(o b Lo Ao o conslc At AL ety *
Ut of g bos griacatin sttt G

Hoyhh

L10

Grammatical Considerations for C++
X3J16/90-0084

Mark Langley
Microsoft Corp
1 Microsoft Way
Redmond, WA 98052

uunet!microsoftimarklan
Abstract

This paper discusses syntactic and semantic ambiguity in -
A fme |C++. The ANSI X3J16 base documents do not state what the
language is well enough that it can be: implemented
consistently. Nor do the base documents adequatel ﬂ id Lo s
describe any strategy or means by which C++ can be parsed.
To demonstrate this Botnt. an appendix of simple programs,
some taken directly from the manual, were presented to all
the commercially available C++ processors with widely
(varying interpretations.

This paper requests clarification of syntactic ambiguities, and the correct
meaning of C++ constructs. C++ Is a very complex language
syntactically. There are a number of serious ambiguities present in the
language. Some of these ambiguities are not addressed at all in the base
documents, others are treated inconsistently. '

Based on the text of the base documents, and the additional commentary
available in the C++ Annotated Reference Manual, it is not clear how
sophisticated a parser must be to properly parse C++. It is difficult to
determine where sophistication is required to implement language

features, and where it seems to be required because the language has
been inconclusively described.

One further complication is that the base documents are not entirely in

agreement. Policies in C++ conflict directly with policies in ANSI C.
ermore, various difficulties in ANSI C been treated with less

than full respect by C and C++ implementors alike. :

As an example of how difficult it is to implement the current C++
language specification, the appendix contains simple code fragments that
commercially available C++ implementations, advertising themselves in
conformity with 2.0 or 2.1, do not implement correctly, or consistently, -1
welcome comparisons with other compilers, and will gladly provide
machine readable versions of the test programs on request.

1. Declaration vs Expression Ambiguity

Section 6.8 of the ARM "Ambiguity Resolution" addresses expression-
declaration ambiguity. The best-known case of this ambiguity the
similarity between = function-like casts and declarations with
parenthesized declarators.

typedef int t;
t (x);

This is considered equivalent to

typedef int t:;
t x;

The declaration of x is not to be misparsed as a cast. It is not the same
as

(t) x; // line 2. M;i'sp‘érsed.

This case is discussed directly in section 6.8 of the C++ Reference
Manual.

There is an ambiguity in the grammar involving expression-
statements and declarations. An expression-statement
with an explicitly type conversion (5.2.3) as its leftmost sub-
expression can be indistinguishable from a declaration
where the first declarator starts with a (. In those cases, the
statement is a declaration.

To disambiguate, the whole statement may have to be
examined to determine if it is an expression-statement or
declaration. This disambiguates many examples. For
example, assume T is a simple-type-name:

/é‘7 T (*d) (double(3)); //expression-statement
T (a); // declaration

The disambiguation is purely syntactic; that is, the meaning
of the names, nd whether they are type-names or not, is
not used in the disambiguation.

Supplementary commentary in the Annotated Reference Manual states:

The general cases cannot be resolved without backtracking,
nested grammars or similar "advanced" parsln% strategies.

In particular, the lookahead needed to disambiguate this
case is not limited.

n In a parser with backtracking the disambiguating
rule can be stated very simply:

[1] If it looks like a declaration, it is; otherwise .
[2] If it looks like an expression, it is; otherwise

Langley x3{16/90-0084 2

ot
{fa
I
ey
i Ul
ey

L10

r &/ A il

L10

A~
P

_~"[3] 1t is a syntax error.
Defining the language by example is extremely problematic from the
perspective of formal language specification. It is certainly a radical
eparture from modern ANSI standard operating procedure, and deviates
wildly from the customs of the international community. The
characterization of legal language constructs in terms of non-standard
parsing algorithms is also very questionable for a language standard.

Just as importantly, humans find it difficult to read and write programs
with the above kind of specification. As an example of the difficulty,
consider that in the canonical examples given in section 6.8 at least one
of them is arguable by the very criteria given.

T(*d) (double(3)):; // expression-statement

Yet, wouldn't it be more in keeping with the above syntactic rules that
this should be a declaration of a pointer to an object T that is initialized- @”
with a double(3)? How would you know which one it is?. - -

Of the other canonical examples listed in section.6.8 of the C++ reference
manual, several of those are consistently mistreated by commercial
implementations. These discrepancies are noted in the appendix. The

fact that conscientious implementors have had such difficulty deriving a
consistent (much less conforming) interpretation suggests that the
specification itself may lie at the root of the problem.

If a standard specification for C++ is to give users a fighting chance to
write portable, understandable, and maintainable programs, at the very
least this standard must define what is legal, and what it means.

While it might be argued that such ambiguities are obscure and a
programmer may be able to rewrite his code so it is clearer, it is
imperative that the language standard define the language so that

disputes of what is legal and what isn't are rare and of straightforward
resolution.

Posing the "how do you tell the difference between an expression and a
declaration” question another way, what are the limits to which the
compiler must go to resolve difficult cases? What are the limiting cases
for deciding when something “can't possibly be a declaration?"

