
N3172=10-0162: Allocators for stringstream (US140) Page 1 of 10

Doc No: N3172=10-0162

Date: 2010-10-18

Authors: Pablo Halpern

 Intel Corp..

 phalpern@halpernwightsoftware.com

Allocators for stringstream (US140)

Contents

National Body Comments and Issues ... 1

Document Conventions .. 1

Background ... 1

Proposed Wording ... 2

Acknowledgements ... 10

References ... 10

National Body Comments and Issues

This paper proposes a complete resolution for comment US 140 to the July, 2010 FCD.

Document Conventions

All section names and numbers are relative to the August 2010 WP, N3126.

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with red

strikeouts for deleted text and green underlining for inserted text within the indented blue original text.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected

that changes resulting from such guidance will be minor and will not delay acceptance of this

proposal in the same meeting at which it is presented.

Background

A great deal of effort has been put into making allocators in C++0x useful and powerful. The

uniform use of allocators can make a program more efficient (in space and/or time) or more

flexible. To be maximally useful, allocators must be consistently and uniformly available for

use in the interface of any general-purpose library, in much the way that const, in order to be

maximally useful, had to be used consistently in library interfaces (thanks to Matt Austern for

the preceding observation). All of the standard containers, basic_string, shared_ptr, and

function use allocators to allocate memory and thus give programmers control over how

mailto:phalpern@halpernwightsoftware.com
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3126.pdf

N3172=10-0162: Allocators for stringstream (US140) Page 2 of 10

their own programs use memory. However, stringstream and parts of regex stand out as

two classes that do not have interfaces that allow the user to supply his/her own allocator.

Having just these two exceptions is a defect, as per national body comments US 140

(stringstream) and US 104 (regex). The lack of allocator use by stringstream is

especially troubling because stringstream is already template on an Allocator parameter

and because it manipulates strings, which use allocators. (The regex component, US 104, is

being addressed in a separate paper, N3171, by Mike Spertus.)

This paper proposes wording changes to the definition of the basic_stringstream class

template that will make it consistent with the intended use of allocators. The template already

has an allocator parameter (used for instantiating basic_string) that can readily be used to

specify an allocator type for the stringstream itself. Thus, what is being proposed here is a

minimally-invasive fix having no effect on programmers that don’t use allocators. The

stringstream object and the basic_string objects that it manipulates must use the same

allocator type, according to this proposal. It is my belief that this covariance is desirable.

Proposed Wording

In section 27.8.1 [stringbuf] add a description of allocator usage as follows:

27.8.1 Class template basic_streambuf [stringbuf]

Instantiations of the class template basic_streambuf manage a sequence of char-like objects. The

sequence is allocated and deallocated using an allocator (alloc) in much the same way that basic_string

does (21.4) [basic.string]. Specifically, the sequence is allocated using

allocator_traits<Allocator>::allocate and deallocated using

allocator_traits<Allocator>::deallocate. The char-like objects are not constructed or

destroyed using allocator_traits<Allocator>::construct and

allocator_traits<Allocator>::destroy.

Add or modify the following constructors:

 // 27.8.1.1 Constructors:
 explicit basic_stringbuf(ios_base::openmode which

 = ios_base::in | ios_base::out,

 const Allocator& a = Allocator());

 explicit basic_stringbuf

 (const basic_string<charT,traits,Allocator>& str,

 ios_base::openmode which = ios_base::in | ios_base::out);

 basic_stringbuf(const basic_string<charT,traits,Allocator>& str,

 ios_base::openmode which, const Allocator& a);

 basic_stringbuf(basic_stringbuf&& rhs);

 basic_stringbuf(basic_stringbuf&& rhs, const Allocator& a);

Add a new accessors:

 // 27.8.1.3 Get and set

N3172=10-0162: Allocators for stringstream (US140) Page 3 of 10

 Allocator get_allocator() const;

 basic_string<charT,traits,Allocator>&

 copy_str(basic_string<charT,traits,Allocator>& s) const;

And add a new data member for exposition:

 ios_base::openmode mode; // exposition only

 Allocator alloc; // exposition only

In section 27.8.1.1 [stringbuf.cons], add or modify constructor descriptions:

27.8.1.1 basic_stringbuf constructors [stringbuf.cons]

explicit basic_stringbuf(ios_base::openmode which =

 ios_base::in | ios_base::out,

 const Allocator& a = Allocator());

Effects: Constructs an object of class basic_stringbuf, initializing the base class with

basic_streambuf() (27.6.2.1), and initializing mode with which, and initializing alloc with a.

