Doc No: N3059=10-0049
Date: 2010-03-12

Authors: Pablo Halpern
Intel Corp..
phalpern@halpernwightsoftware.com

Proposal to Simplify pair (rev 5.2)

Contents

BaCKGTOUNoviiiiiiiiiiici e 1
National Body comments and iSSUES ..ot 2
Changes from IN3024coiiii e 2
Changes from N298T ... 2
Changes from IN2945 ..o e 2
Changes from N2834couoviiiiii e 3
Document CONVENTIONScoviuiiiiiiiiiiiiicccecc e 3
DISCUSSION ..ttt ettt et b et e b e s b b ae b a e s neeaeea et 3
Proposed WOrding.........coeiiiiiiiiiiiiiiic s 4
ACKNOWIEAGEMENLS ... e 9
REFEIEIICES ...t 9
Background

In the C++98 standard, the pair class template had only three constructors, excluding the
compiler-generated copy-constructor. It was a very simple class template that could be easily
understood. A number of language and library features were introduced since then.
Constructors were added to take advantage of new language features as well as to implement
new features in the map, multimap, unordered map and unordered multimap
containers, for which pair plays a central role. Basically, these new constructors were added
to support:

e Conversion-construction of the first and second members
e Move-construction of the pair as a whole, and of its individual members
e emplace functions in the map containers

e Passing an allocator to the first and second members for support of scoped
allocators.

N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 1 0of 9

mailto:phalpern@halpernwightsoftware.com

Unfortunately, most of these new features were orthogonal, causing a near doubling of the
number of constructors to support each one. At one point, pair had 14 constructors
(excluding the compiler-generated copy constructor)! That number has since been reduced to 9
by identifying redundant constructors. (An editorial error when removing concepts from the
WP restored the redundant constructors, bringing the number back to 15, including the
defaulted copy constructor.) The previous version of this paper (N3024) proposed a core
language change that could be used to reduce the number of constructors, if not back to the
1998 set, at least to a manageable number. Unfortunately, these changes would have
eliminated certain guarantees that tools sometimes rely on to detect when an object is
constructed or destroyed. This version of the paper proposes no core language changes.

National Body comments and issues

This paper is provides part of a resolution to NB comments UK 241, US 65, US 77 and US 74.1.
The remaining part of the resolution was provided by N2982, which was accepted into the WP
in the Fall of 2009. This paper also addresses issue 1321.

Changes from N3024

e Removed all core language changes.
e Added piecewise constructor for pair.
e Added pack_arguments() function to build a tuple of references.

e Changed effects clauses of pair overloads of
scoped allocator adaptor::construct to use the new piecewise constructor.

Changes from N2981

e Added core language to sections 3.8 and section 9 that introduce the notion of a fixed-
layout class that can be constructed is pieces.

e Corrected the effects clauses of construct for scoped allocator adaptor.

e Updated numbering for N3000 and took into account post-Frankfurt regression
whereby redundant constructors were added back in when concepts were removed.

Changes from N2945

e Fixed incorrect description of scoped allocator adapator::construct for
pairs. (Description now matches reference implementation.)

N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 2 of 9

e Miscellaneous corrections.

Changes from N2834

e N2945 and subsequent revisions reflect guidance from a straw poll of the LWG (at the
March 2009 meeting in Summit, NJ) expressing interest in proposal 1, 2 and 3 of N2834.
Proposal 0 (to do nothing) and proposal 4 (to create a general-purpose way to construct
pair with arbitrary arguments) were removed.

e Concepts were removed and some additional normative text has been added to the
scoped allocator adaptor section.
Document Conventions
All section names and numbers are relative to the, November 2009 WP, N3000.

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with
red-strikeoutsfor-deleted-text-and green underlining for inserted text within the indented blue original text.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected
that changes resulting from such guidance will be minor and will not delay acceptance of this
proposal in the same meeting at which it is presented.

Discussion

Part of the problem with containers that are defined in terms of pair is the need to pass
constructor arguments to both the first and second data members. This need resulted in a
number of pair constructors that mirror the individual constructors of the data members and
have nothing to do with pair itself. For example, the emplace proposal added a variadic
constructor for the second part of the pair, even though such a constructor is not natural or
otherwise useful. Similarly, the scoped allocator proposal added constructors that may supply
an allocator argument to the construction of £irst and/or second. By providing a single
constructor that can provide separate constructor arguments for first and second
(piecewise construction), we eliminate the need to support a separate constructor for each
possible argument combination.

