e e

X33 (b /90-0049

A Proposal to Revise C++ Subtyping
Rules

Alan Snyder

2 July 1990 (DRAFT)
17-May-90/23-May-90/29-May-90/1-Jun-90/13-Jun-90/25 -Jun-90/26-Jun 90/28-Jun-90/2-Jul-90

Introduction

This note discusses a proposed extension to the C++ subtyping rules. In C++, the
type “pointer to a derived class” is a subtype of “pointer to a public base class”. Sim-
ilarly, the type “reference to a derived class” is a subtype of “reference to a public
base class”. (To simplify the presentation, we use only pointer types henceforth;
reference types are handled similarly.) The proposed extension relaxes a restric-
tion on a derived class declaration in a way that is consistent with the standard no-
tions of subtyping in object-oriented languages.

Overview

In the “standard” view of subtyping in object-oriented languages, a subtype is per-
mitted to revise the interface specification of an inherited method by generalizing
the types of the arguments and/or restricting the types of the result. Such revisions
are type-safe.

The analogy to a method in C++ is a virtual member function; the analogy to sub-
typing is public class derivation. C++ does not allow either kind of revision for vir-
tual member functions of publicly derived classes.

Although C++ permits a derived class to “redeclare” a virtual member function
with generalized argument types, the derived class function does not override the
base class function; it cannot be invoked from the base class context. Instead, the
new function is viewed as a distinct instance of an overloaded function, almost as
if it had a different name than the base class function.

A programmer can “work around” this limitation of C++ by defining two member
functions in the derived class. One function has the same argument types as the
base class function. The other function is defined with the generalized argument
types. The function with the restricted argument types is defined to invoke the
function with the generalized argument types. This solution achieves the effect of
generalizing the argument types of a method in a subtype, at the cost of additional
housekeeping by the programmer and the execution cost of the additional function
call. ‘

Restriction of the return type of a virtual member fanction in a derived class is ille-
gal in C++. This rule reflects the fact that C++ overloaded functions are resolved
based on argument types, not return types. In this note, we describe a proposal to ex-
tend C++. The proposal allows a limited form of overloading based on return types.
This limited overloading can be used in a way similar to that described in the pre-
vious paragraph to provide the effect of restricting the return type of a method in a
subtype.

C++ Subtyping Proposal Page 1

An example

The proposed extension to C++ is illustrated by the following example:

class BB { ... };
class DD : public XX, public BB { ... };
class B {
int bl, b2, b3;
public:
virtual BB* f() = 0;
}:
class D : public B ({
int d1, d2, d43;
public:
/* virtual */ DD* f£();
}:

DD* D::f () {
dd* p = foo ():
return p:

}
“

The behavior we desire is as follows. We want the function D:f to be invoked when
the member function f is invoked on an object of class D in a context where the ob-
Jectis known as an object of class B. In this situation, we want the return value of
type DD* to be converted to the expected type BB*,

C++ currently considers the declaration of class D to be in error. In the current def-
inition of C++, a derived class function cannot differ from a base class virtual

member function only in the return type. The proposal relaxes this rule to permit v
the above example. . G A
&‘S §€{
S
The proposal 5\@ (}v“
B
The proposal is as follows. ¢

&

\

A
DI

(_?“'u(nc
N

ot
(77
Mo¢ C++ Subtyping Proposal 9
|§ {4 Tom’ﬂro ' g? Al 4
e

o(M

G *
Px

Vo to v

We retain the rule that a class cannot declare two or more member functions with ‘ J
the same name and argument types but different return types. However, we exten W 4ir
C++ to allow a derived class to declare a member function that differs from a virtu- (ﬂ (4
al base class member function only in the return type, just as it now can for a non-

o V! ’
virtual member function. (Note that if a class is defined in current C++ with multi- e @ 4 Wf
ple base classes, there can be more than one base class function with the same o {{07(

name, same argument types, but different return types.) i

We define the new member function to override the old member function(s). That
is, an invocation of the member function in a base class context on an object of the
derived class will invoke the new member function. The return value will be con-
verted to the type specified by the member function declaration in the base class.

For the derived class to be legal, an implicit conversion must be defined from the
new return type to each old return type.

