X3J16/95-0194
WG21/N0794
|OStreams Issues List
Library Clause 27

By: John Hinke, Quantitative Data Systems

Jhinke@qds.com
History
Pre-Tokyo X3J16/95-0194 WG21/N0794
Pre-Monterey X3J16/95-0089 WG21/N0689
Pre-Austin X3J16/95-0034 WG21/N0634

Summary of Issues

27421 0s_traits

Active 27-001 Makingnew i ne locale aware

Active 27-002 i s_whi t espace isinconsistent

Active 27-003 Mentionof basestructstring _char traits
Active 27-004 example of changing the behavior of i s_whi t espace isincorrect.
Active 27-005 not _eof specification

Active 27-006 streansi ze shouldbeSZ Tnot INT_T

Active 27-007 i os_traits typedefs arechar’ oriented

Active 27-008 i os_traits:: | ength is missingReturns: clause
Active 27-009 i os_traits::get_state should be specified
Active 27-010 i os_traits:: get_pos should be specified
Active 27-011 Return type faros_traits:: copy is incorrect

27.4.31 0s_base

Active 27-101 i os_base manipulators
27.4.4basic_ios

Active 27-201 missing throw specifications for ear andset st at e
Active 27-202 ti e not required to be associated with an input sequence
Active 27-203 oper at or bool () needs to be fixed

27.5.2basi c_streanbuf

Active 27-301 imbuing on streambufs. When, how often, etc...
Active 27-302 sunget ¢ has an incorrect return type

X3J16/95-0194 WG21/N0794 1

Active
Active
Active
Active
Active
Active

27-303 not _eof needsto be used where appropriate

27-304 uf | owneeds editing

27-305 basi c_streanbuf:: showranyc Incorrect return clause
27-306 basi c_streanbuf:: ufl ow hasincorrect default behavior
27-307 basi c_streanbuf : : uf | owhas nonsense returns clause
27-308 streambuf inlines

27.6.1basi c_istream

Active
Active
Active
Active

27-401 i sf x what doesit do?

27-402 i pf x exampleisincorrect

47-403 Clarification of exceptions thrown

27-404 i st r eamfunctions need to check for NULL streambuf

27.6.2basi c_ostream

Active
Open
Active

27-501 op<<(char) needsto be consistant with the other formatted inserters
27-502 op<<(void *) shoulditbeconst volatile void *
27-503 ost r eamfunctions need to check for NULL streambuf

27.6.1-27.6.2basi c_i stream basi c_ostream

Active
Active
Active
Active

Active

27-601 op[<<| >>] (i os_base&) needed for manipulators

27-602 positional typedefsini st r eamost r eamderived classes are not needed

27-603 read/write shouldtakeavoi d * instead of achar _type *

27-604 Should werequirei os: ;i ntobesetfori streanis andi os: : out to be set for
ost r eamis?

27-605 Should get/put use iterators?

27.7basi c_stringbuf, basic_istringstream basic_ostringstream

Active
Active

27-701 st r () needs to clarify return value on else clause
27-702 string stream classes need to lsdwe ng_char _traits andal | ocat or
parameters

27.82basic_fil ebuf, basic_ifstream basic_of stream

Active
Active

27-801 fi |l ebuf:: underfl owexample is incorrect
27-802 fil ebuf::is_open is a bit confusing

Miscellaneous

Active
Active
Active
Active
Active
Active
Active

27-901 input/output ofinsi gned char, and si gned char

27-902 default locale arguments for stream constructors

27-903 i pf x/opf x/i sf x/osf x not compatible with exceptions.

27-904 i osf wd declarations incomplete

27-905 i ost r eamtype classes are missing.

27-906 add a typedef to access the traits parameter in each stream class
27-907 Use of “instance of” vs. “version of” in descriptions of class

X3J16/95-0194 WG21/N0O794

Active
Active
Active
Active
Active
Active
Active

27-908
27-909
27-910
27-911
27-912
27-913
27-914

unnecessary ‘;’ (semicolons) in tables
Editorial issues (typo’s)

removet r eanpos in favor ofpos_t ype
stdio synchronization

removindNotes: from the text
IncorporatingNotes. into the text
rethrowing exceptions

X3J16/95-0194 WG21/N0O794

[The editorial boxes were not added as issues to thislist. However, some of them are very important and need to be
discussed at the Tokyo meeting. Some of the important issues are: not_eof specification, newline specification and
the editorial proposal for moving some functionality from basic_iosto ios_base. --John Hinke]

[The Public Comments that are not included here as issues will be available at the Tokyo meeting. --John Hinke]

I os_traitsissues

I ssue Number: 27-001

Title: changingtraits::new i ne tobelocaleaware
Section: 27.4.2.2i os_traits valuefunctions

Status: active

Description:

The problemwitht rai t s: : newl i ne isthat it does not know about the currently imbued locale.
This proposal addresses the need for alocale-aware newline.

Possible Resolution:
Changetraits::new i ne by adding a parameter for locale information:

static char_type new i ne(const ctype<char_type>& ct);

The default definition is asif it returns:
ct.widen(\n’);

Some functionsin basic_istream have a default parameter that is; traits::newline()

(getline , get). These defaults will have to be changed to use the currently imbued locale. Changing

the default value to: traits::newline(getloc()) won't work becausget | oc() is not static.

This would require that the functions that haesv i ne() as a default value will need to be split into two
functions. One function that has three parameters, and one function that has"two parameters and calls the
three parameter function with a “default” value. For example:

i stream type& getline(char_type *, streansize, char_type delim;
i stream type& getline(char_type *s, streansize n)

return getline(s, n, newine(getloc().tenplate
use<ctype<char_type> >()));

}

The functions that would need to change are:
i stream type& get(char_type *, streansize, char_type);
i stream type& get (streanbuf_type& char_type);
i stream type& getline(char_type *, streamnsize, char_type);

Requestor: Nathan Myers (myersn@roguewave.com),
John Hinke(jhinke@qds.com)

I ssue Number: 27-002

X3J16/95-0194 WG21/N0O794 4

Title: traits::is_whitespace() isinconsistent

Section: 274231 0s_traits test functions[lib.ios.traits.tests]
Status: active
Description:

This function isinconsistent throughout the document. For example:

27.4.2 Template struct i os_traits [lib.iostraits]
static bool is_whitespace(const ctype<char_ type>& char_type);

27.42.3i 0s_traits test functions[lib.ios.traits.tests]
bool is_whitespace(char_type, const ctype<char type>&);

27.6.1.1.2basi c_i stream :i pf x [lib.istream.prefix]

Notes: ...uses the function
bool traits::is_whitespace(charT, const |ocale *)

The same paragraph goesonto usect ype<. . . > inthe example.

27.6.1.1.2 Paragraph 4: [lib.istream.pr efix]
static bool is_whitespace(char, const ctype<charT>&)

Possible Resolution:
The problem is which signature is correct. The purpose of this function isto check for whitespace
characters. 1t will most commonly be used inside atight loop where the lookup of thect ype facet could
be very expensive. | propose the following option:

static bool is_whitespace(char_type ¢, const ctype<char_type>& ct);

Returns: t r ue if ¢ represents one of the white space characters. The default definitionisasif it
returnsct.i s(ct.space, c).

Sidenote: 27.4.2.3i os_traits::is_whitespace: Thereturns paragraph calls amethod of ct ype
that does not exist.

