
N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 1 of 9

Doc No: N3059=10-0049

Date: 2010-03-12

Authors: Pablo Halpern

 Intel Corp..

 phalpern@halpernwightsoftware.com

Proposal to Simplify pair (rev 5.2)

Contents

Background ... 1

National Body comments and issues .. 2

Changes from N3024 ... 2

Changes from N2981 ... 2

Changes from N2945 ... 2

Changes from N2834 ... 3

Document Conventions .. 3

Discussion ... 3

Proposed Wording ... 4

Acknowledgements ... 9

References ... 9

Background

In the C++98 standard, the pair class template had only three constructors, excluding the

compiler-generated copy-constructor. It was a very simple class template that could be easily

understood. A number of language and library features were introduced since then.

Constructors were added to take advantage of new language features as well as to implement

new features in the map, multimap, unordered_map and unordered_multimap

containers, for which pair plays a central role. Basically, these new constructors were added

to support:

 Conversion-construction of the first and second members

 Move-construction of the pair as a whole, and of its individual members

 emplace functions in the map containers

 Passing an allocator to the first and second members for support of scoped

allocators.

mailto:phalpern@halpernwightsoftware.com

N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 2 of 9

Unfortunately, most of these new features were orthogonal, causing a near doubling of the

number of constructors to support each one. At one point, pair had 14 constructors

(excluding the compiler-generated copy constructor)! That number has since been reduced to 9

by identifying redundant constructors. (An editorial error when removing concepts from the

WP restored the redundant constructors, bringing the number back to 15, including the

defaulted copy constructor.) The previous version of this paper (N3024) proposed a core

language change that could be used to reduce the number of constructors, if not back to the

1998 set, at least to a manageable number. Unfortunately, these changes would have

eliminated certain guarantees that tools sometimes rely on to detect when an object is

constructed or destroyed. This version of the paper proposes no core language changes.

National Body comments and issues

This paper is provides part of a resolution to NB comments UK 241, US 65, US 77 and US 74.1.

The remaining part of the resolution was provided by N2982, which was accepted into the WP

in the Fall of 2009. This paper also addresses issue 1321.

Changes from N3024

 Removed all core language changes.

 Added piecewise constructor for pair.

 Added pack_arguments() function to build a tuple of references.

 Changed effects clauses of pair overloads of

scoped_allocator_adaptor::construct to use the new piecewise constructor.

Changes from N2981

 Added core language to sections 3.8 and section 9 that introduce the notion of a fixed-

layout class that can be constructed is pieces.

 Corrected the effects clauses of construct for scoped_allocator_adaptor.

 Updated numbering for N3000 and took into account post-Frankfurt regression

whereby redundant constructors were added back in when concepts were removed.

Changes from N2945

 Fixed incorrect description of scoped_allocator_adapator::construct for

pairs. (Description now matches reference implementation.)

N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 3 of 9

 Miscellaneous corrections.

Changes from N2834

 N2945 and subsequent revisions reflect guidance from a straw poll of the LWG (at the

March 2009 meeting in Summit, NJ) expressing interest in proposal 1, 2 and 3 of N2834.

Proposal 0 (to do nothing) and proposal 4 (to create a general-purpose way to construct

pair with arbitrary arguments) were removed.

 Concepts were removed and some additional normative text has been added to the

scoped_allocator_adaptor section.

Document Conventions

All section names and numbers are relative to the, November 2009 WP, N3000.

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with

red strikeouts for deleted text and green underlining for inserted text within the indented blue original text.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected

that changes resulting from such guidance will be minor and will not delay acceptance of this

proposal in the same meeting at which it is presented.

Discussion

Part of the problem with containers that are defined in terms of pair is the need to pass

constructor arguments to both the first and second data members. This need resulted in a

number of pair constructors that mirror the individual constructors of the data members and

have nothing to do with pair itself. For example, the emplace proposal added a variadic

constructor for the second part of the pair, even though such a constructor is not natural or

otherwise useful. Similarly, the scoped allocator proposal added constructors that may supply

an allocator argument to the construction of first and/or second. By providing a single

constructor that can provide separate constructor arguments for first and second

(piecewise construction), we eliminate the need to support a separate constructor for each

possible argument combination.