Postcondition: str() == "".

explicit basic_stringbuf(const basic_string<charT,traits,Allocator>& s,

 ios_base::openmode which = ios_base::in | ios_base::out);

Effects: Constructs an object of class basic_stringbuf, initializing the base class with

basic_streambuf() (27.6.2.1), and initializing mode with which, and initializing alloc with
allocator_traits<Allocator>::select_on_container_copy_construction

(s.get_allocator()). Then calls str(s) initializes the input and output sequences as if by calling

str(basic_string<charT,traits,Allocator>(s,alloc)).

The allocator propagation works as if we were copy constructing from s, even though *this

and s are of different types. The definition of setting the input and output sequence is too

complicated to repeat here, hence the call to str(). We need to change this call from the WP

version because, having set the allocator appropriately, it is necessary to construct a string

with the same allocator or else the call to str() might change it. A real implementation

would avoid the extra string construction and, instead, call a private function that is also called

by str().

basic_stringbuf(const basic_string<charT,traits,Allocator>& str,

 ios_base::openmode which, const Allocator& a);

Effects: Constructs an object of class basic_stringbuf, initializing the base class with

basic_streambuf() (27.6.2.1), initializing mode with which, and initializing alloc with a. Then

initializes the input and output sequences as if by calling

str(basic_string<charT,traits,Allocator>(s,alloc)).

basic_stringbuf(basic_stringbuf&& rhs);

Effects: Move constructs from the rvalue rhs. It is implementation-defined whether the sequence

pointers in *this (eback(), gptr(), egptr(), pbase(), pptr(), epptr()) obtain the values which rhs had.

Whether they do or not, *this and rhs reference separate buffers (if any at all) after the construction.

The openmode, locale and any other state of rhs is also copied.

N3172=10-0162: Allocators for stringstream (US140) Page 4 of 10

Postconditions: Let rhs_p refer to the state of rhs just prior to this construction and let rhs_a refer to

the state of rhs just after this construction.

— str() == rhs_p.str()

— mode == rhs_p.mode

— get_allocator() == rhs_p.get_allocator()

— gptr() - eback() == rhs_p.gptr() - rhs_p.eback()

— egptr() - eback() == rhs_p.egptr() - rhs_p.eback()

— pptr() - pbase() == rhs_p.pptr() - rhs_p.pbase()

— epptr() - pbase() == rhs_p.epptr() - rhs_p.pbase()

— if (eback()) eback() != rhs_a.eback()

— if (gptr()) gptr() != rhs_a.gptr()

— if (egptr()) egptr() != rhs_a.egptr()

— if (pbase()) pbase() != rhs_a.pbase()

— if (pptr()) pptr() != rhs_a.pptr()

— if (epptr()) epptr() != rhs_a.epptr()

basic_stringbuf(basic_stringbuf&& rhs, const Allocator& a);

Effects: Move constructs from the rvalue rhs, initializing alloc to a. It is implementation-defined

whether the sequence pointers in *this (eback(), gptr(), egptr(), pbase(), pptr(), epptr()) obtain the

values which rhs had. Whether they do or not, *this and rhs reference separate buffers (if any at all)

after the construction. The openmode, locale and any other state of rhs is also copied. [Note: the

sequence pointers in this will never obtain the values which rhs had if a !=

rhs.get_allocator(), but might if the allocators compared equal. – end note]

Postconditions: Let rhs_p refer to the state of rhs just prior to this construction and let rhs_a refer to

the state of rhs just after this construction.