2. Declaration vs Declaration ambiguity

Section 6.8 does not mention ambiguities between declarations. To see

how declaration vs declaration ambiguity can arise, bear in mind the text
from sect 9.1 of the ARM.

A class declaration introduces the class name into the scope
where it is declared and hides any class, object, function,

etc., of that name in an enclosing scope. If a class name is
declared in a scope where an object, function, or enumerator -
of the same name is also declared the class can be referred
to only using an elaborated type specifier.

Langley x3j16/90-0084 3

Yet this requires better coverage, as the following-problems will show.

2.1 function prototype vs parenthesized declarator
Consider the following fragment:
typedef int t;
class x {
int i;
}:
x (t); // object or function?

Does the declaration of x (t) redeéfine a function x taking a t as an
argument, or does it declare an object t of type x?

To be specific, is x (t) equivalent to -
int x(int dumnmy); // declaration of function "x"

or is it equivalent to T
class x t; // illegal redefinition of t

According to limitations on the redefinition of typedefnames at the same

scope at which they are defined, this should be a function declaration.
In particular, Section 7.1.3 states

A typedef may not re-define a name of a type declared in the
same scope to refer to a different type.

Unfortunately, this is more problematic at a local scope.

typedef int t;
class x {int i; };

main‘() {
x(t);
}

Now x (t); may be either a declaration of an object t of type x, or a

ction named x taking an argument of type t. Some implementations
make this an object of type t. Yet, to be consistent, shouldn't it mean
the same thing at local scope as it does at global scope?

Note that this ambiguity is independent of any anomalies that may occur

if there are conversions in the class x, or any other semantic
complications.

Another observation here is that the ANSI C grammar explicitly disallows
declarations without declaration specifiers, so the C++ syntax fis

- automatically at odds with ANSI C. In ANSI C, only function definitions

§ \ allow the omission of the return type; function declarations without a

| return type are illegal. This issue is discussed more fully in section 4.1
(Qof this paper.

,-“\AM‘;\)\JQ/Z;J A’/c\ C./ &a——&q ASE C . . : : 2‘ yg{;jém /r %(N/ J/

Langley x3{16/90-0084 4

(B8}
fa
S
el

Lo

Removing the offending extension does not automatically fix the problem
however. For example, .ow should the following be treated:

struct x { };
typedef int t;
main() {

extern x(t):

}

Does the local declaration declare a function (taking a t) or an object
named t?

2.2 Parenthesized Initializer vs Function Prototype

Another intra-declaration ambiguity is between a parenthesized
initializer, and a function prototype. Consider the following fragment:

class X {
public:
X(int, int, float);
};

typedef int t;
typedef float £;
int x=30, y=40, z=50;

X fo00(10,10,1.0); // Object instance

X Going(t(x),t(y),1.0); // Object instance

X Gone(t(x),t(x),£f(x)); // Object instance

X FarGone(t(x),t(y),f(z)): // Function declaration
// i.e. FarGone(int dummyl, int dummy2, float dummy3) or
// FarGone((int)x, (int)y, (int)z);

What any of these mean cannot be determined until after reading the last
two characters on the line.

In particular the resolution of the whole statement depends on what
t(x) is; it could be an abstract declarator c‘),fa&e t with dummy
argument x, or it could be a cast of the global le x to a t. Until
each declarator or initializer is resolved, it's not clear whether Going is a

function returning an X or an instance of X initialized according to the
public constructor.

Note that Gone must be an object declaration because the proto
scope (x3j11 3.1.2.1) introduced by the function declaration dictates that
the reuse of the same name in the same scope would be an illegal

redeclaration. Since it cannot be a legal function declaration, it must
instantiate an object.

At what point can the compiler decide whether something is an
expression, a declaration, or an error? Must it make these heroic efforts
to determine even simple cases? What are the implementation limits?
And what about the user? We provide syntax to avoid these problems.

Langlev x3{16/90-0084 5

fll
(WAL
iy

L10

For the treatment of a related issue, see section 4.3, ahead.

2.3 Scope of declarators

At what fpoint does a declarator come into scope? Does it come into
scope before the initializer is parsed, or does it not come into scope until
the last parenthesis is parsed?

Making declarators come into scope at the time the initializer is parsed,
would be consistent with ANSI C, allowing

int x=sizeof (x):;
But what about in parenthesized initializers?

int x(sizeof (x)):;

The reuse of the class name as an identifier poses problems: -

class C {
public:
C(class C&);
}s

C C(C): // 2?
// *“class C C=C; ‘!
// or the declaration of a function

// ®“extern class C C(class C dummy);"'"*

Is C an object declaration, initialized with itself? Or is the second C still
a type in scope as a type, making the whole thing a function declaration?

The behavior of typenames reused at a more local scope as variables
introduces other difficulies. At what point do outer scope type
definitions go out of scope?

