N3062=10-0052
2010-3-10
Daveed Vandevoorde (daveed@edg.com)

Core issue 789: Fixing Raw Strings wrt. Trigraphs
(revision 1)

Notes

In Summit, CWG agreed to deprecate trigraphs. In Frankfurt, IBM requested that an alternative
solution be found that would not break their particular use of trigraphs in environments that
assume EBCDIC encoding by default. This paper proposes wording to achieve that, while still
addressing the spirit of comment UK 11 in N2800.

The gist of this proposal is to drop trigraphs altogether (instead of deprecating them) and
replace their least uncommon uses by new tokens and new escape sequences (in non-raw
strings). The "trigraph effect" is not emulated in raw strings and comments, nor are some
perverse combinations like ??=# (for ##). l.e., this proposal attempts to address the major
problem posed by trigraphs (that they counter-intuitively get substituted in raw strings), while
enabling backward compatibility with any reasonable C++03 program in this respect. It would
not be hard to add additional limitations on trigraph-like behavior: For example, trigraph-like
substitution in strings could be disabled altogether, or it could be deprecated.

The changes are against N3035.

Wording Changes

In 2.2 [lex.phases] paragraph 1 (in phase 1) delete the indicated sentence

[...] Trigraph sequences (2.4) are replaced by corresponding single-character internal
representations. [...]
and replace

(i.e., using the \uXXXX notation)
by
(e.g., using the \uXXXX notation)

In 2.2 [lex.phases] paragraph 1 replace (in phase 2)

... a backslash character (\) immediately followed ...
by

... a backslash character (\) or a character sequence ??/ immediately followed ...

mailto:daveed@edg.com
mailto:daveed@edg.com

Core issue 789: Replacing Trigraphs (rev. 1) N3062=10-0052

In 2.3 [lex.charset] paragraph 1 add productions to the rule for universal-character-name as
follows:

universal-character-name:
\u hex-quad
??/u hex-quad
\U hex-quad hex-quad
?2?2/U hex-quad hex-quad
and in the text that follows replace

\ UNNNNNNNN
by

\UNNNNNNNN or ??/UNNNNNNNN
and

\ uNNNN
by

\uNNNN or ??/uNNNN

Delete subsection 2.4 [lex.trigraph].

In 2.6 [lex.digraph] replace footnote 15

15) These include “digraphs” and additional reserved words. The term “digraph” (token
consisting of two characters) is not perfectly descriptive, since one of the alternative
preprocessing-tokens is %: %: and of course several primary tokens contain two
characters. Nonetheless, those alternative tokens that aren’t lexical keywords are
colloquially known as “digraphs”.

by

15) The alternative tokens <%, $>, <:, :>, $:, and %:%: are colloquially known as
“digraphs”. The alternative tokens containing a ?? character sequence are colloquially
known as "trigraphs"; such character sequences were historically handled in translation

phase 1 (2.2 _lex.phases_) but are now dealt with in later phases to allow for a more
context-aware treatment.

and add entries to Table 2 as follows:

Core issue 789: Replacing Trigraphs (rev. 1) N3062=10-0052

Alternative Primary Alternative Primary Alternative Primary
<% { and && and eq &=
%> } bitor | or_eq |=
<: [or || xXor_eq A=

> 1 Xor ~ not !
%: # compl ~ not_eq 1=
$:%: ## bitand & ??' A
22< { 22! | ?2'= A=
22> } 221221 | ?21= =
?2?([7= # ??- ~
2?) 1 29=2%= #4

Replace 2.9 [lex.header] paragraph 2

2 If either of the characters ’ or \, or either of the character sequences /* or // appears
in a q-char-sequence or a h-char-sequence, or the character " appears in a h-char-
sequence, the behavior is undefined.!®

by
2 If either of the characters ’ or \, or any of the character sequences ?2?/, /* or //

appears in a q-char-sequence or a h-char-sequence, or the character " appears in a h-
char-sequence, the behavior is undefined.!®

In 2.13 [lex.operators] paragraph 1 add the following preprocessing tokens to the production for
preprocessing-op-or-punc:

?27< 27> 22 (??) ?29= ?27=2?7=

22! 221221 272" ?27'= ?221= 27-

22/

Core issue 789: Replacing Trigraphs (rev. 1) N3062=10-0052

In 2.14.3 [lex.ccon] add a production to the rule for escape-sequence as follows:

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
trigraph-escape-sequence

trigraph-escape-sequence: one of

??= 22! ?2?(??) ?2?! ??<
22> ?2?- ??/n ??/t ?2?/v ??/b
??/r ?2?2/f ??/a ?2?2/2?/ 22/? 22/
??/u

and update the productions for octal-escape-sequence and hexadecimal-escape-sequence as
follows:

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit
?2?/ octal-digit
??/ octal-digit octal-digit
2?2/ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
?2?/x hexadecimal-digit

hexadecimal-escape-sequence hexadecimal-digit

In 2.14.3 [lex.ccon] replace paragraph 3

3 Certain nongraphic characters, the single quote ’, the double quote ", the question
mark ?,2%2 and the backslash \, can be represented according to Table 6. The double
quote " and the question mark ?, can be represented as themselves or by the escape
sequences \" and \? respectively, but the single quote ’ and the backslash \ shall be
represented by the escape sequences \’ and \\ respectively. Escape sequences in which
the character following the backslash is not listed in Table 6 are conditionally-

supported, with implementation-defined semantics. An escape sequence specifies a
single character.

by

Core issue 789: Replacing Trigraphs (rev. 1) N3062=10-0052

3 Escape sequences specify a single (graphic or nongraphic) character as specified in
Table 6. [Note: The single quote ' and the backslash \ characters must be represented
using an escape sequence. Other characters from the basic source character set may be
written directly or through an escape sequence. —end note | Escape sequences
consisting of a \ or ??/ followed by other characters but not listed in Table 6 are
conditionally supported with implemented-defined semantics.

(thereby deleting footnote 23) and add entries to Table 6 as follows:

new-line NL(LF) \nor ??/n
horizontal tab HT \tor??/t
vertical tab VT \vor ??/v
backspace BS \b or ??/b
carriage return CR \ror ??/r
form feed FF \for??/f
alert BEL \aor??/a
backslash \ \\ or ??/2?/
question mark ? \?or ??/?
single quote ' \' or??/"'
double quote " \" or ?2?/"
octal number 000 \ooo or ?? /000
hex number hhh \xoo00 or ??/xhhh
octothorp # L=
circumflex ~ ??!

left bracket [Ea

right bracket] ??)

vertical line | ?21

left brace { ??<

right brace } ?2?>

tilde ~ ??-

Core issue 789: Replacing Trigraphs (rev. 1) N3062=10-0052

In 2.14.3 [lex.ccon] paragraph 4 replace the first two sentences

4 The escape |ooo consists of the backslash followed by one, two, or three octal digits that
are taken to specify the value of the desired character. The escape |xhhh consists of the
backslash followed by x followed by one or more hexadecimal digits that are taken to
specify the value of the desired character.

4 The octal digits in an octal-escape-sequence are taken to specify the value of the desired
character. The hexadecimal digits in a hexadecimal-escape-sequence are taken to specify
the value of the desired character.

In the introductory grammar of 2.14.5 [lex.string] add to the rule for raw-string:
raw-string:
" d-char-sequenceo: [r-char-sequenceop: 1 d-char-sequenceop: "

" d-char-sequenceop: (r-char-sequenceop:) d-char-sequenceop: "

and to the rule for d-char:

d-char:
any member of the basic source character set except:
space, the left square bracket [, the right square bracket],
the left parenthesis (, the right parenthesis),
and the control characters representing horizontal tab,
vertical tab, form feed, and newline.

In 2.14.5 [lex.string] paragraph 14. replace the first sentence

14 Escape sequences in non-raw string literals and universal-character-names in string
literals have the same meaning as in character literals (2.14.3), except that the single
quote ’ is representable either by itself or by the escape sequence \’, and the double
quote " shall be preceded by a \.

by

14 Escape sequences in non-raw string literals and universal-character-names in string
literals have the same meaning as in character literals (2.14.3). [Note: The double
quote " and the backslash \ characters must be represented using an escape sequence.

Other characters from the basic source character set may be written directly or through
an escape sequence. —end note |