Requestor: John Hinke (jhinke@qds.com)

I ssue Number: 27-003

Title: mention of base struct st ri ng_char _traits

Section: 27.4.2.3i1 os_traits test functions
paragraph 1 [lib.ios.traits.tests]

Status: active

Description:

27.1.2.1 Type CHAR T paragraph 2:
“The base class (or struct)t ri ng_char _trait s provides the definitions common between the string
class templates and the iostream class templates.”

ios_traits isnotderived fronstring char traits.

Possible Resolution:
Remove the sentence from 27.1.2.1.

Requestor: John Hinke (jhinke@qds.com)

X3J16/95-0194 WG21/N0O794 5

I ssue Number : 27-004

Title: example of changing the behavior of i s_whi t espace isincorrect.

Section: 27.6.1.1.2 Paragraph 4 basi c_i st r eamprefix and suffix [lib.istream.prefix]
Status: active

Description:

The example of changing behavior of i s_whi t espace isincorrect. It should read:

struct my_char _traits : public ios_traits<char> {
static bool is_whitespace(char c, const ctype<char>& ct)

{ ...myownimplementation. .. }

b
Possible Resolution:
Requestor: John Hinke (jhinke@qds.com)
I ssue Number: 27-005
Title: not _eof specification
Section: 274221 os_traits vauefunctions[lib.ios.traits.values|
Status: active

Description:
int_type not_eof (int_type c);

Editorial: “Notes:” should also mention it is used febunpc andsget c.

Per Bothner writes:

“The Returns: is incompatible with the traditional masking functionZapeof . This is because
int_type(-2) == -2 whilezapeof(-2) == ((-2) & O0xFF). And nowhere else does it say
anything that would allow the traditional implementation.

“l don't understand the presentation style well enough to suggest the proper fix. But somewhere it should
say or imply that wheohar T is specialized witlthar , thennot _eof (c) isi nt _t ype((unsi gned
char)(c)).”

Possible Resolution:

Requestor: Per Bothner (bothner@cygnus.com)

I ssue Number: 27-006

Title: streansi ze should beSZ T notINT_T
Section: 27

Status: active

Description:

The current description fait r eansi ze is:

typedef [NT_T streansize;

It should be:

typedef SZ T streansize;

Possible Resolution:

X3J16/95-0194 WG21/N0O794 6

Requestor: John Hinke (jhinke@qds.com)

I ssue Number: 27-007

Title: i os_traits typedefs arechar’ oriented.
Section: 27

Status: active

Description:

We cannot specifynt _type, of f _type,pos_type, andst at e_t ype corresponding to some
specializecchar T type.

For example, if in order to think abowtHar ' specialization, we might define
tenpl ate <class charT> struct ios _traits {

typedef charT char _type;
typedef int int_type;

b

we would have to accept it as constant definition in all of the specialized™traits, not only

i os_traits<char>, butios_traits<wchar_t>,ios_traits<ultrachar>. It wouldlead to
the restriction upon implementations that all of¢her T have to be converted inrit ' range. The
restriction is too heave to future wide character types and user-defined"character types.

Possible Resolution:

Adopt the following definition:

nanespace std {
tenmpl ate <class charT> struct ios_traits {};

struct ios_traits<char> {
t ypedef char char _type;
t ypedef int int_type;
t ypedef streanpos pos_type;
t ypedef streanoff of f _type;
typedef nbstate_t state_type;

/] 27.4.2.2 val ues:

static char_type eos();
static int_type eof ();
static int_type not _eof (char _type c);
static char_type new i ne();
static size_t | engt h(const char_type* s);
/[l 27.4.2.3 tests:
static bool eq_char _type(char_type, char_type);
static bool eq_int_type(int_type, int_type);
static bool is_eof (int_type);
static bool i s_whitespace(const ctype<char _type>

ctype&, char_type);
/1l 27.4.2.4 conversions:

X3J16/95-0194 WG21/N0O794 7

static
static
static

static
static

}s

struct
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef

/1 27.4.2.
static
static
static
static
static

/[l 27. 4.
stati
stati
stati
stati

OO0 00N

/1l 27.4.2
static
static
static

stati
stati

OO0

}

char_type
int_type
char _type*

state_type
pos_type

ios_traits<wchar _t>

wchar _t

Wi nt _t

wst r eanpos
wst r eanof f
nbstate t

2 val ues:
char _type
int_type
int_type
char _type
size_t

.3 tests:

bool
bool
bool
bool

.4 conversi ons:

char _type
int_type
char _type*

state_type
pos_type

to_char_type(int_type);

to_int_type(char_type);

copy(char _type* dst, const char* src,
size t n);

get _state(pos_type);

get _pos(streanpos fpos, state type state);

{

char _type;
int_type;
pos_type;
of f _type;
state_type;

eos();

eof () ;

not _eof (char _type c);

new i ne();

| engt h(const char_type* s);

eq_char_type(char _type, char_type);

eg_int_type(int_type, int_type);

is_eof (int_type);

i s_whitespace(const ctype<char_type>
ctype&, char_type);

to_char _type(int_type);

to_int_type(char_type);

copy(char _type* dst, const char* src,
size_t n);

get _state(pos_type);

get _pos(streanpos fpos, state type state);

According to the separation of the two specializations, we have to change the descriptionsin
[lib.streams.typeg], asfollows;

2741 Types

typedef OFF_T streanoff;

Thetypest r eanof f isan implementation-defined type that satisfies the requirements of typeOFF_T.

typedef WOFF_T wstreanoff;

X3J16/95-0194 WG21/N0O794

Thetypewst r eanof f isan implementation-defined type that satisfies the requirements of typeWOFF_T.
typedef PCS T streanpos;

Thetypest r eanpos isan implementation-defined type that satisfies the requirements of typePCS_T.
t ypedef WPOS T wstreanpos;

Thetypewst r eanpos isan implementation-defined type that satisfies the requirements of typeWPOS_T.
typedef SIZE T streansize;

Thetypest r eansi ze isasynonym for one of the signed basic integral types. It isused to represent the
number of characters transferred in an 1/O operations, or the size of 1/0 buffers.

Comments:

We can find the above approach, "defining nothing in the template version of traits and defining everything
in each speciaizations', in my original proposal (X3J16/94-0083). | am afraid (and sorry) that one of my
mistakes made in my document for Austin (X1J16/95-0064) caused to introduce such the inapproplate
definitions to the current WP.

| feel this change request isin akind of ’editorial’ class.

We should not put any definitions(static member functions or typedefs) relatedtoi nt _t ype, of f _t ype,
pos_t ype and/or st at e_t ypein the template definition of thetraits. The reason isthat in fact these
three types depend on the template parameter class’char T’ for variety of environments (ASCII, stateless
encodings for double byte characters, UniCode). For example,

charT char wchar _t
int_type i nt wint _t

of f _type st r eanof f wst r eanof f
pos_type st reanpos wst r eanpos
state_type nbstate_t nmbstate_t

Note that the two of the above types, 'wi nt _t ’,’nbst at e_t ’ are defined in C Amendment 1 (or MSE).

We cannot assume that two implementation-defined types, st r eanpos and wst r eanpos have the same
definitions because under some shift encodings, wst r eanpos have to keep an additional information, the
shift state, as well asthe file position. we should represent them with two different symbols,POS_T and
WPCOS_T so asto give a chance to provide separate definitions in these two specializations.

For pos_t ype in both speciaized traits, the type 'mbst at e_t ' isintroduced from C Amendment 1(or
former MSE) and is an implementati on-defined type enough to represent any of shift statesin file
encodings.