As in current C++, the old member functions will be hidden in the derived class.
Thus, a class can contain at most one visible member function wi given name

1y tos Gx 0 gf Ve is wnom i@ is Dre K%
" hete ¢ V¥ 4/‘/ / >"Jlo{4 ’

. oA VJ\OI(” E*
4 Ve 5 o, Page 2

’ and argument types. As in current C++, the derived class must either define the
function or declare it pure.

In the above example, invoking f on an object of class D in the context of class B
will invoke D:f, and the return value will be converted from type DD* to type BB*.

Implementation

The main implementation issue to be addressed is how to cause the conversion
from the new return type (DD*) to the original return type (BB*) when the virtual
member function (f) is invoked on a derived class (D) object from the context of the
base class (B), but not when it is invoked from the context of the derived class (D).t

The implementation is fairly straightforward, given the right perspective. The ba-
sic idea is as follows. Currently, when a virtual member function is overridden,
the C++ compiler reuses the same vtable entry for the new member function. In the
77 case where the return type is different than the return types of all of the base class
/ \\ member functions, the compiler will allocate a new vtable entry for the new mem-
o \ ber function. (If the return type is the same as the return type of one of the base class

Vi o functions, then the vtable entry for that function can be reused.) For each of the old
/ vtable entries (except the one that is reused, if any), the compiler creates a function
& definition. The function will invoke the new virtual member function on this and

A J \Q . perform the appropriate conversion of the return type.
A W

In the example, when the compiler sees the declaration of fin D, it assigns it a new
N *5 vtable entry. Thus, there are two vtable entries. One is defined for class B; we
. will label this vtable entry B#f. The other is defined for class D; we will label this
N AN x T\ viableentryDa

The compiler also defines two function symbols: for explanatory purposes, we will
X \vﬁt‘ ’ \\\{W call these functions D::B::f and D:f. The compiler will create a function defini-
rb} \ tion for D::B::f that invokes f on this and converts the return value from type DD* to
type BB*; the address of this function will be stored in the B#f vtable entry for class
a\,\ q)‘“ = ’ D. The address of function D::f will be stored in the D#f vtable entry for class D;
N\ \o\\ \\Q ¢ {\ ¢ rlx)o ;\ctual code for this function will be generated until a function definition for
a)\‘ \O ::f is encountered.

\
\‘\ﬂ \¢ The definition of D::B:f is effectively:

\k&\ \}' g dd *p = £ ()7 // call the virtual member function
\QS‘\ \\“ return p; // converts DD* to BB*

} 4:
(A)ow,ﬂo" s {

C++ Subtyping Proposal Page 3

An

»

A

A compiler will often be able to generate better code for this function as a special
case than it would by simply compiling the above definition.

The compilation of a definition for D::f is handled as normal. The function defi-
nition for D:f will be accessed via the D#f vtable éntry for class D.

The following diagram illustrates the implementation of an object of class D as de-
fined by the above example:

%
object of class D

—_— bl
b2
b3 vtable for class D

B#f —+— D:B:f
di D#f —+— D:f
d2
o
e ————————————————————————————————

Yy

Note that D: f, the function defined by the programmer, is invoked whenever the f
member function is invoked on the object in a D context. The compiler-supplied
function D::B:f is invoked whenever the f member function is invoked on the ob-
Jectin a B context. The compiler-supplied function D::B::f invokes the program-
mer-supplied function D:f via the D#f vtable entry and then converts the return
value to the expected type (BB*). Alternatively, D::B::f could call D::f directly. In
this case, each subsequent overriding of fin a derived class of D would require a
new corresponding compiler-supplied function for the B#f vtable entry.

The implementation cost of this solution is low: one extra compiled function and
one extra vtable entry. The indirection can be optimized, or eliminated by compil-
ing two copies of the programmer-supplied function, one with and one without the
conversion of the return value. In the (likely) case where no actual conversion is
required between the two return types, then the two vtable entries can be collapsed
back into one, and only one function need be compiled.