Consider the following:

typedef int t:;

foo) {
int t=(sizeof(t)):; // Which t?
}

Based on this example, it might seem wise to make the name come into

scope at the parenthesis. On the other hand, consider a more involved
case

int T=100;
int x=10;

main() {

struct T {
int x;
T (int);

Langley x3i16/90-0084 6

(Heenll
el
'!;; 1
(L]

L10

T(T&) ;
T operator*(int)
{printf (*%d\n", i); return i * x;};

} T(T * x): // object or function?
T.x;

}

The net effect of the final declaration of T might be an object initialized
with an integer expression, or it might be a function taking a T *. It
could also be a T initialized by multiplying a T by an int. Alternatively, it
could be a T initialized with itself times an int, using the overloaded
operator that the class T supplies.

A strict reading of the base documents, suggests a contradiction. In
particular, it would seem that the items in a declarator list must be both

typenames and identifiers in scope, at the same time, and in the same
place. Consider the following:

-

If an outer declaration of a lexically identical identifier
exists in the same name space, it is hidden until the current
scope terminates, after which it becomes visible.

3.1.2.1 (.35) x3j11

... Any other identifier has scope that begins just after
the completion of its declarator.

3.1.2.1 (.41) x3j11

In general, how should the coming into scope of a declarator work in the
case of self-initialization?

For example, does

class B { B(&B); }:
B B(B);

define an object initialized with itself, or a function taking a B? —

8. What is the Order of Parsing For Inline Member Functions?
According to the C++ reference manual (9.3.2)

Defining a function within a class declaration is equivalent to
declaring it inline and defining it immediately after the class
declaration; this rewriting is considered to be done after the
preprocessing but before syntax analysis and type checking.

~ This allows a member function declared inline to have access to the
entire data definition of the class, and have access to all the member

functions, and presumably, (although it isn't stated) any types that may
be declared in the class definition. _—

Langlev x3i16/90-0084 7

flwel
o
il

L10

On the other hand, consider this passage: (9.9 in the 2.1 documentation,
9.3.2 in the 2.0 doc)

A class-name or a typedef-name or the name of a constant
used in a e name may not be redefined in a class
declaration after being used in the class declaration, nor
may a name that is not a class-name or a typedef-name be
redefined to a class-name or a typedef-name in a class
declaration after being used in the class declaration.

Thus it would seem that a member function cannot be parsed until the
entire class definition has been seen. On the other hand, the class
definition cannot be parsed until all uses of names as typedefs is known.
What is the availability of typedef names in a member function, and what
is a parsing order that will always correctly parse a class definition?

In the following fragment, what should f and g do?

class X {
£f() { return sizeof (T); }
g() { T x; }
typedef int T;
}:

Submitting the following example taken from 9.9 to the extant
implementations of C++ sadly produced widely varying results. The

following example has appeared unchanged in both the C++ 2.0 and C++
2.1 manuals.

typedef int c;
enum { i =1 };

class X {
char v([i];
int £() { return sizeof(c); }
char c; //error: typedef name redefined after use

enum (i = 2 }; //error: 'i' redefined after v(i]
}:

typedef char *T;

struct Y {
T a;
typedef long T; // error: T already used
t b;
}:

Based on the materdial in the C++ manual, another possible

interpretation of the visibility of names as typedef might be to determine

that a name is a typedef at the point it is first declared or used as one.

Subse?uently, the actual meaning of the typedef is bound as late as
e.

possib (This is not a proposal, just a recognition of a possible
interpretation.) For example,

Langley x3i16/90-0084 8

{podl
W
Nyt
.i'-f 3

L1

typedef float T;

class x {
bar() {T x:}
typedef char T;
}

This might mean that the actual type of local x in function bar is a
character, not a float. :

3.1 Parsing nested classes and friend declarations

In the case of friends in nested classes, does the name of a friend look in
or out for it's resolution? For example '

class W { £ };

class X {
friend W::£(); -
friend W; ' SRS
class W {
£f():
}:
}

which class W is the friend class? Which W::fis a friend function?

While nested classes were added to C++ as a technical correction
between 2.0 and 2.1 their semantics are still unclear.

4. Matters of Improved Formalism

There are a number of areas where the language specification could
improve its treatment by employing more rigorous formalism. These

parsing problems do not pose definite parsing ambiguities (that I know
ofl), unless otherwise noted.

4.1 What is a declaration?
According to the C++ reference manual it is
'decl_specifi.ers[opt] declarator-list:;
Apcordlng to X3J11 itis
4 decl_specifiers init-declarator-list;

In ANSI C, the following is a syntax error because type speéiﬁers cannot
be omitted in the redeclaration of a typedef name. (X3J11 3.5.6 line 15)

typedef int Pc;
foo() (const Pc;)

But according to the C++ reference manual (Section 7.1), decl_speciﬁex.‘—s
are parsed as follows.

Langley x3i16/90-0084 9

Mool
[[¥iN
Hagll
e T

L10

The longest sequence of decl-specifiers that could possibly k=
a typename is taken as the decl-specifiers of a declaration.
The sequence must be self-consistent as described below.

For example

typedef char *Pc;
foo() { static Pc:; /* error */ }

However given the C++ definition it seems odd that the C++ manual
doesn't consider

static Pc;

correct: treat this by saying that the longest possible sequence of decl-
specifiers stops with static.