Thetype, | NT_T isnot suitable for the definition of st r eansi ze because | NT_T represents another
character type, whose meaning is different to those of st r eanpos. Soanew symbol 'Sl ZE_T' will need
to specify the definitions of st r eanpos.

Requestor: Norihiro Kumagai (kuma@slab.tnr.sharp.co.jp)

X3J16/95-0194 WG21/N0O794 9

I ssue Number : 27-008

Title: ios_traits::|engthismissingReturns: clause
Section: 274.2.2

Status: active

Description:

i os_traits::|ength hasanEffects: clause but no Returns: clause. The Effects: clause should be
reworded as a Returns: clause.

Possible Resolution:
Change Effects: to Returns: and remove “Determines”.

Requestor: Public Comment

I ssue Number: 27-009

Title: ios _traits::get_state should be specified
Section: 27.4.2.4

Status: active

Description:

ios_traits::get_state should be specified to do more than return zero.”Semantics are inadequate. A pos_type
conceptually has three components: an off _type (streamsize), an fpos_t, and”a state_type (mbstate_t, which
may be part of fpos_t). It must be possible to compose a pos_type from these“elements, in various
combinations, and to decompose them into their three parts.

Possible Resolution:

Requestor: Public Comment

I ssue Number: 27-010

Title: ios_traits::get_ pos should be specified
Section: 27.4.2.4

Status: active

Description:

ios_traits::get_pos should be specified to do more than return”pos_type(pos). Semantics are inadequate. See
comments on get_state. above.

Possible Resolution:

Requestor: Public Comment

I ssue Number: 27-011

Title: Return type for os_traits:: copy isincorrect

Section: 27.4.2.3 os_traits conversion functions|lib.ios.traits.convert]
Status: active

Description:

The return type foros_trai ts: : copy says to returdst . It should returmdest .
Possible Resolution:

Requestor: John Hinke (jhinke@qds.com)

X3J16/95-0194 WG21/N0O794 10

| 0S_base issues

E -]
I ssue Number: 27-101
Title: i 0s_base manipulators
Section: 27.45i os_base manipulators[lib.std.ios.manip]
Status: active
Description:

Thereisonly onei os_base manipulator that says, “Does not affect any extractofsshowbase)

This implies that the rest of the manipulators affect extractors. If the"manipulators only affect insertors
(ignoringski pws), then perhaps they should gt r eammanipulators instead ofos_base

manipulators. If they are left a®s_base manipulators, then they should affect extractors as well as
insertors.

The localenum _get facet says, “Reads characters from interpreting them according to
str.flags()..” Thisimplies that the manipulators affect the extraction of values”from a stream.

A couple of cases:

unsi gned int ui;
i nt i;

cout << -10;

cin >> ui; /I What should thisread in?
cout << showpos << 10; // +10
cin >> ui; /I What about this?

cout << showbase << hex << 10; // Oxa

cin >> i; /I Should this be valid?
cout << showbase << hex << 10; // Oxa
cin >> showbase >> hex >> i; // What about this?

Possible Resolution:
Keep all manipulators as they are but say something to the effect that the"manipulators affect both insertors
and extractors. Remove the Notesstrowbase. This is different behavior than the original AT&T
implementation.

Editorial Issue: These manipulators should be moved tbdke base clause.

Requestor: John Hinke (jhinke@qds.com)

e . __
I basi c_i 0s issues I

I ssue Number: 27-201

Title: missing throw specifications fal ear andset st at e
Section: 27.4.4 [lib.ios]

Status: active

Description:

X3J16/95-0194 WG21/N0O794 11

The synopsisof cl ear andset st at e aremissingt hr ow(f ai | ur e) . They have the throw
specification in the descriptions of the functions.

Possible Resolution:

Requestor: John Hinke (jhinke@qds.com)

I ssue Number: 27-202

Title: t i e not required to be associated with an input sequence
Section: 27442

Status: active

Description:

basic_ios::tieis not necessarily synchronized with an *input* sequence. Can a so be used with an output
sequence.

Possible Resolution:

Change “an input” to “the”.

Requestor: Public Comment

I ssue Number: 27-203

Title: oper at or bool () needs to be fixed
Section: 27.44

Status: active

Description:

Defining ios_base (or, as it appears in my copy of the WP, basic_ios) with a’'member operator bool()
seemed like a good idea at the time, but perhaps the change should be"withdrawn.

The reason is: while a conversion to void* is mostly harmless because fewfunctions accept a void*
argument, and void* doesn't silently convert to anything else, with an“operator bool, the following
absurdities are well-defined:

1+ cin

sin(cin)

vector<int> v(cin);

and (worse) ambiguities like

voi d f(istreanbuf_iterator<char>);
voi d f(double);

f(cin); // anbiguous

have been introduced. In other words, this change broke reasonable code.”The problem is just that bool is
an arithmetic type, and is ill-behaved.

Possible Resolution:

Replace the membens_base: : operat or bool () with membei os_base: : oper at or
const voi d*(), specified to return O if fail() is true, and non-0 if it is false.

This restores the code we broke, and also prevents frustrating ambiguities in"new code.

X3J16/95-0194 WG21/N0O794 12

[ED Note: Thisisassuming that these functions will be moved toi os_base as suggested in one of the
editorial boxes]

Requestor: Nathan Myers (myersn@roguewave.com)
basi c_streanbuf issues I
I ssue Number: 27-301
Title: imbuing on streambufs: when, how often, etc...
Section: 27.5.2.2.1 Locales[lib.streambuf.locales]
Status: active
Description:

There needs to be something said as to when a new locale can be imbued into a streambuf or stream. Which
operations are considered “atomic” in regards to locale changes.

Possible Resolution:
The effect of calling mbue during activation of any member of a class derived foa®i c_i os<>, or
of any operatox< or >> in which the class is the left argument, is unspecified. In particular”(e.g.) any
codeset conversion occurring in the streambuf may become incompatible with the"formats specified by
the old locale and still used.

The effect of callingst r eanbuf : : i nhue orpub_i nbue during activation of any streambuf virtual
member is also undefined.

Requestor: Nathan Myers (myersn@roguewave.com)

I ssue Number: 27-302

Title: i nt streanbuf::sungetc()

Section: 27.5.2.2.4Putback [lib.streambuf.pub.pback]
Status: active

Description:

The functioni nt basi c_st reanbuf : : sunget c() has a return type that shouldibat _t ype.

Possible Resolution:
Change?7.5.2: Templatecl ass
basi c_streanbuf <char T, traits> [lib.streambuf]
int_type sungetc();

Change?7.5.2.2.4: basi c_st reanbuf : : sunget ¢ [lib.streambuf.pub.pback]
int_type sungetc();

Requestor: John Hinke (jhinke@qds.com)

I ssue Number: 27-303

Title: not _eof needs to be used where appropriate
Section: 27

Status: active

Description:

27.5.2.2.3 Get arddib.streambuf.pub.get]
i nt_type sbunpc();
X3J16/95-0194 WG21/N0794 13

Returns: “...returnschar _type(*gptr())...”
This should be changed to say, “...retumn$ _eof (*gptr())...”

int_type sgetc();
Returns: “...returnschar _t ype(*gptr()).”

This should be changed to say, “...retumos _eof (*gptr())..."

Possible Resolution:

Requestor: Per Bothner (bothner@cygnus.com)
I ssue Number: 27-304

Title: uf | owneeds editing

Section: 27

Status: active

Description:

27.5.2.4.3 Get ardéib.streambuf.virt.get]

int_type uflow();
Default behavior: “...returns*gpt r () .”