This proposal introduces a new constructor for pair that takes a tuple of constructor

arguments for first, and another tuple of constructor arguments for second. The rest of

the proposal is to eliminate the pair constructors with variadic arguments and the pair

constructors with allocator arguments. Instead, the emplace methods of ordered and

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n3000.pdf

N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 4 of 9

unordered maps and multimaps will pass their variadic argument lists directly to the

constructor of second (via the tuple argument) and four new overloads of the construct

methods of scoped_allocator_adaptor will pass the inner allocator directly to

constructors of first and second. In this way, the logic necessary to implement emplace

and scoped allocators is put in the appropriate place, without distorting the pair interface.

Elimination of the variadic and allocator-related constructors from pair reduces its

constructor count (including the copy constructor) to 7.

Proposed Wording

20.3 Utility Components [utility]

Insert the following into the synopsis for <utility>:

// piecewise construction
struct piecewise_construct_t { };

constexpr piecewise_construct_t piecewise_construct =

piecewise_construct_t();

template <class... Types> class tuple; // defined in <tuple>

In the body of the section, add a description:

namespace std {

 struct piecewise_construct_t { };

 constexpr piecewise_construct_t piecewise_construct =

piecewise_construct_t()

}

The piecewise_construct_t struct is an empty structure type used as a unique type to disambiguate

constructor and function overloading. Specifically, pair (20.3.4 [pairs]) has a constructor with

piecewise_contruct_t as the first argument, immediately followed by two tuple (20.4) arguments

used for piecewise construction of the elements of the pair.

20.3.4 Pairs [pairs.pair]

In struct pair remove the variadic and allocator-extended constructors and add the new

piecewise constructor:

pair(const pair&) = default;

constexpr pair();

pair(const T1& x, const T2& y);

template<class U, class V> pair(U&& x, V&& y);

pair(pair&& p);

template<class U, class V> pair(const pair<U, V>& p);

template<class U, class V> pair(pair<U, V>&& p);

template<class U, class... Args>

 pair(U&& x, Args&&... args);

template <class... Args1, class... Args2>

 pair(piecewise_construct_t,

 tuple<Args1...> first_args,

N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 5 of 9

 tuple<Args2...> second_args);

// allocator-extended constructors
template <class Alloc> pair(allocator_arg_t, const Alloc& a);

template <class Alloc>

 pair(allocator_arg_t, const Alloc& a, const T1& x, const T2& y);

template <class U, class V, class Alloc>

 pair(allocator_arg_t, const Alloc& a, U&& x, V&& y);

template <class Alloc>

 pair(allocator_arg_t, const Alloc&, pair&& p);

template <class U, class V, class Alloc>

 pair(allocator_arg_t, const Alloc& a, const pair<U, V>& p);

template <class U, class V, class Alloc>

 pair(allocator_arg_t, const Alloc& a, pair<U, V>&& p);

template <class U, class... Args, class Alloc>

 pair(allocator_arg_t, const Alloc& a, U&& x, Args&&... args);

Also remove the uses_allocator and constructible_with_allocator_prefix traits

for pair from the synopsis as well as their descriptions in paragraphs 1 and 2:

 template <class T1, class T2, class Alloc>

 struct uses_allocator<pair<T1, T2>, Alloc>;

 template <class T1, class T2>

 struct constructible_with_allocator_prefix<pair<T1, T2>{>};

}

template <class T1, class T2, class Alloc>

 struct uses_allocator<pair<T1, T2>, Alloc> : true_type { };

 Requires: Alloc shall be an Allocator (20.2.2).

 [Note: Specialization of this trait informs other library components that pair can be constructed with an

allocator, even though it does not have a nested allocator_type. —end note]

template <class T1, class T2>

 struct constructible_with_allocator_prefix<pair<T1, T2> >

 : true_type { };

 [Note: Specialization of this trait informs other library components that pair can be constructed with an

allocator prefix argument. —end note]

Remove ¶ 7 through ¶ 10 including the duplicate versions of the constructors above:

template<class U, class... Args>

 pair(U&& x, Args&&... args);

7 Effects: The constructor initializes first with std::forward<U>(x) and second with

std::forward<Args>(args)...