This proposal introduces a new constructor for pair that takes a tuple of constructor
arguments for first, and another tuple of constructor arguments for second. The rest of
the proposal is to eliminate the pair constructors with variadic arguments and the pair
constructors with allocator arguments. Instead, the emplace methods of ordered and

N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 3 of 9

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n3000.pdf

unordered maps and multimaps will pass their variadic argument lists directly to the
constructor of second (via the tuple argument) and four new overloads of the construct
methods of scoped allocator adaptor will pass the inner allocator directly to
constructors of first and second. In this way, the logic necessary to implement emplace
and scoped allocators is put in the appropriate place, without distorting the pair interface.
Elimination of the variadic and allocator-related constructors from pair reduces its
constructor count (including the copy constructor) to 7.

Proposed Wording

20.3 Utility Components [utility]

Insert the following into the synopsis for <utility>:

/I piecewise construction

struct piecewise construct t { };

constexpr piecewise construct t piecewise construct =
plecewise construct t();

template <class... Types> class tuple; // definedin <tuple>

In the body of the section, add a description:

namespace std {
struct piecewise construct t { };
constexpr pilecewise construct t piecewise construct =
piecewise construct t()

}

The piecewise_construct_t struct is an empty structure type used as a unique type to disambiguate
constructor and function overloading. Specifically, pair (20.3.4 [pairs]) has a constructor with
piecewise_contruct_t as the first argument, immediately followed by two tuple (20.4) arguments
used for piecewise construction of the elements of the pair.

20.3.4 Pairs [pairs.pair]

In struct pair remove the variadic and allocator-extended constructors and add the new
piecewise constructor:

pair (const pairé&) = default;

constexpr pair();

pair (const Tl& x, const T2& Vy);

template<class U, class V> pair(U&& x, V&& Vy);
patrteatrsSs—e

template<class U, class V> pair(const pair<U, V>& p);
template<class U, class V> pair(pair<U, V>&& p);

Foaman] S+ T ~ =
cCIito T © oo

oo
[(oxey

P
¢ @D
P

KON
[INO)]

1
T 7 -+
a1 (T1C Nyeya CC
PoTrEtow™ Fay S

\j . e @
template <class... Argsl, clas
pair (piecewise construct t,

tuple<Argsl...> first args,

L

=
=]
) .

’ T

S

... Args2>

N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 4 of 9

14

tuple<Args2...> second args)

= PN N AN B BN SN SN Y S ~ conat+ N1 o C
Pt oCatToE COSt—7Tr0Cx

N1]

alaca

toamenl o+

T

T

o9 Cy

TCTho o 1iL O

ToTTo T

N1]

alaca

tomnl o+

T

TCTho o 1iL O

mToTTo T

)

Nnat+ MY ¢
o T Y /7

=1
<

oot M ¢
OO O

-

=)

nat+ N1
Sty O0Cw

(A1l rim e o 4 ~
t/(_A.LJ_ AT T O CTTOCTOUT

AN B

™

T

T LT X

<

4

T

ISERC

T

alaaoas N1

AWA

ol aaa
CTrasSS

alaca

toamenl o+

T

TCTho o 1iL O

T

TTho o

ToTTo T

7¢C ¢ xz) .
YT

] = - 11¢ ¢

ot
IO T

ENEV Y- I

3 (=11
Pt taT=T

oo

WX

g e g

S AT C7

A\

T T

= oo
TTHO O

FoamnT o4

C

g e g

oo T

EN

PN I
PoTrtow

ot N\ C

TS T

ENEV Y- I

3 (=11
Pt taT=T

oo

&

g e g

S AT C7

11

T T

o alaaa YT

-
TTHO O

FoaminT o4

C

P B 1 A S . e

vr

TTHS O

oo T

1T AWA

>

S U
TThHo O

=

noot] o
o T

=

ENEVY- I

3 (=11
Pt taT=T

oo

ST

ToT T

<r

g e g

7

SE=S

T T

11

o ol aaa YT

-
TTHS O

FoaminT o4

C

P B 1 A S . e

vr

TTHS O

oo T

AW

T

oo

-

=

1

7\
g e g

3 (=11
Pt taT=T

oo

&

>

o T

N1]

T

TS T

7
ol oo

B

T

T T

alaoa

DN ey

alaca

tomenl o+

T

TCTho o 1iL O

TSy

nat+ N1
A S s S o e g

" CTrrasS o+ -

TTho o

o T T

ENECYN IS

Nrvexon ¢ C
T o WX .