This should be changed to, “...retum® _eof (*gptr()).”
Returns: traits:: not_eof(c)
This should be changed td,r‘ai t s: : not _eof (*gptr())”

Possible Resolution:

Requestor: Per Bothner (bothner@cygnus.com)

I ssue Number: 27-305

Title: basi c_streanbuf: : shownanyc Incorrect return clause
Section: 275.2.4.3

Status: active

Description:

basi c_streanbuf : : showmanyc Returns has been corrupted. The function should return the number
of characters that can be read with no fear of an indefinite wait while“underflow obtains more characters
from the input sequencer ai t s: : eof () is only part of the story. Needs to be restored to the approved
intent. (See footnote 218.)

Possible Resolution:
Restore original wording from the editorial box. Leave the footnote. Remove“the Note about using
traits::eof().

Requestor: Public Comment

I ssue Number: 27-306

Title: basi c_streanbuf: : ufl ow has incorrect default behavior
Section: 275.2.4.3

Status: active

Description:

X3J16/95-0194 WG21/N0O794 14

basi c_streanbuf : : uf | owdefault behavior ‘‘does’ gbunp(1), notgbunp(-1). Itasoreturns
thevalue of *gpt r () *before* ‘‘doing’’ gbunp.

Possible Resolution:

Requestor: Public Comment

I ssue Number: 27-307

Title: basi c_streanbuf : : uf | owhas nonsense returns clause
Section: 275243

Status: active

Description:

basi c_streanbuf: : uf | owhasanonsense Returns clause. Should be struck.

Possible Resolution:
ChangetheReturns: clause to: trai ts:: eof () toindicate failure.”

Requestor: Public Comment
I ssue Number : 27-308

Title: streambuf inlines
Section: 27.5.2

Status: active
Description:

Nathan Myers (myer sn@r oguewave.com) writes:
I have begun looking more closely into the description of streambuf’semantics, particularly the inlines like
sgetc() and sbumpc().

These functions are typically called in inner loops of I/O code, so their"performance critically affects 1/O
bandwidth. Any unnecessary elaboration costs everyone.

| notice that these functions are specified in terms of pointers that are”(e.g.) "NULL or >= egptr()". This
means that the inline functions must check the buffer pointers for both a NULL"value *and* for end-of-
buffer. Traditional implementations only check for end-of-buffer, resulting”in smaller/faster code.

Does anyone remember when the possibility of these pointers being set to NULL"was added, and why?

Per Bothner (bothner @cygnus.com) writes:

Traditional implementations allow *all* of the get pointers to be NULL, which”is the initial state before
buffers have been allocated. This case would be subsumed by (say) "gptr()"< egptr()" on normal machines.
But the standard perhaps does not require that "NULL < NULL" be well-defined”(think weird segmented
architectures), so NULL may need to be mentioned especially.

Jerry Schwar z (j ss@declar ative.com) writes:
(a) It has always been possible for them to be NULL. However when they are”"NULL they must all be
NULL so you don't need a special check. This is the traditional interface.

(b) These are private pointers. The only way to set them or get them is"through member functions. What
those member functions do with NULL values is up to them.

Possible Resolution:

X3J16/95-0194 WG21/N0O794 15

In [lib.streambuf.get.ar ea], replace the description of setg as follows:
Precondition: (gnext ==0) ==(gend==0) &&
(gnext ==0) ==(gbeg==0) &&
gheg<=gnext && gnext <=gend.
Postconditions: gpt r () ==gnext && eback() ==gbeg && egptr () ==gend.
and in [lib.streambuf.put.ar ea]

Preconditions: (pbeg==0) ==(pend==0) && pbeg<=pend.
Postconditions: ppt r () ==pbeg && pbase()==pbeg && epptr () ==pend.

| believe this reflects the behavior of existing implementations.

Requestor: Nathan Myers (myersn@roguewave.com)
[=1
basi c_i st reamissues
E =
I ssue Number: 27-401
Title: i stream :isfx
Section: 27.6.1.1.2basi c_i st r eam prefix and suffix [lib.istream.prefix]
Status: active
Description:

What is the purpose of this function? The WP sagffetts. None.” Should it do something more? Or is
it implementation defined!

Possible Resolution:
This function should be deprecated in favor of 27-908

Requestor: John Hinke (jhinke@qds.com)

I ssue Number: 27-402

Title: examples for pf x

Section: 27.6.1.1.2basi c_i st r eamprefix and suffix [lib.istream.prefix]

Status: active

Description:
The example for a “typical” implementationighf x() has an incorrect function declaration. It should
read:

tenpl at e<cl ass charT, class traits>
bool basic_istreanccharT, traits>::ipfx(bool noskipwus)

Possible Resolution:
This function should be fixed and deprecated in favor of 27-907

Requestor: John Hinke (jhinke@qds.com)

I ssue Number: 27-403

Title: Clarification of exceptions thrown

Section: 27.6.1.1Templatecl ass basi c_i st ream[lib.istream]
Status: active

X3J16/95-0194 WG21/N0O794 16

Description:

27.6.1.1 paragraph 4 says

"If one of these called functions throws an exception, then unless noted otherwise the input function calls
set st at e(badbi t) andif badbit isoninexcepti on() (sic) rethrows the exception without
completing its actions."

Problem: If badbi t isoninexcepti ons() theni os_base: : cl ear, whichiscalled by
set st at e(badbi t), will throw an object of i os_base: : f ai | ur e and the original exception will
NEVER be rethrown, i.e., it will be lost.

Discussion:
Jerry Schwarz,

“This has been discussed a lot. My preference has always been that if any“of the virtuals throws an
exception then

a) setbadbi t in error state

b) checkbadbi t in exception state
b1l) if its on then rethrow the original exception
b2) do not throw anything, treat as an error.

“Other implementors have complained that this was hard to do, and have“preferred to just let the exception
be passed through without being caught at all.

“Other people think that all iostream operations should only throogh base: : fail ure.”

Possible Resolution:

Requestor: Modena Software (modena@netcom.com)
I ssue Number : 27-404
Title: i st r eamfunctions need to check folJLL streambuf

Section: 27.6.1.1 Template clagmsi c_i st r eam]lib.istream]
Status: active
Description:

Functions irbasi c_i st r eamthat call members afdbuf () need to check for HULL streambuf
before calling the function. There are some functions that make dbtd () is not aNULL pointer
before calling any functions on the buffer, but some functions don’t check fdulthepointer. This needs
to be consistent.

Possible Resolution:

For the functions that usedbuf () , they need to check whether it is a valid pointer or not and do
something appropriate. Another option would be to guarantee that the streambuf idUbéver

Here’s a list of the individual changes: (all arebasi c_i strean)
* int_type peek();
“Returns: If good() == fal se,returngtraits::eof (). Ifrdbuf () isa null pointer,

returnst rai t s: : eof (), otherwise returnsdbuf () - >sget c() .”

» pos_type tellg();

X3J16/95-0194 WG21/N0O794 17

“Returns; iffail () == true, returnsst r eanpos(-1) to indicate failure. Otherwise, if
r dbuf () is a null pointer, returnst r eanpos(- 1) , otherwise, returns
r dbuf () - >pubseekof f (0, cur, in).”

 basic_istrean& seekg(pos_type&);

“Effects: If fail () !'= true and ifr dbuf () is nota null pointer, exceutes
r dbuf () - >pubseekpos(pos), otherwise callset st at e(fai |l bit) (which may throw
i os_base::failure).”

e basic_istrean& seekg(off _type, ios_base::seekdir);

“Effects: Iffail () != true andrdbuf () is nota null pointer, exceutes
rdbuf () - >pubseekoff (of f, dir), otherwise callset st ate(fail bit) (which may
throwi os_base: : fail ure).”