4.1.1 Boundaries Between Legal and Illegal Declarations

Note that the following code fragments are deemed illegal by X3J11, by a
combination of 3.5

A declaration shall declare at least a declarator, a tag or the
members of an enumeration.

and 3.5.6

If the identifier is redeclared at an inner scope ... the
type specifiers shall not be omitted.

{ /* 1 %/
typedef int t;
{ const *t;}

)

{ /7% 2 */
typedef int t;
{ const x, t; }

'}

{ /7* 3 */
typedef int t;
{ const t; }

}

The first two fragments are innocuous, since the decl_specifier is
delimited by another token, and its correct interpretaton as a
declaration is forced. Even simple-minded parsing strategies handle
these statements as correct declarations; in fact, it takes extra work to

getermine the illegal cases, work which many compilers do not bother to
0.

Langlev x3i16/90-0084 10

1
Il
e

L10

While the rules cover case 3, above, they unnecessarily nullify cases 1
and 2. By carefully formulating the-Zzrammar, both of these prose
passages from the standard could have been avoided, while making the
implementation easier and the language more uniform.

4.2 Name visibility in constructor-initializers

A constructor initializer list allows the initialization of both member class
variables, and baseclass initializers. The syntax is necessary for both

cases: there is no other way to specify arguments to base class
constructors, and there is no other way to initialize const data members.

Yet there is no stated preference for visibility. Consider the case where a
class definition has base class and data member of the same name.

class x {
int i;

x (int) ; ' -

}z

class y : public x {
const int x;
y(int);
}:

y::y(int) : x(10) { }

Since the only time the baseclass name is in scope as such is in the
constructor initializer list, and the only time a const member is
initializable is in the same place, there is a conflict.

4.3 Artifice in abstract declarators
Consider the following from the ANSI C specification:

In a parameter declaration, a single typedef name in
parenthesis is taken to be an abstract declarator that
specifies a function with single parameter, not as redundant
parentheses around the identifier for a declarator.

(X3J11 3.5.4.3)
This ﬁxhng covers the following case

typedef int t;
void foo(int(t)):;

And rules that foo is a function taking a pointer to a "function-returning-
int" as a parameter. It is not the declaration of a function taking an int

whose name is t. Yet it probably does not cover all the intended cases.
Consider the following direct analog:

typedef int t;
void foo(int (t(1)):

Langley x3j16/90-0084 11

et
el
iy

L10

oot
[I¥iAL
i
: L10
No doubt this is assumed to be the same sort of case involving a function

taking a pointei-to a “function-returning-int" as a parameter, but taking
an array of t whereas the former function took a single t. Yet the ANSI C
specification does not cover this case.

4.4 Conformance and Grammar

Experience with ANSI C seems to bear out the fact that rules posed in
the grammar tend to be implemented more uniformly than rules that are
not. For example, fewer compilers seem to flag vacuous declarations like

int ; /* illegal declaration */
than flag degenerate function declarations like
£O: /* illegal declaration */

(at global scope. Both are illegal. But one is tolerated by most compilers;

while one isn't. The latter violates ANSI C syntax, and. is almost always
., detected. o

/Oﬁzr rules that are stated in prose tend to be ignored altogether -- as
evidence of this consider that

typedef int t;
foo() { const *t; }

is illegal according to the rules, as is

typedef int t;
foo() { const a, t; }

but some compilers not detect any errors here.

In conclusion, language definitions that employ standard formal
techniques are more reliable. For example, parser generators can detect
ambiguities that are difficult to detect by hand. And reliable consistent

parsers can be constructed by independent implementors, allowing for
uniform and consistent user experience.

Clearly languages with "advanced" parser technology make construction,
modification, and transportability of programs harder. What is difficult
for the compiler to figure out is also difficult for human programmers to
figure out. Therefore, ambiguous specifications impose widely varying
standards of conformance on the C++ develoger in return for language
features that are harder to use and understand.

Langley x3{16/90-0084 12

[}
m$
]
|i::l:ll
L10

I

0661 Y0iLLIEL 60 390 anl

//

wil, 94043Q JoJJ2 3sJed, ‘@ aupli|t2eLetl ++6 //

WJOJJ? XWIUAS, ‘9 dujl 3|2 0D //

w3IX93U00 30 IN0 35} weded, ‘z aupy tyoa3Joz //

W P2323dx3 uaJed By, ‘IBYY JIIHE //

uo}3oun} pusy 3,Upip w'$9padAs jo asn Jadosduyy 9 U}) t+493 //
L 9U}) JOJJd XBIUAS :0°Z IU0dyd //

