
X3J16/95-0163
WG21/N0763

Template Instantiation

in the EDG C++ Front End

J. Stephen Adamczyk (jsa@edg.com)

John H. Spicer (jhs@edg.com)

Edison Design Group, Inc.

July 27, 1995

Introduction

This document describes the template instantiation mechanism provided by the EDG C++ Front

End. We are providing this description because some committee members have expressed

interest in the mechanism, and, more generally, to help committee members broaden their

understanding of existing practice in the area of template instantiation.

We are not providing this information in an attempt to get our template instantiation scheme

adopted as a standard. We would be happy to see others use this approach,1 and we would

be pleased if the standard would permit us to keep this implementation, but mostly we just

want to make the point that there are existing template implementations that aren't simply

variations on the cfront and Borland approaches.

Overview

A distinguishing characteristic of the EDG approach is that all instantiations of template

entities2 are done as part of the compilation of \normal" source �les. That is, the programmer

has a set of source �les (e.g., .C �les), and tells the compiler to compile them to object �les.

The instantiation mechanism keeps track of the required instantiations, and for each one it

chooses a source �le in which the instantiation will be done. These assigned instantiations are

done automatically during the compilations of the associated �les, and the instantiated entities

are placed in the normal object �les produced by those compilations.

With all the instantiations assigned to source �les, and all the source �les compiled to object

code, the object �les are then linked into an executable program. Each required instantiation

appears exactly once in the complete set of object �les, so the object �les can be assembled

into an executable by a linker without any special processing.

A program called the prelinker handles the assignment of instantiations to source �les, and

directs the process of automatic instantiation. It is invoked when the programmer asks to link

object �les together into an executable program. More on this in a moment.

1We have not and will not patent this technique.
2By \template entities," in this document, we really mean those template entities for which the instantiation

problem is interesting, i.e., those for which instantiation is not always done immediately. Classes and inline
functions are always instantiated immediately when needed, and are therefore not considered \template entities"

for our purposes here.



Template Instantiation in the EDG C++ Front End (X3J16/95-0163, WG21/N0763) 2

Source Model

The main requirement on the programmer is that, for each instantiation required, there must

be some source �le that contains a use of that template entity and also contains the de�nitions

of both the template entity and any types required for the particular instantiation.3

One easy way to meet this requirement is to use the include-everything approach: in each \.h"

�le that declares a template entity, either provide the de�nition of the entity or include another

�le containing the de�nition.

The programmer can also use an ad hoc approach, making sure that the �les that de�ne

template entities also have the de�nitions of all the required types. The programmer can add

code or pragmas in those �les to request instantiation of the entities there.

For compatibility with programs developed under cfront, the EDG C++ Front End also provides

implicit inclusion. When implicit inclusion is enabled, the front end is given permission to

assume that if it needs a de�nition to instantiate a template entity declared in a \.h" �le it

can implicitly include the corresponding \.C" �le to get the source code for the de�nition. For

example, if a template entity ABC::f is declared in �le xyz.h, and an instantiation of ABC::f

is required in a compilation but no de�nition of ABC::f appears in the source code processed

by the compilation, the compiler will look to see if a �le xyz.C exists, and if so it will process it

as if it were included at the end of the main source �le. This feature (which can be enabled or

disabled via command-line options) allows most programs written using the cfront convention

to be compiled with EDG-based compilers.

How Does It Work?

The automatic instantiation method works as follows:

1. The �rst time the source �les of a program are compiled, no template entities are

instantiated.4 However, the generated object �les contain information about things that

could have been instantiated in each compilation. For any source �le that makes use of

a template instantiation an associated \.ii" �le is created if one does not already exist

(e.g., the compilation of abc.C would result in the creation of abc.ii).

2. When the object �les are linked together, the prelinker is run. It examines the object �les,

looking for references and de�nitions of template entities, and for the added information

about entities that could be instantiated.

3. If the prelinker �nds a reference to a template entity for which there is no de�nition

anywhere in the set of object �les, it looks for a �le that indicates that it could instantiate

that template entity. When it �nds such a �le, it assigns the instantiation to it. The set of

instantiations assigned to a given �le is recorded in the associated \.ii" �le. Information

on the command-line options used to invoke the compiler is also recorded therein.

3Isn't this always the case? No. Suppose that �le A contains a de�nition of class X and a reference to

Stack<X>::push, and that �le B contains the de�nition for the member function push. There would be no �le
containing both the de�nition of push and the de�nition of X.

4As mentioned earlier, template classes and inline template functions are always instantiated immediately;

\template entities" means only those entities for which instantiation can be delayed.



Template Instantiation in the EDG C++ Front End (X3J16/95-0163, WG21/N0763) 3

4. The prelinker then executes the compiler again to recompile each �le for which the \.ii"

�le was changed.

5. When the compiler compiles a �le, it reads the \.ii" �le for that �le and obeys the

instantiation requests therein. It produces a new object �le containing the requested

template entities (and all the other things that were already in the object �le).

6. The prelinker repeats steps 3{5 until there are no more instantiations to be adjusted.

7. The object �les are linked together.

Once the program has been linked correctly, the \.ii" �les contain a complete set of instantia-

tion assignments. From then on, whenever source �les are recompiled, the compiler will consult

the \.ii" �les and do the indicated instantiations as it does the normal compilations. That

means that, except in cases where the set of required instantiations changes, the prelink step

from then on will �nd that all the necessary instantiations are present in the object �les and

no instantiation assignment adjustments need be done.

Notably, that's true even if the entire program is recompiled. That is, if the project make�le

is set up to remove the object �les but not the \.ii" �les, a full recompilation will recompile

all the �les and spend no extra time in the link phase generating instantiations.