Requestor: John Hinke (jhinke@qds.com)

basi c_ost r eamissues

I ssue Number: 27-501

Title: ost reanxk<(char) : formatting, padding, width
Section: 27.6.2.4.basi c_ostream : oper at or <<
Status: active

Description:

For historical reasons, this function has usually ignored padding and f'ormatting. In the WP, it does not
mention anything about ignoring padding or formatting. This needs to be“clarified.

Possible Resolution:
Reasons for ignoring padding op<<(char):

1. Historical reasons/compatibility
Reasons for full formatting amp<<(char) :

1. put(char) currently does no formatting. But there is no way to insehtaa with formatting.
2. Some implementations do formatting.

Sinceput can insert a character without formatting, there needs to be a way to insert"a character with
formatting. Currently this does not exist. It would be nice not to introduce”an inconsistency with the other
formatted inserters, but it would also be nice to provide compatibility. I"think that consistency would be
much better in this case than compatibility.

Requestor: John Hinke (jhinke@qds.com),

Bernd Eggink (admin@rrz.uni-hamburg.de)
I ssue Number: 27-502
Title ostream : operator<<(void *)

X3J16/95-0194 WG21/N0O794 18

Section: 27241
Status: Open

Description:
ostream& operator<<(void *)

should takeconst vol atil e void *’rathertharvoid *.

Resolution:
The function now takes@nst void *.

ReOpened:
Does anyone know why the resolution was for it to takerest voi d * rather than aonst
vol atile void *?

| can't think of any good reason why we should make the code:

#i ncl ude <i ostreane
volatile int x;
int main() {

cout << & Xx;

return O;
}
ill-formed.
Requestor: Fergus Henderson (fin@munta.cs.mu.oz.au)
I ssue Number: 27-503
Title: ost r eamfunctions need to check folULL streambuf
Section: 27.6.2.1 Template clagsmsi c_ost r eam][lib.ostream]
Status: active
Description:

Functions irbasi ¢_ost r eamthat call members afdbuf () need to check for HULL streambuf
before calling the function. There are some functions that make dbtd () is not aNULL pointer
before calling any functions on the buffer, but some functions don’t check fdulthepointer. This needs
to be consistent.

Possible Resolution:
For the functions that usedbuf () , they need to check whether it is a valid pointer or not and do
something appropriate.

Here’s a list of the individual changes: (all arebassi c_ostrean)

e pos_type tellp();

“Returns; Iffail () == true,returnsstreanpos(-1) to indicate failure. If dbuf () isa
null pointer, returnst r eanpos(- 1) , otherwise returnsdbuf () - >pubseekof f (0, cur,
out).”

 basic_ostrean& seekp(pos_type&);

X3J16/95-0194 WG21/N0O794 19

“Effects: Iffail () != true andrdbuf () is nota null pointer, executes
r dbuf () - >pubseekpos(pos) , otherwise callset st at e(f ai | bi t) (which may throw
i os_base::failure).”

 basic_ostrean& seekp(of f_type&, io0s_base::seekdir);
“Effects: If fail () !'= true andrdbuf () is nota null pointer, executes
r dbuf () - >pubseekof f (of f, dir), otherwise callset state(fail bit) (which may

throwi os_base: : fail ure).”

Requestor: John Hinke (jhinke@qds.com)

basi c_i streani basi c_ost r eamissues

I ssue Number: 27-601

Title: i stream : operator>>(i os_base&),
ost ream : oper at or <<(i os_base&)

Section: 27.6.1.2.2,27.6.2.4.2
[lib.istream::extractorg], [lib.ostream.inserters]

Status: active

Description:

Thei os_base manipulators will not work as written. They won’'t work because there is"no conversion
fromi os_base tobasi c_i os.

They are currently declared as:
i 0s_base& bool al pha(i os_base&);

| propose adding a new insertor/extractorifet r eamandost r eamthat does insertion/extraction for
i 0s_base.

Possible Resolution:
Add tobasi c_i stream

basi c_i streankcharT, traits>& operator>>(ios_base& (*pf) (i os_base&));
Effects: Calls(*pf) (*t hi s), returns*t hi s.

Add tobasi c_ostream
basi c_ostreanxcharT, traits>& operator<<(ios_base& (*pf)(ios_base&));
Effects: Calls(*pf) (*t hi s), returns*t hi s.

Also, several footnotes will need to be changed.

Requestor: John Hinke (jhinke@qds.com)

I ssue Number: 27-602

Title: positional typedefs inst r eanfost r eamderived classes
Section: 27

Status: active

X3J16/95-0194 WG21/N0O794 20

Description:
Remove the positional typedefs from the following classes. The positional typedefs are:

typedef traits::pos_type pos_type;
typedef traits::off_type off_type;

They are not used in the following classes:

basi c_i stringstream
basi c_ostringstream
basic_ifstream
basi c_of stream

Possible Resolution:
Remove them. They are still inherited from the base classes.

Requestor: John Hinke (jhinke@qds.com)
I ssue Number: 27-603
Title: istream :read,ostream:wite
Section: 27.6.1.3,27.6.25
[lib.istream.unformatted], [lib.ostream.unfor matted]
Status: active
Description:

i stream& i stream :read(char_type *, streansize);
ostream& ostream :wite(const char_type *, streansize);

These functions are typically used for binary data.

Possible Resolution:
These function should take avoid * instead of char _t ype *. If these functions are changed, then
perhaps we should add another function that replaces this behavior. basi ¢_i st r eamcurrently hasa
get function which behaveslikether ead and wr i t e functions. It would make senseto add a
corresponding put functioninbasi ¢_ost r eamwhich paralelsthe behavior of get .

Requestor: John Hinke (jhinke@qds.com)
I ssue Number: 27-604
Title: Opening ani st r eamwithouti 0s: : i n set? or an ost r eamwithouti os: : out set?
Section: 27.6.1.1,27.6.2
[lib.input.streamsg], [lib.output.streams]

Status: active
Description:

Benedikt asks,

“Why can | open am st r eamwithouti os: : i n being set or anst r eamwithouti os: : out ? | mean,
| just did that by mistake with af st r eamand searched for quite a while to find out, why there were no
actual writes to the newly created file.

“Or, even worse, why can | openiast r eamwithi 0s: : out (and na os: : i n) being set and vice
versa?

“Shouldn't the iostreams check whether the given mode flags make any sense,”and maybe even add
i 0s::inif you missed to set this in arst r eam ori o0s: : out if you used amst r ean?”