I1¢ ¢

T

=

=

(51 leeatror ara +

JSAS T F SR R g m E S AT S i Sy

AN

oS

7

ST

traits

for pair from the synopsis as well as their descriptions in pa_ragraphs land 2

Also remove the uses allocator and constructible with allocator prefix

T‘I alaca MY alaca N1

alaaa

toamen] o+

T

TCho o 1L L0

T TTho o

TTho o

o T T

m2

T

—~

PSS aNE Vo

~ 11

at it
o C LT CF

T O

T

[SESEECASAS RS S Sy A g n

(=

T

La i alaca MY

alaaa

toamen] o+

T

TTho o L
+1
WL CIL

T Ty

TTho o

o T T

T m2

E

PN o NE S NE VY

1

1

o OCToTOT

173

2N

N

noat s~
TS TcroCTtcTioT

=

PR S S
SE¥XH

= PoTTT =T

IS

oo

|

oo MO

=

T
T

1

= oo
TThS O

Foamen T o4

C

g e g

TThS O

o T T

+ <7
-y

IO
S

rLlm i M m2 1
T X

ot

T

PR SO
SE¥XH

L i ol oo MY

ol S oo

tomnl o+

T

TTOHO O

o T C

+h 11 PIENE SNEVS pch_i a1 rcm] m2

WL Tt

173

=Nl

N

Nt g~
COoOIToSCcrraCc TcIior

=1

at it
[=y

T

PoT T

o T oOCToTOT

T

+ 5z

FERPee

T

Remove] 7 through 10 including the duplicate versions of the constructors above

17T ol oo N rveron

ol oo

fomnl o+

TGO

O

0

TTOHO O -

T

CCIpraco sSCTIToo

rera)
[SE=aC ro v

Nrexa CC

(T1C C

PO {oww

noa

TS w e -

4

Page 50f9

Proposal to Simplify pair (rev 5.2)

N3059=10-0049

Add a new paragraph to describe the new constructor:

template <class... Argsl, class... Args2>
pair (piecewise construct t,
tuple<Argsl...> first args,
tuple<Args2...> second args);

Requires: All of the types in Args1 and Args2 shall be CopyConstructible (Table 34). T1 shall be
constructible from Args1. T2 shall be constructible from Args2.

Effects: The constructor initializes £irst with arguments of types Args1. . . obtained by forwarding the
elements of first args and initializes second with arguments of types Args2 . . . obtained by
forwarding the elements of second_args. (Here, forwarding an element x of type U withina tuple
means to call std: : forward<U> (x)). This form of construction, whereby constructor arguments for
first and second are each provided in a separate tuple, is called piecewise construction.

2.4.1 Tuples [tuple]

Add pack arguments to the synopsis of <tuple>:

template <class... Types>
tuple<Vtypes...> make tuple(Types&&...);
template <class... Types>

tuple<Atypes...> pack arguments (Types&&...);

20.4.2.4 Tuple creation functions [tuple.creation]

Add a description of pack arguments:

template <class... Types>
tuple< Atypes...> pack arguments (Typesé&&... t);

Let Ti be each type in Types. Then each Ai in Atypes is Ti& if Ti is an array type and
std::add rvalue reference<Ti>::type otherwise.

Effects: Constructs a tuple of references to the arguments in t suitable for forwarding as arquments to a
function. Because the result may contain references to temporary variables, a program shall ensure that the
return value of this function does not outlive any of its arguments (i.e., the program should typically not
store the result in a named variable).

Returns: tuple<Atypes...> (std::forward<Types>(t)...);

Note: it is arguable that add rvalue reference should handle the array case directly. Is
this an issue that should be addressed?

20.8.9 Scoped allocator adaptor [allocator.adaptor]

In section [allocator.adaptor] (20.8.7), add new construct members for
scoped allocator adapator:

N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 6 of 9

template <class T, class... Args>

void construct (T* p, Argsé&&... args);
template<class T1l, class T2, class... Argsl, class... Args2z>

void construct (pair<T1l,T2>* p, piecewise construct t,

tuple<Argsl...> x, tuple<Args2...> Vy);

template <class T1, class T2>

void construct (pair<T1l,T2>* p);
template<class T1l, class T2, class U, class V>

void construct (pair<T1l,T2>* p, U&& x, V&& V) ;
template <class T1, class T2, class U, class V>

void construct (pair<T1l,T2>* p, const pair<U,V>& x);
template <class T1, class T2, class U, class V>

void construct (pair<T1l,T2>* p, pair<U,V>&& X);

In section [allocator.adaptor.members] (20.8.9.3), modify the construct and destroy
functions (this addresses LWG 1321) and add descriptions of new construct functions:

Let OUTERMOST(x) be x if x does not have an outer _allocator () member function and
OUTERMOST (x.outer allocator ()) otherwise. Let OUTERMOST ALLOC TRAITS (x) be
allocator traits<decltype(OUTERMOST(X))>[N0E:OUTERMOST(X)and
OUTERMOST ALLOC TRAITS (x) arerecursive operations. It is incumbent upon the definition of
outer allocator () toensure that the recursion terminates. It will terminate for all instantiations of
scoped allocator adaptor.— end note]

template <class T, class... Args>
void construct (T* p, Argsé&&... args);
Effects:

- Ifuses _allocator<T,inner allocator type>::valueis false and

is constructible<T,Args...>::value and true, calls SFFERMOSF{F=this)—
OUTERMOST ALLOC TRAITS (*this) ::construct (OUTERMOST (*this), p,

std::forward<Args>(args) ...).

