
Formatting of Negative Zero
Document number: P1496R2
Date: 2020-01-12
Reference Document: N4842
Audience: Library Evolution Working Group, Library Working Group
Reply to: Alan Talbot cpp@alantalbot.com

R2 History
The R1 version of this paper was reviewed at the Belfast 2019 meeting. There was initially some
concern that no new information had been provided and reopening the issue was out of order,
but ultimately LEWG voted with moderate consensus that there was enough new information to
warrant another look:

SF F N A SA
4 7 3 3 1

I presented the R1 version and LEWG voted with strong consensus to advance the proposal to
LWG for inclusion in C++20:

SF F N A SA
5 10 2 2 0

After the vote I became aware that there remained some concerns regarding the proposal. I have
attempted to address these concerns in this R2 revision. I corrected or removed some sections,
and I added sections which speak to the concerns as I understand them. (See Concerns below.)

R1 History
During the Library Evolution Working Group review of Victor Zverovich’s Text Formatting pro-
posal (P0645R7) at the Kona 2019 meeting, it was suggested that the user be given a choice of
whether or not to display negative zero when formatting floating point numbers. Victor, Jorg
Brown and I wrote and presented the first version of this paper (P1496R0) during the meeting to
propose that change. The vote on the issue was mixed and did not represent a consensus for
change, but I later realized that our paper did not correctly describe the problem. (I take full
responsibility for this oversight.) R1 provided some clarification.

Status Quo
Floating point formatting in the new text formatting facilities in C++20 (20.20 [format]) is defined
in terms of to_chars which in turn is defined in terms of printf. The C standard states that
printf shall add a minus sign to all negative zeros in the formatted output. There is no way
provided to prevent this.

The Problem
The concern here is not about handling the IEEE 754 floating point negative zero value. The
number of cases where that special value is involved are assumed to be vanishingly small and

mailto:cpp@alantalbot.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0645r7.html

P1496R2

2

dealing with that case is trivially easy. The problem arises because of negative values near zero
which are rounded up to zero by the requested formatting precision.

In almost all applications floating point values are displayed at some appropriate precision which
depends on the domain and is often controlled by the user. Negative zeros appear all the time,
especially in cases where zero is a common calculated answer, because floating point calculations
which would result in zero mathematically often end up being very small magnitude numbers on
either side of zero.

Unfortunately, there is no easy way to catch numbers rounded to negative zero (unless you write
your own text formatter) because you don’t know if you will have a zero until after the rounding
is done by the formatting process. Your options boil down to:

A. Round the number first, detect -0.0 and change the sign, then format the number using
std::format (in C++20) or lower level utilities.

B. Parse the text representation after formatting to detect the negative zero character
pattern, then remove the minus sign.

C. Write your own text formatter.

None of these solutions is easy to get right, and the first two are inefficient and will inevitably
result in writing home-grown wrappers for the text formatting operations, thus partially defeat-
ing the purpose of standardizing text formatting.

Proposed Solution
I believe that showing or suppressing negative zero should be handled internally by std::format
where it can be done with maximum efficiency and perfect reliability. The formatting algorithm
can detect this trivially, and removing the minus sign once the string is formed is an O(1)
operation.

I propose adding a new format specifier ‘z’ to suppress the output of the minus sign for negative
zeros. With the ‘z’ option, if a negative zero results after rounding, it is formatted as a (positive)
zero. (Using ‘z’ as the syntax is just a suggestion. LEWG or LWG may wish to change it.)

Currently supported by N5410

format("{0:.0} {0:+.0} {0:-.0} {0: .0}", 0.1) 0 +0 0 0

format("{0:.0} {0:+.0} {0:-.0} {0: .0}", -0.1) -0 -0 -0 -0

Additionally supported with this proposal

format("{0:z.0} {0:+z.0} {0:-z.0} {0: z.0}", 0.1) 0 +0 0 0

format("{0:z.0} {0:+z.0} {0:-z.0} {0: z.0}", -0.1) 0 +0 0 0

Who Benefits?
The engineering application I work on generates dozens of different tabular reports, each of
which has between tens and hundreds of columns, most of which display floating point numbers
rounded to various domain-specific precisions. These numbers are frequently calculated values
near zero, leading to lots of negative zeros. The customers who receive these reports do not care

P1496R2

3

about or understand negative zeros, and invariably report them as a bug. The problem was
addressed in this particular application using option A above, which has proven to be a source of
subtle bugs.