X3J16/95-0194 WG21/N0O794 21

Possible Resolution:
Should we enfore this policy? Does it ever make senseto open ani st r eamfor writing or an ost r eam

for reading?
Requestor: Benedikt Erik Heinen (beh@tequila.oche.de)
I ssue Number: 27-605
Title: get/put type functuions should be able to use iterators.
Section: 27
Status: active
Description:

Several functionsini st r eamand ost r eamtake a pointer and alength and optionally adelimiter. It
would be nice to add overloaded functions that took either Inputlterators, or Outputlterators. These new
functions would look like:

For basi c_i stream
tenpl at e<cl ass Qut putlterator>
i stream& get(Qutputlterator begin, Qutputlterator end, char_type
delim;

The begi n and end iterators define where the characters will be written. Characters will be read
from the sequence until the end iterator is reached, or the next character isdel i m

For basi c_ostream

tenmpl at e<cl ass | nputlterator>
ostream& wite(lnputlterator begin, Inputlterator end);

The begi n and end iterators define the sequence of charactersto be written.
These functions would be added to the current implementation. The current set of functions should not be
removed. They are very commonly used. There are several functions which are candidates for these

begi n and end iterators. These functions are:

For basi c_i stream
i stream& get(char_type *, streansize, char_type);
i stream& getline(char_type *, streansize, char_type);
i stream®& read(char_type *, streansize);

For basi c_ostream

ostream& put (char_type *, streansize);
ostream& wite(void *, streansize);

Possible Resolution:
Requestor: Nathan Myers (myersn@roguewave.com)

basi c_stri ngbuf issues

I ssue Number : 27-701

X3J16/95-0194 WG21/N0O794 22

Title: basi c_stringbuf::str() needsto clarify return value on else clause

Section: 27.7.1.2 Member functions [lib.stringbuf.member s
Status: active
Description:

“Table 75 in [lib.stringbuf.members] describes the return valubsisf c_st ri ngbuf::str(). What
does the "otherwise" mean?. Does it mean neither base: : i n nori os_base: : out is set? What
is the return value supposed to be if _both_ bits are set?”

Possible Resolution:
Requestor: Angelika Langer (Angelika.Langer@mch.sni.de)
Bernd Eggink (admin@rrz.uni-hamburg.de)

I ssue Number: 27-702

Title: string streams need allocator and
string_char_traits parameters

Section: 27.7.1 Templatel ass basi c_st ri ngbuf

Status: active

Description:

The string streams are currently templatized on the characterctypeT) and the traits type
(i os_traits). String template parameters need to be added.

Possible Resolution:
| propose to change the template parameters of the string streams from:
templ ate<cl ass charT, class traits = ios_traits<charT> >
to:
tenpl ate<cl ass charT, class 10OS traits = ios_traits<charT>,
class STRING traits = string_char_traits<charT>,
class Al ocator = allocator>

All references tdasi ¢c_stri ng, or any of the string stream classes will need to be fixed.
All references td r ai t s should be replaced by eithe®S traits orSTRING traits.

Requestor: John Hinke (jhinke@qgds.com)

| basic filebuf issues |

I ssue Number : 27-801

Title: fil ebuf::underfl owexample
Section: 27

Status: active

Description:

The “as if” example fobasi ¢_fi | ebuf:: underfl owhas several “typos”. It should say:

char from buf [FSI ZE};

char* from end;

char to_buf[TSI ZE};

char* to_end;

typenane traits::state_type st;

codecvt _base::result r =
getloc().tenpl ate use<codecvt <char, charT,

X3J16/95-0194 WG21/N0O794 23

typenane traits::state_type> >().convert
(st, frombuf, frombuf+FSIZE, from end,
to_buf, to buf+TSIZE, to_end);

Possible Resolution:

Requestor: John Hinke (jhinke@qds.com)

I ssue Number: 27-802

Title: fil ebuf::is_open isabhitconfusing
Section: 27.8.1.3 Member functions [lib.filebuf.memberg]
Status: active

Description:

It says, Returns: t r ue if the associated file is available and open.” What is the meaning of“available?
This seems a bit confusing.

Possible Resolution:

Requestor: John Hinke (jhinke@qds.com),
Bob Kline (bkline@cortex.nlm.nih.gyv

M iscellaneous issues

I ssue Number: 27-901

Title: input/output ofunsi gned charT
Section: 27

Status: active

Description:

NOTE: i st r eamhere meanbasi c_i st ream
ost r eamhere meanbasi c_ost ream

This issue details all of the issues with inserting or extracting characters.

Currently, I0Streams does not allow the insertion/extractiemef gned char T or si gned charT.
There are two types of functions that could insert or extract these character"types: formatted 10, and
unformatted 0. Formatted 10 use overloaded operators. Example:

i stream& i stream : operator>>(charT&);
ostream& ostream : operator<<(charT);

Examples of unformatted IO are:

istream& i stream:get(charT *, streansize, charT);
int_type ostream: put(charT);

This does not allow us to overload onsi gned char T. We can make the formatted operators global,
and then overload (“specialize”) athar , andwchar _t , but that doesn’t solve the unformatted problem.

There is also a problem of inserting or extracting wide-characters from a“skinny stream or skinny characters
from a wide-stream:

char C;
wchar _t wc;

X3J16/95-0194 WG21/N0O794 24

cout << wc;
wcout << c;

Possible Resolution:
| propose two different solutions. Both of them solve the problem.

Solution #1
| propose to change the current member functions that Grs@’ T's as the argument type ¢dar and
wchar _t. For example:

Replace:
i stream& i stream : operator>>(charT&);
With:
i stream& i stream : operator>>(char&);
i stream& i stream : operator>>(signed char&);
i stream& i stream : operator>>(unsi gned char&);
i stream& i stream : operator>>(wchar_t &) ;

Users can easily add a new global insertion/extraction operator for their new’character type. They can also
derive fromi st r eamor ost r eamand add their own unformatted IO functions for their new character

type.

This would also solve the problem of inserting skinny characters into a wide”stream or wide characters into
a skinny stream.

For the unformatted 10 functions, we replace:
istream& i stream:get(charT *, streansize, charT);
with:
i stream& i stream: get(char *, streansize, char);
i stream®& i stream: get(unsigned char *, streansize, unsigned char);
i stream& i stream: get(signed char *, streansize, signed char);
i stream& i stream:get(wchar _t *, streansize, wchar _t);

We would also need to replace the other members that make sense reading oufvaitouged char , or
si gned char values.

This would still allow users to have streamsingi gned char, or any other type.

Solution #2
Leave the classes as they are, but add several new member functions. For“example:

Leave this member function:
i stream®& i stream : operator>>(charT&);

and add these member functions:
i stream& i stream : operator>>(unsi gned charg&);
i stream& i stream : operat or>>(si gned charg&);

For the unformatted 10 functions we leave this member function:
istream& i stream:get(charT *, streansize, charT);

and add these member functions:
i stream& i stream: get(unsigned char *, streansize, unsigned char);
i stream& i stream: get(signed char *, streansize, signed char);

X3J16/95-0194 WG21/N0O794 25

Thiswould still allow usersto create their own character type class and also provide backward
compatibility. However, thiswould mean that users could not havei st r eam<unsi gned char >,
which | think is aresonable restriction.

Thiswould not solve the skinny-character-on-wide-stream problem, though. To solve this problem, we can
overload the formatted functions:

We can define global inserters/extractors for these special cases:

nanespace std {
ostream& operator<<(ostream& wchar_t);
wost r ean& oper at or <<(wostrean®, char);

i stream& operator>>(istream& wchar_t&);
wi st rean® operator>>(w stream&, charg&);

}

Thiswould still not allow usto to insert a skinny-character-on-wide-stream using the unformatted 10
routines. I'm not sure if that is a real problem or not. If you need to”use the unformatted operations, you
could easily use eitheread orwri t e.