//

*adoss 1890] @ 318 48 } jo //

SUO}IBJB]I3P IYY IBYI S} I2UIJIHIP AJU0 3YL *xx9°0d y3jn Jedwo) //

//
e Xx3°|d .- //
<

0L uInad

oL = }UXxx

‘bad ,,SS819,, 'UBPP}Y 8} aweudadAy Idjou 2| // IXxXx X §88)9
Y () X

(

(01X

HeSr U]}

£1189 US}IuNy JO ‘3 40 UOYIRJEBIIIPAI 9 // 103)x
) QQujsuw

I¢ ¢} vy :3p19nd) X 88812
13 Juj} pepe N
le XX0°|

X1AN3JAV\PLPEX\:D

NY LISV
]
_-
_ .
/
weCIUPIX UL, JO UOEIJULSOPIJa 2L aupIsLUgristt 6/
wely 34043Q JOJJI IsJud, § WEIETTLECL ++8 /
§J0JJD ON 3|°2 W0JH0 /
§J0JJ? BU}peIsSE) *°rJOoJJR XWIUAs 2| ‘9 aun) tyaeyJoz /
3 0 UO}3IRJE|IIP @D ‘g U 449} /
8JOJJ? ON 30°2 0433 /
/
*JIAIMOY ‘4+) U} UO}IBJE]IFP UO|INN} § 8§ 18691 8} 31 /
-u0}39J9]99p UGJIOUN; 1969] ¥ 30U 8f I} ‘QLrEX ISNY 03 Bu}pJoVY /
+adoos 2WES Y} IV IS ‘X UV $¥ I JO UOLIBIRIIIPIY 1863) @ 0V 8§} 8§ /
. /
ee XX9°0d o< /
01 wININY
0L = }° XX
‘baJd ,,56919,, 'UspPiy 8} sweuadAy ijou ‘gi // Ixxx X 8§99
. 2/ Y G v
(
. ‘6 // {oi)x
) Qujs
9 // WX N
(*0304d *oun} a)quuojisanb Jo 3 jo *193p3J @831 g // H N
2 4 aup 39)ignd) x 858
1y uy papads
/e ¥%3°0d »

70661 ¥0:L1iEL 60 390 ANy X1ONIddV\PLTEX\:D NYTAYYH
L)
J.
\
/
wUOJ3IFUN} © J0U S} 399[Q0 PI118Iu L} BUFIELZTLETL w8/
$J0JJ9 XBIUAS Z PUF yXUIUAS UO}IRJB)I9P JuaunBJe, ‘ZL U 31°Z US4 /
wd0JJd XBIUAS, Z| Ui 1yo9Joz /
*§399[qo IJe s3dAI0304d UOIDUNG WY /
JUIYY OF SWIBS LUBW U} UOJIJUN-UOU O 11834 LI SV} 144993 /
SUOJIOUNS 9J8 3S9J SAULYI ‘yJ0OJJ UOJIRIRIIDP JUANBIR, gl Ul 07T U0 /
/
*5U0|39J8)29paJ 186911} 9q PINOM AJY3 95jMIYI0 Isnbjun 3Q IsNW SR /
9199 }J8A Aunp 9sNBIIq 9dA30304d UOJIFUNS B JO UOJIBJIE)IIP IY3 3q 3,U8D YL /
/
159dA30304d UOJIUN; JO (SJIT}1W}IJU} pIudJed Y3 jM) $399[Q0 JO LO}IRJL)I9Q /
/
ee XX3°2d - /
{
. 201’0l 01)9u00
PaJe)o3pun X ‘G duj)i} 2 lE"L ++B // Y Quys
paujsopun X ‘g RUl) 5} U040 //
syoe3dez // jodAyo30ud ® 3q 3,u8) 9| // 1((x33 ‘(x)3 ‘(x)})u0nJey
UpBW U0§3IJUN U} X JOQuAS paujjepun ‘g suj) $++93 // adAjojoud uojauny °gl // 10C2)3 (A} (X)3)Iu0D
paujsopun X ‘g aul] 30° U044 // 399[qo °g| // 1€0°) ‘(A3 ‘(x)3)Bujoy
17, 399[qo J82)3 *}L // 1€0° 10104005
8°'9 U0}329s Woup 3)\dwex3 //
/" . l06=T py=A ‘pgax 3L
ve XX3°¢d e // 1) 39014 popads
13) popads
ﬁ [3
AR b Awaxvu {(3v014 ‘3u} .uc_wm
ujew $
:2419d
3 v} japadAy X 888
/s Xx3°gd o/ /v X%3°2d ,
<

0664 Y0:LLigE 60 320 ANy

(Y1331 Jop paydadxe u} adAy jo 2 Juaunbue

pPa11ed B U0 }3ouUN; P} 4IPUN
1y JO3ONJISUOY JO) SIUAMUNEJIE MY} 003 JOJII
6 UOJIOUN} JO UOYIBIEYIIP 3|3} 1dwy BujuJen

B8 \oquAs paujjapun
() 404 1 39nd3s ‘adAy pusJado peq
()1:31 Joj Ppa3dadxd U} A3 jo 2 Juaunbye

89

X1ONIddVY9Lrex\:d
‘6 SUpY 3102 0D //
‘6 WY 172 oy //
‘6 Uyt 2oLE) B //
‘6 LT TLET) B /)
tyssyJog //
‘6 V) s+491 //
‘6 UpY 202 W0 //
‘6 UL 10°2 WD ““
U0}399s WoJj 9\dwex3 //
1/
«-Xx9°6¢d oo //
(
6 // (261
0L=y 3V}
) Quisu
i«
Jaup‘aupg
3419d
) | sse*n