— str() == rhs_p.str()

— mode == rhs_p.mode

— get_allocator() == a

— gptr() - eback() == rhs_p.gptr() - rhs_p.eback()

— egptr() - eback() == rhs_p.egptr() - rhs_p.eback()

— pptr() - pbase() == rhs_p.pptr() - rhs_p.pbase()

— epptr() - pbase() == rhs_p.epptr() - rhs_p.pbase()

— if (eback()) eback() != rhs_a.eback()

— if (gptr()) gptr() != rhs_a.gptr()

— if (egptr()) egptr() != rhs_a.egptr()

— if (pbase()) pbase() != rhs_a.pbase()

— if (pptr()) pptr() != rhs_a.pptr()

— if (epptr()) epptr() != rhs_a.epptr()

In section 27.8.1.2 [stringbuf.assign], change the descriptions of assign and member swap:

27.8.1.2 Assign and swap [stringbuf.assign]

basic_stringbuf& operator=(basic_stringbuf&& rhs);

Effects: If

allocator_traits<Allocator>::propagate_on_move_assignment::value is true,

N3172=10-0162: Allocators for stringstream (US140) Page 5 of 10

then, Aafter the move assignment, *this has the observable state it would have had if it had been move

constructed from rhs; otherwise it has the same observable state it would have had if it had been

constructed from rhs and alloc (see 27.8.1.1) (i.e., the allocator is not assigned unless Allocator is

specifically designated to propagate during move assignment).

Returns: *this.

void swap(basic_stringbuf& rhs);

Preconditions: either allocator_traits<Allocator>::propagate_on_swap::value is

true, or this->alloc == rhs.alloc.

Effects: Exchanges the state of *this and rhs.

In 27.8.1.3, add the definition of the new accessors and change the descriptions of str():

Allocator get_allocator() const;

Returns: alloc

basic_string<charT,traits,Allocator> str() const;

basic_string<charT,traits,Allocator>&

 copy_str(basic_string<charT,traits,Allocator>& s) const;

Returns: A basic_string object whose content is equal to the

Effects: Sets the contents of s to the basic_stringbuf underlying character sequence. If the

basic_stringbuf was created only in input mode, the resultant basic_string contains the

character sequence in the range [eback(),egptr()). If the basic_stringbuf was created with

which & ios_base::out being true then the resultant basic_string contains the character

sequence in the range [pbase(),high_mark), where high_mark represents the position one past

the highest initialized character in the buffer. Characters can be initialized by writing to the stream, by

constructing the basic_stringbuf with a basic_string, or by calling the

str(basic_string) member function. In the case of calling the str(basic_string) member

function, all characters initialized prior to the call are now considered uninitialized (except for those

characters re-initialized by the new basic_string). Otherwise the basic_stringbuf has been

created in neither input nor output mode and s is set to a zero length basic_string is returned.

Returns: s

basic_string<charT,traits,Allocator> str() const;

Effects: Equivalent to:

Allocator a = allocator_traits<Allocator>::

 select_on_container_copy_construction(alloc);

basic_string<charT,traits,Allocator> s(a);

return copy_str(s);

void str(const basic_string<charT,traits,Allocator>& s);

Effects: Copies the content of s into the basic_stringbuf underlying character sequence and

initializes the input and output sequences according to mode. If
allocator_traits<Alloc>::propagate_on_container_copy_assignment::value

is true, then also assign the value of s.get_allocator() to alloc.

N3172=10-0162: Allocators for stringstream (US140) Page 6 of 10

Postconditions: If mode & ios_base::out is true, pbase() points to the first underlying

character and epptr() >= pbase() + s.size() holds; in addition, if mode &

ios_base::in is true, pptr() == pbase() + s.data() holds, otherwise pptr() ==

pbase() is true. If mode & ios_base::in is true, eback() points to the first underlying

character, and both gptr() == eback() and egptr() == eback() + s.size() hold.

Basically, the str(s) function is being treated as a heterogeneous assignment from s to

*this, as far as the allocator is concerned.

In section 27.8.2, add or modify the following constructors and add two new accessors:

 // 27.8.2.1 Constructors:
 explicit basic_istringstream(ios_base::openmode which = ios_base::in,

 const Allocator& a = Allocator());

 explicit basic_istringstream(

 const basic_string<charT,traits,Allocator>& str,

 ios_base::openmode which = ios_base::in);

 basic_istringstream(

 const basic_string<charT,traits,Allocator>& str,

 ios_base::openmode which, const Allocator& a);

 basic_istringstream(basic_istringstream&& rhs);

 basic_istringstream(basic_istringstream&& rhs, const Allocator& a);

 // 27.8.2.3 Members
 Allocator get_allocator() const;

 basic_string<charT,traits,Allocator>&

 copy_str(basic_string<charT,traits,Allocator>& s) const;

In section 27.8.2.1 [istringstream.cons], add the new constructor descriptions:

27.8.2.1 basic_istringstream constructors [istringstream.cons]

explicit basic_istringstream(ios_base::openmode which = ios_base::in,

 const Allocator& a = Allocator());

Effects: Constructs an object of class basic_istringstream<charT, traits,Allocator>,

initializing the base class with basic_istream(&sb) and initializing sb with

basic_stringbuf<charT, traits, Allocator>(which | ios_base::in, a))

(27.8.1.1).