The prelinker also notices when instantiations are no longer needed (because the programmer

has eliminated all references to them), and it will remove those instantiations from the \.ii"

�les and recompile the associated source �les.

How Well Does it Work?

Because this approach does all instantiations as part of the compilation of normal �les, it does

the instantiations very inexpensively. At the end of a compilation, all the required template

and type de�nitions have already been compiled, so an instantiation can be done without

any further setup.5 Typically, in fact, many instantiations are assigned to a single source

�le, and each can be done with no further setup. That means that in the compilation of

a program with large header �les, where many template entities can be instantiated at the

end of the compilation, the compiler is getting the maximum bene�t out of its investment of

time in compiling those large header �les|it doesn't have to recompile the header �les for

each instantiation. Because of this, the EDG C++ Front End can do the initial compilation

of a program substantially faster than cfront. But the real advantage comes after the �rst

complete link; thereafter, the instantiations are essentially free, even when the entire program

is recompiled. In large programs, recompilations with the EDG C++ Front End are typically an

order of magnitude faster than with cfront.

5At the moment, we do not do the two-stage lookup required by the Working Paper. All template instan-

tiations are done at the ends of compilations, with the name environment at that point. Adding the two-stage
lookup can be expected to slow down the instantiation process somewhat.



Template Instantiation in the EDG C++ Front End (X3J16/95-0163, WG21/N0763) 4

Some numbers: here are timings in seconds for compiling and linking an example from the

Booch Components, requiring about 320 instantiations:

initial fastest

compile/link recompile/link

EDG 69 22

EDG (w/PCH) 58 21

cfront 614 80

The EDG compiler is just slightly faster than cfront in raw compilation speed, so most of the

di�erence seen here is in instantiation time.6

The \(w/ PCH)" timings are with precompiled headers enabled; those numbers are provided

to show that the EDG instantiation technique works well even if an implementation does not

provide precompiled headers.

Manual Instantiation

Instantiation pragmas can be used to control the instantiation of speci�c template entities or

sets of template entities. These pragmas are mostly equivalent to explicit instantiation requests,

and most uses could be replaced by an explicit instantiation request in the now-standard form,

but we haven't implemented those yet. There are three instantiation pragmas:

� The instantiate pragma causes a speci�ed entity to be instantiated.

� The do_not_instantiate pragma suppresses the instantiation of a speci�ed entity. It

is typically used to suppress the instantiation of an entity for which a speci�c de�nition

will be supplied.7

� The can_instantiate pragma indicates that a speci�ed entity can be instantiated in the

current compilation, but need not be; it is used in conjunction with automatic instanti-

ation, to indicate potential sites for instantiation if the template entity turns out to be

required.

The argument to the instantiation pragma may be:

a template class name A<int>

a member function name A<int>::f

a static data member name A<int>::i

a member function declaration void A<int>::f(int, char)

a template function declaration char* f(int, float)

6The cynical among us might be quick to point out that comparing a product's timings against cfront doesn't

prove much|cfront 's instantiation scheme is generally regarded as being a few years o� the state of the art.

Our numbers do stand up well against those of other instantiation schemes; for example, one manufacturer's
compiler (not cfront based) turns in numbers of 232 and 101 on that program. But the point is not to extol

EDG's numbers. Rather, it is to show that this is a \real" instantiation scheme, one that gives programmers

good performance in real-world use.
7This will no longer be needed once programs conform to the rule that requires specializations to be declared

before they are used.



Template Instantiation in the EDG C++ Front End (X3J16/95-0163, WG21/N0763) 5

A pragma directive in which the argument is a template class name (e.g., A<int>) is equivalent

to repeating the pragma for each member function and static data member declared in the

class. When instantiating an entire class a given member function or static data member may

be excluded using the do_not_instantiate pragma. For example,

#pragma instantiate A<int>

#pragma do_not_instantiate A<int>::f

One of the most important facts about the instantiation pragmas is that they interact well

with the automatic instantiation mechanism. One can use pragmas to hand-con�gure some

instantiations, and let the automatic scheme take care of the rest.

Libraries and Other Complicating Factors

This scheme doesn't do very much to help libraries and library vendors. Full source code is

required for anything that isn't already instantiated in the library object �le.8 Instantiations

cannot be assigned to library source �les, but they can be assigned to user source �les as long

as the necessary template de�nitions are available there.

This scheme does not allow object �les generated for one purpose to be arbitrarily reused for

another purpose. For example, you cannot compile a few source �les, then link the object �les

into both program A and program B, because the set of instantiations assigned to the �les

might be di�erent for the two programs.

Viewpathing (as in nmake) is supported. The \.ii" �le is placed in the same directory as the

object �le, so the same source �le can be used to build di�erent object �les. Files can be set

up so that if an object �le needs to be recompiled to incorporate an instantiation, it can be

recompiled as a local object �le, rather than overwriting the shared object �le higher up the

version tree.

Conclusion

The EDG template instantiation technique dictates a source model that is not as strict as

the include-everything approach, but also not as relaxed as the source model permitted by the

template compilation model in the WP. It doesn't allow users to place their templates wherever

they want in their source �les, but it repays them for that inconvenience by providing rapid

instantiation, especially for large programs.

As we said at the outset, we are not advocating adoption of our instantiation technique or

source model. We do feel, however, that we have an interesting technique that seems to

satisfy our users' needs. We would like to see a standard template compilation model that

allows implementors like us to provide newer, better, di�erent instantiation schemes. Let the

marketplace and implementation experience dictate the model to be enshrined in a future

version of the standard.

8Though using encrypted source, as is done in the Sun compiler, would be possible.