8 …

9 …

N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 6 of 9

10 Effects: The members first and second are both allocator constructed (20.8.7) with a.

Add a new paragraph to describe the new constructor:

template <class... Args1, class... Args2>

 pair(piecewise_construct_t,

 tuple<Args1...> first_args,

 tuple<Args2...> second_args);

Requires: All of the types in Args1 and Args2 shall be CopyConstructible (Table 34). T1 shall be

constructible from Args1. T2 shall be constructible from Args2.

 Effects: The constructor initializes first with arguments of types Args1... obtained by forwarding the

elements of first_args and initializes second with arguments of types Args2... obtained by

forwarding the elements of second_args. (Here, forwarding an element x of type U within a tuple

means to call std::forward<U>(x)). This form of construction, whereby constructor arguments for

first and second are each provided in a separate tuple, is called piecewise construction.

2.4.1 Tuples [tuple]

Add pack_arguments to the synopsis of <tuple>:

template <class... Types>

 tuple<Vtypes...> make_tuple(Types&&...);
template <class... Types>

 tuple<Atypes...> pack_arguments(Types&&...);

20.4.2.4 Tuple creation functions [tuple.creation]

Add a description of pack_arguments:

template <class... Types>

 tuple< Atypes...> pack_arguments(Types&&... t);

 Let Ti be each type in Types. Then each Ai in Atypes is Ti& if Ti is an array type and

std::add_rvalue_reference<Ti>::type otherwise.

Effects: Constructs a tuple of references to the arguments in t suitable for forwarding as arguments to a

function. Because the result may contain references to temporary variables, a program shall ensure that the

return value of this function does not outlive any of its arguments (i.e., the program should typically not

store the result in a named variable).

Returns: tuple<Atypes...>(std::forward<Types>(t)...);

Note: it is arguable that add_rvalue_reference should handle the array case directly. Is

this an issue that should be addressed?

20.8.9 Scoped allocator adaptor [allocator.adaptor]

In section [allocator.adaptor] (20.8.7), add new construct members for

scoped_allocator_adapator:

N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 7 of 9

 template <class T, class... Args>

 void construct(T* p, Args&&... args);

 template<class T1, class T2, class... Args1, class... Args2>

 void construct(pair<T1,T2>* p, piecewise_construct_t,

 tuple<Args1...> x, tuple<Args2...> y);

 template <class T1, class T2>

 void construct(pair<T1,T2>* p);

 template<class T1, class T2, class U, class V>

 void construct(pair<T1,T2>* p, U&& x, V&& y);

 template <class T1, class T2, class U, class V>

 void construct(pair<T1,T2>* p, const pair<U,V>& x);

 template <class T1, class T2, class U, class V>

 void construct(pair<T1,T2>* p, pair<U,V>&& x);

In section [allocator.adaptor.members] (20.8.9.3), modify the construct and destroy

functions (this addresses LWG 1321) and add descriptions of new construct functions:

Let OUTERMOST(x) be x if x does not have an outer_allocator() member function and

OUTERMOST(x.outer_allocator()) otherwise. Let OUTERMOST_ALLOC_TRAITS(x) be

allocator_traits<decltype(OUTERMOST(x))>. [Note: OUTERMOST(x) and

OUTERMOST_ALLOC_TRAITS(x) are recursive operations. It is incumbent upon the definition of

outer_allocator() to ensure that the recursion terminates. It will terminate for all instantiations of

scoped_allocator_adaptor. — end note]

template <class T, class... Args>

 void construct(T* p, Args&&... args);

Effects: let OUTERMOST(x) be x if x does not have an outer_allocator() function, and

OUTERMOST(x.outer_allocator()) otherwise.

- If uses_allocator<T,inner_allocator_type>::value is false and

is_constructible<T,Args...>::value and true, calls OUTERMOST(*this).
OUTERMOST_ALLOC_TRAITS(*this)::construct(OUTERMOST(*this), p,

std::forward<Args>(args)...).

- Otherwise, if (uses_allocator<T,inner_allocator_type>::value is true and
is_constructible<T,allocator_arg_t,inner_allocator_type,Args...

>::value) is true, then calls OUTERMOST(*this).
OUTERMOST_ALLOC_TRAITS(*this)::construct(OUTERMOST(*this), p,

allocator_arg, inner_allocator(), std::forward<Args>(args)...).