Note: the Allocator template parameter is not new; it was just inadvertently omitted in the

previous draft. The a function parameter is new.

explicit basic_istringstream(

 const basic_string<charT,traits,allocator>& str,

 ios_base::openmode which = ios_base::in);

Effects: Constructs an object of class basic_istringstream<charT, traits,Allocator>, initializing the

base class with basic_istream(&sb) and initializing sb with basic_stringbuf<charT, traits,

Allocator>(str, which | ios_base::in)) (27.8.1.1).

N3172=10-0162: Allocators for stringstream (US140) Page 7 of 10

basic_istringstream(const basic_string<charT,traits,Allocator>& str,

 ios_base::openmode, const Allocator& a);

Effects: Constructs an object of class basic_istringstream<charT, traits>, initializing the

base class with basic_istream(&sb) and initializing sb with basic_stringbuf<charT,

traits, Allocator>(str, which | ios_base::in, a) (27.8.1.1).

basic_istringstream(basic_istringstream&& rhs);

Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the base class,

and the contained basic_stringbuf. Next

basic_istream<charT,traits,Allocator>::set_rdbuf(&sb) is called to install the

contained basic_stringbuf.

basic_istringstream(basic_istringstream&& rhs, const Allocator& a);

Effects: Constructs an object of class basic_istringstream<charT, traits,Allocator>,

initializing the base class with basic_istream(std::move(rhs)), initializing sb with

basic_stringbuf<charT, traits, Allocator>(std::move(rhs.sb), a), and

installing sb by calling set_rdbuf(&sb).

And define the accessors:

Allocator get_allocator() const;

Returns: sb.get_allocator()

basic_string<charT,traits,Allocator>&

 copy_str(basic_string<charT,traits,Allocator>& s) const;

Returns: sb.copy_str(s)

In section 27.8.3 [ostringstream], add and modify constructors and add two new accessors:

// 27.8.3.1 Constructors/destructor:
explicit basic_ostringstream(ios_base::openmode which = ios_base::out,

 const Allocator& a = Allocator());

explicit basic_ostringstream(

 const basic_string<charT,traits,Allocator>& str,

 ios_base::openmode which = ios_base::out);

basic_ostringstream(const basic_string<charT,traits,Allocator>& str,

 ios_base::openmode which, const Allocator& a);

basic_ostringstream(basic_ostringstream&& rhs);

basic_ostringstream(basic_ostringstream&& rhs, const Allocator& a);

// 27.8.3.3 Members
Allocator get_allocator() const;

basic_string<charT,traits,Allocator>&

 copy_str(basic_string<charT,traits,Allocator>& s) const;

In section 27.8.3.1 [ostringstream.cons], define the constructors:

explicit basic_ostringstream(ios_base::openmode which = ios_base::out,

 const Allocator& a = Allocator());

N3172=10-0162: Allocators for stringstream (US140) Page 8 of 10

Effects: Constructs an object of class basic_ostringstream, initializing the base class with

basic_ostream(&sb) and initializing sb with basic_stringbuf<charT, traits,

Allocator>(which | ios_base::out, a)) (27.8.1.1).

explicit basic_ostringstream(

 const basic_string<charT,traits,Allocator>& str,

 ios_base::openmode which = ios_base::out);

Effects: Constructs an object of class basic_ostringstream<charT, traits,Allocator>,

initializing the base class with basic_ostream(&sb) and initializing sb with

basic_stringbuf<charT, traits, Allocator>(str, which | ios_base::out))

(27.8.1.1).

basic_ostringstream(const basic_string<charT,traits,Allocator>& str,

 ios_base::openmode which, const Allocator& a);

Effects: Constructs an object of class basic_ostringstream<charT, traits,Allocator>,

initializing the base class with basic_ostream(&sb) and initializing sb with
basic_stringbuf<charT, traits, Allocator>(str, which | ios_base::out,

a) (27.8.1.1).

