
N3049=10-0039

2010-3-8
Daveed Vandevoorde (daveed@edg.com)

Core issues 743 and 950: Additional decltype(...) uses
(revision 1)

Notes
The wording changes proposed in this paper address national body comment JP 8 (Core issue
743) to allow decltype(...) as a name qualifier. In addition, they also address Core issue 950
(allowing decltype(...) as a base-specifier) and the CWG's decision to allow the construct
when forming destructor calls. For consistency's sake, the proposed wording also enabled
decltype(...) for mem-initializer-ids and pseudo-destructor calls.
I made an attempt to fold decltype-specifier into class-name, but that doesn't fit well with
existing uses of that grammar term (which often assume that a class-name is indeed a "name").
In the end, I just modified the grammar terms for the specific constructs that are being
augmented.
The changes are against N3035.

Wording Changes
In 3.4.3 [basic.lookup.qual] paragraph 1 change the first two sentences as follows:
 The name of a class or namespace member or enumerator can be referred to after the ::

scope resolution operator (5.1) applied to a nested-name-specifier that nominatesdenotes
its class, namespace, or enumeration. During the lookup for a name preceding theIf a ::
scope resolution operator, object, function, and enumerator names are ignored in a
nested-name-specifier is not preceded by a decltype-specifier, lookup of the name
preceding that :: considers only namespaces, types, and templates whose
specializations are types.

Add a production to the grammar rule for unqualified-id in the introduction of 5.1.1
[expr.prim.general] as follows:
 ...

 unqualified-id:
 identifier
 operator-function-id
 conversion-function-id
 literal-operator-id
 ~ class-name
 ~ decltype-specifier
 template-id

Core issues 743 and 950: Additional decltype(...) uses (rev. 1)! N3049=10-0039

mailto:daveed@edg.com
mailto:daveed@edg.com

Change the indicated sentence in 5.1.1 [expr.prim.general] paragraph 6 as follows:

6 ... A class-name or decltype-specifier prefixed by ~ denotes a destructor; see 12.4.

Add a production to the grammar rule for nested-name-specifier in 5.1.1 [expr.prim.general]
paragraph 6 as follows:
6 ...

 nested-name-specifier:
 type-name ::
 namespace-name ::
 decltype-specifier ::
 nested-name-specifier identifier ::
 nested-name-specifier templateopt simple-template-id ::

Change the first sentence following this grammar rule as follows:
 A nested-name-specifier that namesdenotes a class, optionally followed by the keyword

template ...

In 5.1.1 [expr.prim.general] paragraph 6 insert the following sentence before the final note:
 ... The form ~ decltype-specifier also denotes the destructor, but it shall not be used as

the unqualified-id in a qualified-id.

In 5.1.1 [expr.prim.general] paragraph 8 change the first sentence as follows:
8 A nested-name-specifier that namesdenotes an enumeration ...

In 5.2 [expr.post] paragraph 1, add the following production to the grammar rule for pseudo-
destructor-name:
 pseudo-destructor-name:
 ...
 ~ decltype-specifier

In 5.2.4 [expr.pseudo] paragraph 1 change the first sentence as follows:
1 The use of a pseudo-destructor-name after a dot . or arrow -> operator represents the

destructor for the non-class type nameddenoted by type-name or decltype-specifier.

Core issues 743 and 950: Additional decltype(...) uses (rev. 1)! N3049=10-0039

In 5.3.1 [expr.unary.op] paragraph 10, change the following sentence as indicated:

 There is an ambiguity in the unary-expression ~X(), where X is a class-name or
decltype-specifier.

In 7.1.6.2 [dcl.type.simple] paragraph 1 replace the production

 simple-type-specifier:
 ...
 decltype (expression)
by
 simple-type-specifier:
 ...
 decltype-specifier

and add the following rule:
 decltype-specifier:
 decltype (expression)

In 8.3 [dcl.meaning] paragraph 1 insert the following sentence before the note:
 The nested-name-specifier of a qualified declarator-id shall not begin with a decltype-

specifier.

In 8.3.3 [dcl.mptr] paragraph 1 change the following phrase as indicated:
 the nested-name-specifier namesdenotes a class
(one occurrence).