Thefollowing functions would need to be changed for either solution:
i stream& operator>>(char_type *);
i stream& operat or>>(char_type&);
i stream& get(char_type *, streansize, char_type);
i stream& getline(char_type *, streansize, char_type);

ost ream& oper at or<<(char_type *);
ost ream& oper at or <<(char _type);

Requestor: John Hinke (jhinke@qds.com)
I ssue Number: 27-902

Title: default locale arguments
Section: 27

Status: active

Description:

Default locale arguments for stream constructors.

i st r eamandost r eamconstructors (and all derivations) should have a default locale argument,”in the
manner of

obogusst ream(const char *nane, const locale& | = locale::classic());

or perhaps:

obogusst ream(const char *nane, const |ocal e& | | ocale());

Norihiro Kumagai <kuma@slab.tnr.sharp.co.jp> replies:
In order to cordinate the C-language locale model, | believe that the default”locale value should not be
"l ocal e::classic ()', whatwe call "C" locale, but Bd ocal e: : gl obal (), the current

global locale.

Most likely, it should probably beocal e: : gl obal ().
X3J16/95-0194 WG21/N0794 26

The next issue is when can the locale change? Thereis nothing that says a user cannot change the current
locale. Infact, aninterface existsin bothi os_base and basi c_st r eanbuf for changing the locale at
any time. If weweretousel ocal e: : t ranspar ent, the locale could change even if the user didn’t
want it to. This isn’t to say that the user couldn’t imboeal e: : t r anspar ent .

Possible Resolution:
Add a new argument to the standard stream constructors:

const locale& | = |ocale::global ()
Add this new argument to the following classes’ constructors:

basi c_i stream

basi c_ostream

basi c_i stringstream
basi c_ostringstream
basic_ifstream

basi c_of stream

Question: Should we say anything abaitr streams?

Requestor: Nathan Myers (myersn@roguewave.com)
Norihiro Kumagai (kuma@slab.tnr.sharp.co.jp)

I ssue Number: 27-903

Title: [io]{pfs|sfx} and exceptions
Section: 27.2.2.1,27.24.1

Status: active

Description:

The members pf x() /opf x andi sf x() /osf x() of the streams are not compatible with exceptions.

We need to eliminate them in favor of member classes whose“constructor/destructor perfom the same

actions, in the manner of custodian classes.

Possible Resolution:

In order fori st r eanfost r eamto be safe with exceptions the *pfx and *sfx functions need to be called

in pairs. | propose to introduce a new classasi c_i st r eamandbasi c_ostream This class will

be responsible for “doing” *pfx type operations in the constructor and™sfx type operations in the destructor.

This will guarantee that *pfx and *sfx will be called in pairs even if an“exception is thrown.
Add the following class tbasi c_i stream

class sentry {
bool ok_; // exposition only

public:
explicit sentry(bool noskipws = false);
~sentry();

operat or bool ();

b
Add the following class tbasi c_ostream

class sentry {
bool ok_; // exposition only

X3J16/95-0194 WG21/N0O794 27

public:
explicit sentry();
~sentry();

operator bool ();
1
Typical usage will be something like:
tenpl at e<cl ass charT, class traits>
basi c_i streankcharT, traits>&
basi c_istreankcharT, traits>::
operator>>(short& s)

if(sentry cerberus(false)) {
/1 read in short
}

return *this;

}

Classbasic_istream:sentry

Theclasssent ry definesaclass that is responsible for doing ipfx and isfx type operations. This class
makes prefix and suffix operations exception safe.

explicit sentry(bool noskipws = false);

Effects: Sameas /i pf x('), except that the return valueis stored in ok _.
~sentry();

Effects. Sameas/ sf x()

operator bool ();

Effects. Returnsok_.

Classbasi c_ostream:sentry

Theclasssent ry defines aclass that is responsible for doing opfx and osfx type operations. This class
makes prefix and suffix operations exception safe.

explicit sentry();

Effects: Same as opf x ('), except that the return valueis stored in ok _.
~sentry();

Effects. Sameas osf x()

oper at or bool ();

Effects. Returnsok_.

Deprecatei pf x/opf x/i sf x/osf x infavor of thistechnique.
X3J16/95-0194 WG21/N0794 28

Requestor: Nathan Myers (myersn@roguewave.com),
John Hinke (jhinke@qds.com),
Jerry Schwarz (jss@declarative.com)

I ssue Number: 27-904

Title: iosfwd declarations: incomplete
Section: 27.2 Forward declarations
Status: active

Description:

Thelist of forward declarationsisincomplete. Should it contain all of the forward declarations available?

Forward declarations for template classes basic_ios, basic_istream, and basic_ostream should have two

class parameters, not one. It isequally dicey to defineios, istream, etc. by writing just one parameter for the

defining classes. All should have the second parameter supplied, which suggests the need for aforward
reference to template classios _char_traits aswell, or at least the two usual specializations of that class.

Possible Resolution:

Requestor: John Hinke (jhinke@qds.com)

I ssue Number: 27-905

Title: Addi ostreamfstreamstringstream
andstrstream

Section: 27

Status: active

Description:

These classes were removed from the WP (date unknown). Userswill complain about this. Library
vendors will probably add this to make their users happy. There has been some discussion of thison
comp.std.c++.

Add the classes back to the WP. Thereisaway around this problem, but it requires users to change more
of their code. If at all possible, | think it would be excellent if we could reduce the amount of code that
users will have to change.

Without these classes, code such as:
fstream inout(“test.txt");

Would have to be replaced by code such as:
filebuf fb(“test.txt”);
istream in(&fb);
ostream out(&fb);

The problem with thisis that there would still be code like:
inout << “Something”;
inout >> someVar,

That would have to be changed and that could be alot of work.

Possible Resolution:
Option 1:
Add the classes back following the original AT& T implementation.

Requestor: John Hinke (jhinke@qds.com)

X3J16/95-0194 WG21/N0O794

29

I ssue Number: 27-906

Title: add a typedef to access the traits parameter for a class.
Section: 27

Status: active

Description:

Some classeslikei st r eamdon’t have access to the traits template parameter. Perhaps each class“should
provide a typedef for ther ai t s parameter.

You need the traits parameter when you want to say stuff like:

cin.ignore(100, traits::newine(cin.getloc().
tenpl at e use<ctype<cin.char_type> >()));

There is no way to get the traits type without saying something lilee:t r ai t s<ci n. char _t ype>
which is almost resonable, but it would be nicer to say somethinglike:itrai ts_type. There are
some cases wher®s _trai t s is not the traits used to instantiate the stream.

Possible Resolution:
Add the following to each templatized class:
typedef traits traits_type;
Wheret r ai t s is the template parameter

Requestor: John Hinke (jhinke@qds.com)

I ssue Number: 27-907

Title: Use of “instance of” vs. “version of” in descriptions of class
Section: 27.2 [lib.iostream.forward]

Status: active

Description:

Paragraph 2 and 3 describe the class and the classi os. One is described as “an instance of the
template...” the other is described as “a version of the"template...”.

Possible Resolution:

Requestor: John Hinke (jhinke@qds.com)

I ssue Number: 27-908

Title: unnecessary ‘;’ (semicolons) in tables
Section: 27

Status: active

Description:

There are unnecessary semicolons in tables in chapter 27. These probably”should be removed.

Possible Resolution:

Requestor: John Hinke (jhinke@qds.com)
I ssue Number: 27-909

Title: Editorial issues (typo’s)
Section: 27

Status: active

Description:

X3J16/95-0194 WG21/N0O794 30

Here are a list of “typo’s” and other possible editorial issues.

Editorial Issue#1
Description:
The description of os_base: : excepti ons is listed under thbasi c_i 0s clause.

Possible Resolution:
This needs to be moved back to thes _base clause.

Editorial Issue #2
Description:
2742 Templatestructi os_traits
The template declaration is incorrect C++ code.