/e XX°G

KYIXYVh

p3Ju199pun p ‘g UP1FL2 L) 448 /
PaU}JIpUN P JOJJY ‘¢ BUYY 3}°Z U0dD /
iyoedez /

JOJJ? Xxwuks ‘g auj) 3l /
pau}3Ipun p JOJJd ‘g dUpY 30°2 I /
/

§°9 UO}398 WoJ} 9)dwex3 /

/

eo Xx3°9d - /

‘s // {((£)91970p) (Py)
) Quje

13 Uy jopadh
Ju ¥x3°4d

fhwlf

0861 %0%LLiEl ‘¢ 390 any

Tt

|
L10

/"
WU0}32UNS-UOU 30 118 ‘LE UL 1493 //
© e uwes ctt ‘92 U se493 //
wpa392dx@ puvdadon ‘g2 Uil 1443 //
wide 3O UOJIBJBYIIPAI U} Y3ews|w adALy ‘g2 w1 14493 \“
/
w()Q JOj SIYIIBW JIUXI OMIy ZE FU}T 30°T U0 //
W (3C)P10A WOJF (GIPIOA 1193 JOUUBI WSIUTYIW BU}PROYJIIAC YLy 10°2 U0 //
b2 UpT 10°2 U0dy //
wJ}7}3UBP} § JISUOI/M §SU1I 5B Y30Q paU}}Ipdd-n $0°2 oJyo //
92 g2 12 ‘61 ‘8L I 07T IR ““

J039NJ3ISUOI § YI}M §5819 § 3}q}yodd $9)nJ 6ujdods 0°2 Y3 MOy I9}30N 174

/"

we XX'IW} .- /)
¢
LU0}38JB)29P-3J JO 1199 UOjIoUNG ¥ 2L // {(p)a
LU0 }38JE)I3P-3J JO 118D UOIJUNJ 3y *IE // 1(9)9
1189 voydung “og // 013
ip Q sS9)2
i3 9 sse)d

Y Qujsu

%10N3ddV)

we(s 94039q JoJJI ¥sJud, ‘92°€T VL 2°LL") +8 //
0°2 JOj 58 swes :|°Z JUOJJD //

syo93Joz //
$yo9Joz //
$yo93Joz //

w@ S$SB)9 JOj PIMO)1B JOIINJISUOD om: ‘61 U
w) §S8]19 JO} PIMO]]R JOIONJISUOD ONm ‘gl Ul
Ww0JJ9 XBIUAS, ‘gL ‘g 'y W

3WEU UBS 9y} O UOJISUNS ¥ YI}M pasnjuod Bujeq wody //

1(30)Q Q #5919

woj3oung 9z // 133 S sem

*ecuoj3oung g2 //

(p3aJoj swads) (3I99[q0 'pP# 12 // uﬂowm 3
9 3
L8399[Q0 PIT}18}3}U}-4198 JO UojIUNG ‘I °61 // HEL N
(pa2Joy swaas) ¢(adAjojosd uojoung *qy gl // H e PRIk
(pa9J0; swads) ¢adAjojoud uojaung ex ‘Ll // P
51 u¢m JapodAy

03

(33 ss919)3
) 3 In43s

«

{Qa

1(3Q $59)9)0
) @ IN43E

]

k]

137 88819)2
) 3 dNAs

/s XX3°L34U} o/

\GLrEXND

NYLXBYR

ol Joj paidadxe #dA3 JusunBJsy Yy U I0°2 IWOIYD
*06]8 Q°2 U} 1963) 'paM0)USIP

A)131911dx9 J0U U8 pus /JeuwedB oy3 03 BujpJoddY
*y'g UO|IO98 998 |°2 U} 1909) A149919

wiS}) Joaweded peqy 1 padeoapun ['y SUNELC2ULE") ++8
«()] 404 po3dadxe adAy JuaunbJe, fy up) L2 IU0II
wJ0JJ? XBIUAS, 'y Suj) 1Y993J0Z ,

wUjew uop3ouny Uy (pasoadxa, ‘y suj) $+493

{

{

i

[RN

.o XXJ°QIJU} o~

'y 1/ i«

[y309z48)[I}
e/ }

Yjo9T o=} U}
> Qup
/e XX3°03 M}

(
(

T065L ¥0:LLIEL 60 390 3Nt

wie AJBUn, Jo JuswnBJe adAY pR1eAUly LY ‘S ‘6E M)

wSUOLIOUNS O IP|SIN0 ‘PIJRIIPUN LA,y ‘0¢ W}
wels 94043q JOJJ? 3sJudy §£2 ‘61 ‘SL ‘LI ‘L v}

1:4°
niIS)) JIloweded Ul UOJIBWIOHUL A} JUIJILINSUL. 1 VIS
10"
150"

2y 'gy '68 'SE UL U0 $JOJID
939 ‘pooudJasadap Jid-uou ‘38}) Juaunbie peg °°°
WJ0JJ3 XUIUAS, ‘£2 ‘6L ‘Sb ‘1L L su)

9y ‘02 uJOJJI XUIUAS, 4y ‘0z suj)