basic_ostringstream(basic_ostringstream&& rhs);

Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the base class,

and the contained basic_stringbuf. Next

basic_ostream<charT,traits,Allocator>::set_rdbuf(&sb) is called to install the

contained basic_stringbuf.

basic_ostringstream(basic_ostringstream&& rhs, const Allocator& a);

Effects: Constructs an object of class basic_ostringstream<charT, traits,Allocator>,

initializing the base class with basic_ostream(std::move(rhs)), initializing sb with

basic_stringbuf<charT, traits, Allocator>(std::move(rhs.sb), a), and

installing sb by calling set_rdbuf(&sb).

And define the accessors:

Allocator get_allocator() const;

Returns: sb.get_allocator()

basic_string<charT,traits,Allocator>&

 copy_str(basic_string<charT,traits,Allocator>& s) const;

Returns: sb.copy_str(s)

In section 27.8.4 [stringstream], add/ modify constructors and add two new accessors:

// constructors/destructor

explicit basic_stringstream(

 ios_base::openmode which = ios_base::out|ios_base::in,

 const Allocator& a = Allocator());

explicit basic_stringstream(

 const basic_string<charT,traits,Allocator>& str,

 ios_base::openmode which = ios_base::out|ios_base::in);

N3172=10-0162: Allocators for stringstream (US140) Page 9 of 10

basic_stringstream(const basic_string<charT,traits,Allocator>& str,

 ios_base::openmode which, const Allocator& a);

basic_stringstream(basic_stringstream&& rhs);

basic_stringstream(basic_stringstream&& rhs, const Allocator& a);

// 27.8.3.3 Members
Allocator get_allocator() const;

basic_string<charT,traits,Allocator>&

 copy_str(basic_string<charT,traits,Allocator>& s) const;

In section 27.8.5 [stringstream.cons] (Note to the editor: This section should be renumbered

27.8.4.1 to be consistent with the other stream types.) , define the new constructors:

27.8.5 basic_stringstream constructors [stringstream.cons]

explicit basic_stringstream(

 ios_base::openmode which = ios_base::out|ios_base::in,

 const Allocator& a = Allocator());

Effects: Constructs an object of class basic_stringstream<charT,traits, Allocator>,

initializing the base class with basic_iostream(&sb) and initializing sb with

basic_stringbuf<charT,traits,Allocator>(which, a).

explicit basic_stringstream(

const basic_string<charT,traits,Allocator>& str,

ios_base::openmode which = ios_base::out|ios_base::in);

Effects: Constructs an object of class basic_stringstream<charT, traits, Allocator>,

initializing the base class with basic_iostream(&sb) and initializing sb with

basic_stringbuf<charT, traits, Allocator>(str, which).

basic_stringstream(const basic_string<charT,traits,Allocator>& str,

 ios_base::openmode which, const Allocator& a);

Effects: Constructs an object of class basic_stringstream<charT, traits, Allocator>,

initializing the base class with basic_iostream(&sb) and initializing sb with

basic_stringbuf<charT, traits, Allocator>(str, which, a).

basic_stringstream(basic_stringstream&& rhs);

Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the base class,

and the contained basic_stringbuf. Next

basic_istream<charT,traits,Allocator>::set_rdbuf(&sb) is called to install the

contained basic_stringbuf.

basic_stringstream(basic_stringstream&& rhs, const Allocator& a);

Effects: Constructs an object of class basic_stringstream<charT, traits,Allocator>,

initializing the base class with basic_iostream(std::move(rhs)), initializing sb with

basic_stringbuf<charT, traits, Allocator>(std::move(rhs.sb), a), and

installing sb by calling set_rdbuf(&sb).

And define the accessors:

Allocator get_allocator() const;

N3172=10-0162: Allocators for stringstream (US140) Page 10 of 10

Returns: sb.get_allocator()

basic_string<charT,traits,Allocator>&

 copy_str(basic_string<charT,traits,Allocator>& s) const;

Returns: sb.copy_str(s)

Acknowledgements

Thanks to John Lakos, who convinced me of the importance of writing this paper despite my

desire to avoid doing the work.

References

N3102: ISO/IEC FCD 14882, C++0X, National Body Comments

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3102.pdf