In 9 [class] paragraph 10, append the following sentence:
 In such cases, the nested-name-specifier of the class-head of the definition shall not

begin with a decltype-specifier.

In 10 [class.derived] paragraph 1, replace the grammar rule for base-specifier:

Core issues 743 and 950: Additional decltype(...) uses (rev. 1)! N3049=10-0039

 base-specifier:
 ::opt nested-name-specifieropt class-name attribute-specifieropt

 virtual access-specifieropt ::opt nested-name-specifieropt class-name
 attribute-specifieropt

 access-specifier virtualopt ::opt nested-name-specifieropt class-name

 attribute-specifieropt

by
 base-specifier:
 base-type-specifier attribute-specifieropt

 virtual access-specifieropt base-type-specifier attribute-specifieropt

 access-specifier virtualopt base-type-specifier attribute-specifieropt

 class-or-decltype:
 ::opt nested-name-specifieropt class-name

 decltype-specifier

 base-type-specifier:
 class-or-decltype

In 10 [class.derived] paragraph 2, change the first sentence as follows:
2 The class-name in a base-specifiertype denoted by a base-type-specifier shall not be a

class type that is not an incompletely defined class (Clause 9); this class is called a
direct base class for the class being defined.

In 11.2 [class.access.base] paragraph 5 change the following phrase as indicated:
 class nameddenoted by the nested-name-specifier
(one occurrence).

In 11.5 [class.protected] paragraph 1 change the following phrase as indicated:
 the nested-name-specifier shall namedenote
(one occurrence).

In 12.4 [class.dtor] paragraph 10, change the first sentence as follows:

Core issues 743 and 950: Additional decltype(...) uses (rev. 1)! N3049=10-0039

10 In an explicit destructor call, the destructor name appears as a ~ followed by a type-
name or decltype-specifier that namesdenotes the destructor’s class type.

In 12.6.2 [class.base.init] paragraph 1, change the grammar rule for mem-initializer-id as
follows:
 mem-initializer-id:
 ::opt nested-name-specifieropt class-name

 class-or-decltype
 identifier

In 12.6.2 [class.base.init] paragraph 2, change the first sentence as follows:

2 Names iIn a mem-initializer-id are an initial unqualified identifier is looked up in the
scope of the constructor's class and, if not found in that scope, areit is looked up in the
scope containing the constructor’s definition.

In 12.6.2 [class.base.init] paragraph 3, change the first sentence as follows:

3 A mem-initializer-list can initialize a base class using any nameclass-or-decltype that
denotes that base class type.

In 12.6.2 [class.base.init] paragraph 6, change the first sentence as follows:

6 A mem-initializer-list can delegate to another constructor of the constructor’s class
using any nameclass-or-decltype that denotes the constructor’s class itself.

In 12.6.2 [class.base.init] paragraph 7, change the following sentence as indicated:

 A mem-initializer where the mem-initializer-id namesdenotes a virtual base class is
ignored during execution of a constructor of any class that is not the most derived class.

In 12.6.2 [class.base.init] paragraph 8, change the first sentence as follows:

8 If a given non-static data member or base class is not nameddesignated by a mem-
initializer-id ...

In 12.6.2 [class.base.init] paragraph 10, change the first bullet as follows:

Core issues 743 and 950: Additional decltype(...) uses (rev. 1)! N3049=10-0039

— First, and only for the constructor of the most derived class (1.8), virtual base
classes are initialized in the order they appear on a depth-first left-to-right
traversal of the directed acyclic graph of base classes, where “left-to-right” is the
order of appearance of the base classes names in the derived class base-specifier-
list.

In 12.9 [class.inhctor] paragraph 8 change the following phrase as indicated:

 the base class nameddenoted in the nested-name-specifier
(one occurrence).

In 14.7.2.4 [temp.dep.temp] change paragraph 4 as follows:

4 A template template-argument is dependent if it names a template-parameter or is a
qualified-id with a nested-name-specifier which contains a class-name or a decltype-
specifier that namesdenotes a dependent type.

Core issues 743 and 950: Additional decltype(...) uses (rev. 1)! N3049=10-0039