J23383J3y 150) 3aq 03 SWAIS L7 U}
wp9393dx3 uojssatdxa, 4| Su})
wUo}32uN}-Ucu 40 1199 §I ‘LI ‘2 VN

9y ‘0% '9€ ‘2€ ‘62 ‘82 ‘L2 ‘6L 'SL ‘LI 'l uo sJ0JJd
939 'paoudJazaJtep Jid-uou ‘318}) JuaunbJe peg °°°
wddA3 pusJado peqy ‘49 ‘0y ‘9f ‘2¢ Ul

wIOJJ9 XOUAS, ‘6L ‘§L ‘LI ‘L dun

1yo93J0z //

1+493 //
10°2 wodyd //
10°2 W0y //
0°2 u0dy3 //
10°2 U04d

9°231U} 99§

XIGNIJVAPLIEXNED

NY TNV

ee XX0°23}U} o~

o uJn3

20)93 {(uu\Y3a) V)
n“wm~ CuUNEIu) 3V}
10323 1CuN\2Iud VL
$O0L3 CuUNLInd SV}
) vy
| . <
9 Bujssed Xovq SaW0d JeYs 1199 ‘D 118D Ly // (N
) O P
4
¥98q 55w0d IPYM 1189 ‘D 1190 gy // 10)(0e)D
) O} pPie
4
03 s3ujod 3} 3oym ssed) 1199 "6E // 1(94)9
) O pic
) <
JuswnbJe us sv J ssed J 1197 "SE // H &) h]
)} QL3 pic

/e Jo33weJed 3| PoJB1O9Q *2€ o/ 10)((s PIOA)IS) PIC
/s J933weJed INO/M PIJR193Q "I o/ 10)¢()3+) PIO

‘0g // €19 uInIaJ {(uU\D PI9tHIFIUEId 3 (ICCCICAL) PIOAIIN) PIC

€ 1CuU\D ASEay)3updd) ()2 plo
100" ' JRYD 35U09)JIuUjId UJAIX

{
£€3)€24)2
) €)so pjo

{
€2 39nJ38)(Je)J
Y Q% pio

<
OGN
Y)50 Pi©

4
HGM X
Y ()20 pio

{

9 9dAy jo Jo9fqo ue 8} 3 2 // NI
) (1o pje

14
X)
)} 9 0NN
/v XX0°23V} »

adA3 88 "U}JIp §I50) J UIYM UO mc_ncoaov ‘oues g2 //

6J8 U §8 J B BU}IoAXI UOJIdUNG § OF Jid @ s} 9 6L //

9 @ BuUjuUJINIIJI duny & 03 J3d ® 8} I °5} //

geoynade syl //

*9poo BWES JO UO|SJIA D jSU8 Joy

it
et i
welli

el
)
llul
L10

T0661 90311l 60 390 9Ny

0°2 §8¢ SWeS

wddN3oNJIS © 3q ISNW IPYS 3331y ‘9L U]
wdpOd 31qeYoBIJUN, ‘9L UL

wit asn as8a)d 'uojiedjsjienb Joy pasn *y ‘9L AU
WX Joquaw Joj Buyssjw Jajujod 393[qo Jo 393[qOn ‘9L U}

oo 9J053Q JOJJD 9SJRdy ‘9L BUPT 31°2TLE"L ++6 //

/7

th°2 o4yl //
//

1e493 //

1433 //

(Uoj3ouny § S | SRUIY3I Ajudgedde) //

10°2 049 //
10°2 o433 //

"W 03 IBUWIIIIPU} SWIIS 3} ng //

.ucwe:mga ue se , | B 6Upyel | @ BUJUJINIIJ UO}3IIUN; § jO UO}IBJUIIIP § //
3q PIN0Y 3} 4O ‘} 4 1 © YI|M PITJI9IIIU} 1 @ 3q PIN0I 3} 4O /

102400 Y3}M PITFIO}IJU} L © 30 UO}IGJR)I9P Y3 3G A1qeqoud pinoys SiyL
v XXITYIIUY o= //

HOLL
Y Quysuw

<
L(x*1 WU\PEu)Jupad

6J8 (yl)1 Y3}M UOIOUNy 3JB)O3P JO (0Z#0L)1 318D // (x $ 1M
(3l
HeUIPN]
CIx oy} wIn3ad 1) ‘uUNPX) $3ULId) () U goua¢uao 1
X U}
) 1 3vnas

) ()00} pioA

(00 'y JUYD ISU0D) VLI I LIAIXI

{02Zsx W}
f0=4)

lv XX3°934V} o/

XION3ddY\FITEXN:D

eespyy AL L/

NY XYYk
L]
)
l

/
Pa1JodaJd SJ0JJD QUS| 2 LE") ++B /
/
0°2 JOj §9 JWeS :]°Z JU0J}I
/
,U0}30UNy O3 30UJ99J BJQUE JO punoy 30U *JOJJd XBIUASy 12 YT 14993402
‘ /
WdTH1RFIJUS O3 ()X3IX PUj) I0UURI, B FUIT T+493 4
/
wpa399dxe U} adA3 jo | uawnblyy 8l YT :0°2 JU0J49
/
(oouapadaJd §336 Yoyym 4
‘50BU WES Y3 O I)QR}JBA JIGUOW § PUR $59)J ISVq © 8} AW 31/
4
cee XXI'GIJU} o= /