Who What

Everybody
(millions)

Most applications round floating point numbers to reasonable preci-
sions and do not want negative zeros.

Power user
(10,000)

Industrial engineering and financial applications also round floating
point numbers and usually do not want negative zeros.

Expert
(1,000)

Certain specialized mathematical and scientific applications care about
negative zeros. The default behavior is unchanged, so these use cases
are not affected by this proposal. (See Performance below.)

Concerns

Default Behavior

As mentioned above, std::format defaults to showing minus signs on zeros. This proposal does
not change that.

Performance

It is my understanding that this option can be implemented in a way which has close to zero
overhead when it is not present, and is both O(1) and very fast when it is present. Given the
nature of text formatting, I don’t think that the cost of (for example) a single branch would ever
be a significant factor, and the additional code volume should be small.

Implementation

I have discussed this feature with implementers, and I have been assured that it is both reason-
able to design and (as I say above) sufficiently fast not to be a concern. However, this feature has
not been implemented as far as I know.

Interaction with <chrono>

The chrono library specializes std::formatter on several types, but these specializations do not
include a sign option so this proposal has no effect on them. It is possible that a sign option might
be provided for durations by some future chrono proposal, but that is unrelated to and outside
the scope of this proposal. If such a change were made, the enhancement provided herein would
not interfere, and in fact would be of benefit.

Locales

A suggestion was made that this option could be provided as part of a locale. The main argument
against this (and I believe it is a compelling one) is that all of the other minus sign formatting is
handled by the sign option of the format string. It would be inconsistent and confusing to put the
negative zero option somewhere else.

P1496R2

4

Target

This proposal does not have or create dependencies—it is a pure addition to the formatting
library. It is therefore not necessary to put this into C++20. However, since the formatting library
is new in C++20, if we want to do it I believe we should do it now. It will be easier for implementers
to design their code to support it in the first place than to add it later, and in general I think that
we should prefer shipping complete components whenever possible.

Proposed Wording

20.20.2.2 Standard format specifiers [format.string.std]

¶ 1:
sign: one of
 + - space
 optionally followed by
 z

¶ 5:
The sign option applies to floating-point infinity and NaN. [Example:

double inf = numeric_limits<double>::infinity();
double nan = numeric_limits<double>::quiet_NaN();
string s0 = format("{0:},{0:+},{0:-},{0: }", 1); // value of s0 is "1,+1,1, 1"
string s1 = format("{0:},{0:+},{0:-},{0: }", -1); // value of s1 is "-1,-1,-1,-1"
string s2 = format("{0:},{0:+},{0:-},{0: }", inf); // value of s2 is "inf,+inf,inf, inf"
string s3 = format("{0:},{0:+},{0:-},{0: }", nan); // value of s3 is "nan,+nan,nan, nan"
string s4 = format("{0:z.0},{0:+z.0},{0:-z.0},{0: z.0}", -0.1);
 // value of s4 is "0,+0,0, 0"

— end example]

Table 58: Meaning of sign options [tab:format.sign]

Option Meaning

+ Indicates that a sign should be used for both non-negative and negative numbers.

- Indicates that a sign should be used only for negative numbers (this is the default
behavior).

space Indicates that a leading space should be used for non-negative numbers, and a
minus sign for negative numbers.

z Indicates that a sign should not be used for negative numbers that display as zero
(after rounding to the formatting precision).

[Editorial issue: In N4842 Tables 57 and 58 are interleaved with the code in the Example in ¶ 5.]

	R2 History
	R1 History
	Status Quo
	The Problem
	Proposed Solution
	Who Benefits?
	Concerns
	Default Behavior
	Performance
	Implementation
	Interaction with <chrono>
	Locales
	Target

	Proposed Wording