Possible Resolution:
Change the template declaration to:
tenpl ate <class charT> struct ios _traits {

by removing the<char T>.

Editorial Issue#3
Description:
27.1.2.4
Description of type POS_T contains many awkward phrases. Needs rewriting for“clarity.

Editorial Issue#4
Description:
27.1.2.4
Footnote 207 should say ““for one of" instead of ““for one if." Also, it"should™ whose representation has
at least" instead of “whose representation at least."

Editorial Issue#5
Description:
27.4.2.1
Remove extr&Returns: clause frormot _eof .

Editorial |ssue#6
Description:
27.4.3
Argument types foros_base: : preci si on andi os_base: : wi dt h should best r eansi ze.

Possible Resolution:

Requestor: John Hinke (jhinke@qds.com)

I ssue Number: 27-910

Title: removest r eanpos in favor ofpos_t ype
Section: 27

Status: active

Description:

There are editorial boxes in Chapter 27 that saysthaeanpos was deprecated but that no resolution on
what to do with functions that use it as an argument type.

X3J16/95-0194 WG21/N0O794 31

Change all referencesto st r eanpos as an argument typeto pos_t ype. Each classin Chapter 27 has a
typedef for, or accessto, pos_t ype.

Possible Resolution:

Requestor: John Hinke (jhinke@qds.com)
I ssue Number: 27-911

Title: stdio synchronization
Section: 27

Status: active

Description:

Doing measurements on the performance of streambufs attached to stdin on a variety of systems, | found
that the performance of asimple loop:

while ((c = cin.sgetc()) != EOF)
was from 5 to 20 times slower than the equivalent

while ((c = getc(stdin)) != EOF)
To my horror, | found that thisis aresult of amandate in the WP, that stdin and cin (and also stdout and
cout) must be synchronized. Asagoal this seemslaudable, but if the consequencein many (most)

environmentsis either:

1. an order of magnitude slower input, or
2. breaking link compatibility with C,

maybe we should reconsider this choice, and instead allow-but-not-require that the two be synchronized.

Possible Resolution:

One possibility would be to reintroduce "sync_wi t h_st di 0" but give it aboolean argument.
sync_with_stdio(true) would cause syncronizationsync_wi t h_st di o(f al se) would cause
unsyncronization.

Thiswould be agreeableto me. | take it thiswould be a static member of i os_base? How would it
default? | assume that the call with false could be a no-op.

Requestor: Nathan Myers (myersn@roguewave.com)
I ssue Number: 27-912

Title: removing Notes: from the text

Section: 27

Status: active

Description:

Thisissueisin responseto Mats Metalist. It isan attempt to remove normative text from the WP. This
issue removes Notes: from the text. Some Notes: clauses that need to be incorporated into the text will be
handled in another issue.

Remove al Notes: clauses from the following:

X3J16/95-0194 WG21/N0O794 32

27.4.2.1i0s traitsvaluefunctions[lib.ios.traits.values|
i nt_type not_eof (char_type c)

27.4.2.1ios traitsvaluefunctions[lib.ios.traits.values]
char _type new ine()

27.4.3.410s base storage functions|lib.ios.base.stor age]
void * & pword(int idx)

27.5.2.2.3 Get area [lib.streambuf.pub.get]
int_type snextc()

27.5.2.4.3 Get area [lib.streambuf.virt.get]
i nt showmanyc()

27.5.2.4.3 Get area[lib.streambuf.virt.get]
streansi ze xsgetn(char_type *s, streansize n)

27.5.2.4.3 Get area[lib.streambuf.virt.get]
int_type uflow()

27.6.1.2.2 basic_istream::operator>> [lib.istream::extractor s
basi c_i streankcharT, traits>& operator>>(char_type *s)

27.7.1.3 Overridden virtual functions|lib.stringbuf.virtuals]
i nt_type pbackfail (int_type c¢)

27.7.1.3 Overridden virtual functions|[lib.stringbuf.virtuals
int_type overflow(int _type c¢)

27.8.1.4 Overridden virtual functions[lib.filebuf.virtuals]
i nt shownanyc()

Possible Resolution:

Requestor: John Hinke (jhinke@qds.com)

I ssue Number: 27-913

Title: Incorporating Notes: into the text
Section: 27

Status: active

Description:

The following Notes: clauses need to be incorporated into the WP text:

27.5.2.1 basic_streambuf constructor s [lib.streambuf.cons]
basi c_streanbuf ()

27.5.2.4.1 L ocales[lib.streambuf.virt.locales|
voi d i nbue(const | ocal e&)

27.5.2.4.3 Get area[lib.streambuf.virt.get]
int_type underflow)

27.5.2.4.4 Putback [lib.streambuf.virt.pback]
int_type pbackfail (int c¢)

X3J16/95-0194 WG21/N0O794

33

27.5.2.4.5 Put area [lib.streambuf.virt.put]
int_type overflow(int_type c)

27.6.1.1.1 basic_istream constructors[lib.basic.istream.cons]
virtual ~basic_istream))

27.6.1.1.2 basic _istream prefix and suffix [lib.istream.pr efix]
bool i pfx(bool noski pws)

27.6.1.2.2 basic_istream::operator>> [lib.istream::extractors]
basi c_i streanxcharT, traits>& operator>>(bool & n)

27.6.1.3 Unformatted input functions[lib.istream.unfor matted]
basi c_istreanxcharT, traits>& ignore(int n, int_type delim

27.6.2.2 basic_ostream constructor s [lib.ostream.cons]
virtual ~basic_ostream)

27.6.2.4.2 basic_ostream::operator << [lib.ostream.inserterg]

basi c_ostreanxcharT, traits>& operator<<(char_type c)
Change thisNotes: clauseto a Requires: clause.

27.7.1.1 basic_stringbuf constructors[lib.stringbuf.cons]
explicit basic_stringbuf(ios_base::opennode)

27.8.1.4 Overridden virtual functions|lib.filebuf.virtuals]
i nt_type pbackfail (int_type c¢)

Possible Resolution:

Requestor: John Hinke (jhinke@qds.com)
I ssue Number: 27-914

Title: rethrowing exceptions
Section: 27

Status: active

Description:

[NOTE: This follows directly with 27-903 --John Hinke]

Thetypica oper at or << looks like this, given current semantics for exceptions:

{

sentry cerberos(*this); if (!cerberos) return;
i ostate save = exceptions(); exceptions(0);

try {
if (use_facet< num put<charT, ostreanbuf iterator<charT,traits> >(

getloc()).put(*this,*this,fill(),getloc(),val).failed())
setstate(failbit); // won't throw
}

catch (...) { exceptions(save); setstate(badbit); throw, }

exceptions(save); setstate(rdstate());

}

X3J16/95-0194 WG21/N0O794

34

If we change exception semantics sothati os_base: : f ai | ur e just gets rethrown, without setting
badbit, we have instead:

{
sentry cerberos(*this);
if (!cerberos) return;
try {
if (use_facet< num put<charT, ostreanbuf _iterator<charT,traits> >(
getloc()).put(*this,*this,fill(),getloc(),val).failed())
setstate(failbit); // might throw

}
catch (const ios_base::failure& { throw }
catch (...) { setstate(badbit); throw }

}

The examples don’t constitute an argument for or against the change, but rather are suggestions for the
example code that should appear in[lib.ostream.for matted.regmts] according to what is decided.

For the record, | am in favor of the change.

Possible Resolution:

Requestor: Nathan Myers (myersn@roguewave.com)

X3J16/95-0194 WG21/N0O794

35