- Otherwise, if (uses_allocator<T,inner_allocator_type>::value is true and

is_constructible<T,Args...,inner_allocator_type>::value) is true, then

calls OUTERMOST(*this). OUTERMOST_ALLOC_TRAITS(*this)::construct(

OUTERMOST(*this),p,std::forward<Args>(args)..., inner_allocator()).

- Otherwise the program is ill formed. [Note: an error will result if uses_allocator evaluates true

but the specific constructor does not take an allocator. This definition prevents a silent failure to pass

an inner allocator to a contained element. – end note]

N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 8 of 9

template<class T1, class T2, class... Args1, class... Args2>

 void construct(pair<T1,T2>* p, piecewise_construct_t,

 tuple<Args1...> x, tuple<Args2...> y);

Requires: All of the types in Args1 and Args2 shall be CopyConstructible (Table 34)

Effects: Constructs a tuple, xprime, from x by the following rules:

- If uses_allocator<T1,inner_allocator_type>::value is false and

is_constructible<T,Args1...>::value is true, then xprime is x.

- Otherwise, if (uses_allocator<T1,inner_allocator_type>::value is true and
is_constructible<T1,allocator_arg_t,inner_allocator_type,Args1...

>::value) is true, then xprime is tuple_cat(tuple<allocator_arg_t,

inner_allocator_type&>(allocator_arg, inner_allocator()), x).

- Otherwise, if (uses_allocator<T1,inner_allocator_type>::value is true and

is_constructible<T1,Args1...,inner_allocator_type>::value) is true, then

xprime is tuple_cat(x,

tuple<inner_allocator_type&>(inner_allocator()).

- Otherwise the program is ill formed.

and constructs a tuple, yprime, from y by the following rules:

- If uses_allocator<T2,inner_allocator_type>::value is false and

is_constructible<T,Args2...>::value is true, then yprime is y.

- Otherwise, if (uses_allocator<T2,inner_allocator_type>::value is true and
is_constructible<T2,allocator_arg_t,inner_allocator_type,Args2...

>::value) is true, then yprime is tuple_cat(tuple<allocator_arg_t,

inner_allocator_type&>(allocator_arg, inner_allocator()), y).

- Otherwise, if (uses_allocator<T2,inner_allocator_type>::value is true and

is_constructible<T2,Args2...,inner_allocator_type>::value) is true, then

yprime is tuple_cat(y,

tuple<inner_allocator_type&>(inner_allocator()).

- Otherwise the program is ill formed.

then this function calls
OUTERMOST_ALLOC_TRAITS(*this)::construct(OUTERMOST(*this), p,

piecewise_construct, xprime, yprime).

template <class T1, class T2>

 void construct(pair<T1,T2>* p);

Effects: equivalent to this->construct(p, piecewise_construct, tuple<>(),
tuple<>());

template<class T1, class T2, class U, class V>

 void construct(pair<T1,T2>* p, U&& x, V&& y);

N3059=10-0049: Proposal to Simplify pair (rev 5.2) Page 9 of 9

Effects: equivalent to this->construct(p, piecewise_construct,
pack_arguments(std::forward<U>(x)), pack_arguments(std::forward<V>(y)));

template <class T1, class T2, class U, class V>

 void construct(pair<T1,T2>* p, const pair<U,V>& x);

Effects: equivalent to this->construct(p, piecewise_construct,
pack_arguments(x.first), pack_arguments(x.second));

template <class T1, class T2, class U, class V>

 void construct(pair<T1,T2>* p, pair<U,V>&& x);

Effects: equivalent to this->construct(p, piecewise_construct,
pack_arguments(std::forward<U>(x.first)),

pack_arguments(std::forward<V>(x.second)));

template <class T>

 void destroy(T* p);

Effects: calls OUTERMOST(*this).OUTERMOST_ALLOC_TRAITS(*this)::destroy(
OUTERMOST(*this),p)

Acknowledgements

I especially want to thank Christopher Jefferson for sharing his implementation of tuple-based

construction with me. Thank you to Bjarne for moderating the discussion that directed me to

this solution to the pair problem. Thanks, as always, go to Daniel Krügler, for his meticulous

review.

References

N2982: Allocators post Removal of C++ Concepts

N2981: Several Proposals to Simplify pair (rev 3)

N3024: Several Proposals to Simplify pair (rev 4)

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2982.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2981.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3024.pdf

