionally satisfy the requirements in Table 6. In this table, ​X​ is a class
template that meets the associator requirements, ​S​ is the source type, ​s​ is a value of type ​S​ or
const S​, ​C​ is the candidate type,​ and​ ​c​ is a (possibly const) value of type ​C​, ​D​ is the default
candidate type, and ​d​ is a (possibly const) value of type ​D​ that is the default candidate object​.

[...]

Finally, the associator shall provide the following type alias and function template in the
enclosing namespace:

template<class S, class C​ = D​> using X_t = typename X <S, C>::type;

template<class S, class C​ = D​>
typename X <S, C>::type get_X (const S& s, const C& c​ = d​)
{

 return X <S, C>::get(s, c);

}

where ​X​ is replaced with the name of the associator class template.

The first and third rows must be stricken from table 6.

associated_executor

§13.1 [async.synop]:

[...]

template<class T, class Executor​ = system_executor​>
struct associated_executor;

[...]

§13.12/1 [async.assoc.exec]:

Class template ​associated_executor​ is an associator for the ​Executor​ type requirements​,
with default candidate type ​system_executor​ and default candidate object
system_executor()​.

namespace std {

namespace experimental {

namespace net {

inline namespace v1 {

 template<class T, class Executor​ = system_executor​>
 struct associated_executor {

 using type = see below;

 static type get(const T& t, const Executor& e​ = Executor()​) noexcept;
 };

} // inline namespace v1

} // namespace net

} // namespace experimental

} // namespace std

The second row must be stricken from table 9.

§13.12/2 [async.assoc.exec.members]:

type get(const T& t, const Executor& e​ = Executor()​) noexcept;

[...]

get_associated_executor

§13.1 [async.synop]:

[...]

template<class T>

associated_executor_t<T> get_associated_executor(const T& t) noexcept;

[...]

§13.13/1 [async.assoc.exec.get]:

template<class T>

associated_executor_t<T> get_associated_executor(const T& t) noexcept;

Returns: ​associated_executor::get(t)​.

associated_executor_t

§13.1 [async.synop]:

[...]

template<class T, class Executor​ = system_executor​>
using associated_executor_t = typename associated_executor::type;

[...]

make_work_guard

§13.1 [async.synop]:

[...]

template<class T>

executor_work_guard<associated_executor_t<T>> make_work_guard(const T& t);

[...]

§13.17/5-6 [async.make.work.guard]:

template<class T>

executor_work_guard<associated_executor_t<T>> make_work_guard(const T& t);

Returns: ​make_work_guard(get_associated_executor(t))​.

Remarks: This function shall not participate in overload resolution unless ​is_executor_v<T>​ is
false​ and ​is_convertible<T&, execution_context&>::value​ is ​false​.

dispatch​, ​post​, & ​defer
Insert the following before §13.22/3 [async.dispatch], §13.23/3 [async.post], and §13.24/3
[async.defer]:

Requires: If given an unspecified type ​E​ which satisfies the ​Executor​ requirements
std::is_same_v<associated_executor_t<typename

async_completion<CompletionToken, void()>::completion_handler_type, E>, E>​ is
true​, the program is ill-formed.

§13.22/3.2 [async.dispatch], §13.23/3.2 [async.post], and §13.24/3.2 [async.defer]:

● Performs ​ex.​[...]​(std::move(completion.completion_handler), alloc)​, where ​ex
is the result of ​get_associated_executor(completion.completion_handler​, e​)​,
and​ ​alloc​ is the result of
get_associated_allocator(completion.completion_handler)​, ​e​ is an instance of
E​, ​E​ is an unspecified type which satisfies the ​Executor​ requirements, and ​ex​ is not an
instance of ​E​.

§13.22/6 [async.dispatch], §13.23/6 [async.post], and §13.24/6 [async.defer]:

Effects:

● Constructs an object ​completion​ of type ​async_completion<CompletionToken,
void()>​, initialized with ​token​.

● If both ​std::is_same_v<associated_executor_t<typename
async_completion<CompletionToken, void()>::completion_handler_type,

Executor>, Executor>​ and
get_associated_executor(completion.completion_handler) == ex​ evaluate to
true​ then let ​f​ denote ​completion.completion_handler​, otherwise c​C​onstructs a
function object ​f​ containing as members:

● a copy of the completion handler ​h​, initialized with
std::move(completion.completion_handler)​,

● an ​executor_work_guard​ object ​w​ for the completion handler’s associated
executor, initialized with ​make_work_guard(h​, ex​)

and where the effect of ​f()​ is:
● w.get_executor().dispatch(std::move(h), alloc)​, where ​alloc​ is the

result of ​get_associated_allocator(h)​, followed by
● w.reset()​.

● Performs ​ex.​[...]​(std::move(f), alloc)​, where ​alloc​ is the result of
get_associated_allocator(completion.completion_handler)​ prior to the
construction of ​f​ immediately after the construction of ​completion​.

Implementations
Chris Kohlhoff has implemented this paper against “standalone” Asio [6].

Acknowledgements
The author would like to thank Chris Kohlhoff for his assistance in exploring this design space
and preparing this paper.

References
[1] J. Wakely. Working Draft, C++ Extensions for Networking N4771
[2] R. Leahy. Remove ​system_executor​ (Revision 0) P2149
[3] C. Kohlhoff. Networking TS enhancements to enable custom I/O executors (Revision 1)
P1322
[4] C. Kohlhoff. Strands: Use Threads Without Explicit Locking
[5] J. Hoberock, M. Garland, C. Kohlhoff, C. Mysen, C. Edwards, G. Brown, D. Hollman, L.
Howes, K. Shoop, L. Baker, E. Niebler, et al. A Unified Executors Proposal for C++ (Revision
13) P0443
[6] https://github.com/chriskohlhoff/asio/tree/5b2720d9b52153e342a3eaa5c8723b0eec293903