. ¢

10" 1AV A
) Quit

: {2

103 J9}3J Bjy3 s30p X Yapun "gy // €0IX 3 (3 39013)As:

i«

{(3 1801))A

9319

X JU} 3ISUOD
) x 9}1qd ¢ A sse°

€ id =}) (d upxs:

3¢
10X ‘

[XXI°CIJVY}

ﬂ
A
§
oo
[l

irell
I
""l
L10

0661 Y0:LL:€L 60 390 @nY

WU PUB 4JBYD SE PAJE)IIP Ly ‘) dU) F|Z W0 //

Pa3Joday SJ0JJd Ous|*2 g0 ++b //

. //

w9519 BUjyIowos s8 paJe)olp Arsnojaddd i, ‘8L AU l//

WUJ9 JO 3ONJIS JOj3 693 ONy 1yoalJoT //

£((48Y2)3092}5)UpJd 4,1, JOJ UOIIBJRIIIP dyawy, "8 U 493 //
*((3U})3092)8)3UpJd “paJeIIBPIY | "L AUPT 07T U0 //

: 1/

] *pappe //

UjBw @ pue $JOIONJISUOD AJUO YIM §°6 UO}IIDS U} d|dwexd 3yl s siyl //

//
+J2]}dWod 3yl Wodj §J0JJD @dnpoud //

plnoys pue ‘jenuew 3yl Uj YInS B9 PINJOW 2JIM ,,J0JJd, PIYJeU //

59U} *|°Z PUB 0°Z Y309 JOj PJISA A1JE21) “lenuew ay3 wolj uaxel //

pasn ApeaJie |

‘ uo}3Iju}opd
Uo}Iju}opad

1/
ee XX3°|JOPJO - [/

{

003X wU\PZu)Iupad
A A

Ix X

) (Qujew

(0 'y JYd I5U03)33UpJd UIAIXD

14
‘oe // 0
‘6L // 94
.. JOJJI 'Y // 1] 6uo) jopadAy
o |
)} A N4ys
v/ {1y JEYI JIpadAd
i«
X
e JOJJI Q) // 2= })uue
e JOJID 6 // i Jeyd
€ 1(9)3092}8 uJnIdJ)} ()} IV}
LL11A J8Yd
:3319nd
) X §89)2

IC) = }) wwd
{5 U} jepeily
/s XXO°|JOP.

XIQNIddV\GLIEXN:D

‘9 //
'S //
‘v //

NY gy

i
po3Jodad $J0JJ9 ON:1"2°lE") ++6
pa14odad 8J0JJ9 ON 2|°2 JU0J4HD ,
polJodad 8J0JJ9 ON $Y233J02 ,
poyJodad §40JJ9 ON 24433

oeacoaxyeuocm_uxh"o.mucOLvo\
\
\

ce XXI°(QJIPIO ~-

o«

{1 vy japadhy

Cix1) Q8

€ 1¢1)409z)8 WwnIJ) ()
) X 858

/s XX3°0J3PJI0 ,

L2}

£l

[Jossl
el
L10

0661 ¥0:1L3gl 60 390 9n} XION3ddY\QLPEX\:D NYTAYYH
L]
|
_ {
wem, 940j9q JOJJI ¥sJded,, ‘|| duiILt2tLEL ++6 // *5J0JJ9 OU §32939Q2|°2°2€°L ++B /
Wl JOQUaW 9390} 1dnpy, ‘9 UpTILT2uLEL w46 // *$J0JJI OU §3J9INQ |2 WO /
wdPA099J 3,uBD, ‘9 FURT |2 3W0Jpd // *$JOJJI OU §3I939¢ 14a93Joz /
w) 19G015 Sauapad 3 japadAl palsau, ‘9 dUPT 3|2 Iuodyd // *§JOJJI OU §39939¢ 4493 /
§J0JJI OU §393330 Yooz // . *8J0JJ? OU 839390 :0°2Z IU0JYD /
$J0JJI OU 83I9939¢Q 1e49) // /
$J0JJI OU §3I935Q :0°Z IU0Jyd // ev XXI°249PJO -+ [
//
.e XXI°EJOPIO <o [/
0 uJn3d
< Y Qugs
0 wIn3ay
) Qujeuw (
i =333
[¢ sy
49padA) 5@ A1UO 31Q}S}A 9Q PINOYS § $JOJJI °LL // 001 = 3 001 = 3
) (Ox:ix ' 1} g
) Ox
¢ .
Ox 134
asnaJd jo asnaJ 186311} :J0J4Jd 9 // 13 U} yepadAy I
dWeU j0 ISNIJ 1863} JoJdd g // 3} WEU ;0 ISNIJ 196} SJ0JIR // SR U
LREE R LRRRES
) X 88812) X 889)
1) U} popadAy 13 3y} gIpedd
/e XXI°EJIPIO 4/ [XXJ°2J3PJO

st

ol