- Otherwise, if (uses allocator<T, inner allocator type>::valueistrue and
is_constructibie<T,allocator_aréit,inner_éilocator_type,Args...
>::value) is true, then calls 0UTERMOS T (x£his)—

OUTERMOST ALLOC TRAITS (*this) ::construct(OUTERMOST(*this), p,
allocator arg, inner allocator(), std::forward<Args>(args)...).

- Otherwise, if (uses_allocator<T,inner allocator type>::valueis true and
is constructible<T,Args...,inner allocator type>::value) is true,then
calls 6 FERMOS PH*h+s)y——0OUTERMOST ALLOC TRAITS (*this) ::construct (
OUTERMOST (*this),p,std::forward<Args>(args) ..., inner allocator()).

- Otherwise the program is ill formed. [Note: an error will result if uses _allocator evaluates true
but the specific constructor does not take an allocator. This definition prevents a silent failure to pass
an inner allocator to a contained element. — end note]

N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 7 of 9

template<class T1l, class T2, class... Argsl, class... Args2>

void construct (pair<T1l,T2>* p, piecewise construct t,

tuple<Argsl...> x, tuple<Args2...> vy);

Requires: All of the types in Args1 and Args2 shall be CopyConstructible (Table 34)

Effects: Constructs a tuple, xprime, from x by the following rules:

If uses allocator<Tl,inner allocator type>::valueis false and
is constructible<T,Argsl...>::value s true, then xprimeis x.

Otherwise, if (uses allocator<Tl,inner allocator type>::valuelistrueand
is constructible<Tl,allocator arg t,inner allocator type,Argsl...

>::value) is true, then xprime is tuple cat (tuple<allocator arg t,
inner allocator typeé&>(allocator arg, inner allocator()), x).

Otherwise, if (uses allocator<Tl,inner allocator type>::valueistrue and

is constructible<Tl,Argsl...,inner allocator type>::value) iStrue,then
xprime is tuple cat (x,

tuple<inner allocator type&>(inner allocator()).

Otherwise the program is ill formed.

and constructs a tuple, yprime, from v by the following rules:

If uses allocator<T2,inner allocator type>::valueis false and
is constructible<T,Args2...>::value is true, then yprimeisy.

Otherwise, if (uses allocator<T2,inner allocator type>::valueis trueand
is constructible<T2,allocator arg t,inner allocator type,Args2...
>::value) Is true, then yprime is tuple cat (tuple<allocator arg t,

inner allocator typeé&>(allocator arg, inner allocator()), vy).

Otherwise, if (uses allocator<T2,inner allocator type>::value s true and
is constructible<T2,Args2...,inner allocator type>::value) is true,then

yprime IS tuple cat (y,
tuple<inner allocator typeé&>(inner allocator()).

- Otherwise the program is ill formed.

then this function calls
OUTERMOST ALLOC TRAITS (*this) ::construct (OUTERMOST (*this), p,

piliecewise construct, xprime, yprime).

template <class T1l, class T2>
void construct (pair<T1l,T2>* p);

Effects: equivalent to this->construct (p, piecewise construct, tuple<>(),

tuple<>());

template<class T1l, class T2, class U, class V>
void construct (pair<T1l,T2>* p, U&& x, V&& Vy);

N3059=10-0049: Proposal to Simplify pair (rev 5.2)

Page 8 of 9

Effects: equivalent to this->construct (p, piecewise construct,
pack arguments (std::forward<U>(x)), pack arguments (std::forward<vV>(y)));

template <class T1l, class T2, class U, class V>
void construct (pair<T1l,T2>* p, const pair<U,V>& x);

Effects: equivalentto this—>construct (p, piecewise construct,
pack arguments (x.first), pack arguments (x.second)) ;

template <class T1l, class T2, class U, class V>
void construct (pair<T1l,T2>* p, pair<U,V>&& x);

Effects: equivalent to this—>construct (p, piecewise construct,
pack arguments (std::forward<U>(x.first)),
pack arguments (std::forward<V>(x.second))) ;

template <class T>
void destroy (T* p);

Effects: calls oFFERMOST(*this)~OUTERMOST ALLOC TRAITS (*this) ::destroy (
OUTERMOST (*this), p)

Acknowledgements

I especially want to thank Christopher Jefferson for sharing his implementation of tuple-based
construction with me. Thank you to Bjarne for moderating the discussion that directed me to
this solution to the pair problem. Thanks, as always, go to Daniel Kriigler, for his meticulous
review.

References

IN2982: Allocators post Removal of C++ Concepts
N2981: Several Proposals to Simplify pair (rev 3)
N3024: Several Proposals to Simplify pair (rev 4)

N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 9 of 9

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2982.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2981.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3024.pdf