?nalogy

The implementation issue we have discussed is the pointer conversion required up-
on return when a member function definition is shared (because it is virtual) by a
base class and a derived class that declare different return types for the same func-
tion. Upon reflection, one can see that this conversion is analogous to the pointer
conversion required on the implicit this argument when a virtual member function
definition is shared by a base class and a derived class. Not surprisingly, the

same implementation technique can be used for the this conversion. This tech-
nique is described by Michael Ball in the June 1990 issue of the C++ report, and in

R o §10.8¢c of the Annotated C++ Reference Manual. Using this technique, the derived
4 1 3 W class vtable points to a different function (called a thunk) which converts the this
/c\Ni'k pointer and then calls (jumps” to) the base class function.
\
I \bo('l
C++ Subtyping Proposal

Page 4

M ' Jho? hout . A% A //)

2% B’ ‘[O?
)k\» ’ }()/
Pointers to members

How does the above proposal affect pointers to members? The old and new member
({9 functions are different members, and have different types. They can be individu-
&\0{”’ / ally named by pointers of different types.t

\}0\\ However, it is possible to extend the definition of pointers to members to allow con-

" \»\ [4 version from a pointer to the old member function to a pointer to the new member

(\la ‘(\0 ﬁ function. Suppose a base class B declares three virtual member functions f1, f2,

" }“) z; \‘\ and f3 of type FT=function returning T, and suppose a derived class D redefines f1

0 \“\) i andf2tobe of type FU=function returning U, where an implicit conversion is de-

«{\Q ‘ R .\(' fined from U to T. We propose to allow conversion between pointer to FT member of
XX B and pointer to FU member of D. This conversion makes sense only if the actual

R
« S\\Q value is f1 or f2. The implementation would have to convert between two corre-
sponding pairs of values, one being the B:f1, D:fl pair, the other the B:72, D:if2
pair.
A vgriation

‘ \l(j\‘o v We have considered a slight variation of the above proposal. In this variation, we
/\/\r(" \ allow the programmer to provide the definitions that override the old member func-
U)(\o /\’ tions, instead of the compiler providing implicit definitions.
K 6 \703 The only issue is how the programmer should name the old member functions
& \ Q‘ O’V«a J‘W; when providing the new definitions. One possibility is to introduce a compound
\ﬂ 0 \477 v Y name syntax, such as the D::B:f notation used above. (This notation refers to the

f\4 oy definition of fin D that overrides the definition of fin B.)
\\§ - q‘l/v\/\‘ \ &u ¢ Consider the following example:
{ 0
AT A WAL
(_ (\@‘ o 6‘. class X { public: virtual int £ (3 }; LJ/’
[\ 8 g /f(class Y { public: virtual char £ (); }: 0 2\ P use
\\\, 17(0,{ 0\& class 2 : public X, public ¥ { Mo 44 ff‘) ,/ﬁ”‘/\h,r
‘\)\) public: . %7ﬂ{/ //MM‘\ '\7 » C
O)VV* k float £ (); // new functaon ,/ _[[(,«))
N +\h int £ (), // overrides X::f Nﬂ% ,{,,w(
Vs G\J\Q &_\9 char £ (); // overrides Y::f @
’\0 };)
) float Z::f () { ...)

int Z::X::f O (... }
char Z::Y::£ () { ...}

Class Z contains five member functions named f. Their full names are Z::f,
Z:X:f, Z::Y £, X:f, and Y:f. Function Z:fis invoked when f is used unqualified

C++ Subtyping Proposal Page 5

in the Z context. Function Z:X:f overrides X:f; it is invoked when f is invoked on
aZin an X context. Function Z::Y::f overrides Y::f; it is invoked when f is in-
voked on a Z in a Y context. There are three vtable entries for class Z.

Under this variation, to get the desired behavior in the original example, the pro-
grammer would explicitly define the function D::B::f above. The issue of compil-
ing such a function efficiently would have to be addressed by an implementation.

Analysis

The proposal achieves the effect of refinement of virtual member function return
\’Q types that are pointers to class instances, which is consistent with the standard sub-
M typing rules for object-oriented programming languages. In this case, it is not un-
: reasonable for the programmer to view the base class and the derived class as
. providing two definitions for the same “operation”, just as with ordinary overrid-
ing of virtual member functions.

However, the proposal is not limited to return types that are pointers to class in-

9 stances. It allows any refinement such that there is an implicit conversion from
A / the new return type to the original return type. All the C++ compiler needs to know
is how to convert from the actual return type produced by the derived class function

X ' s J)\ ™ to the expected return type defined by the base class. Thus, for example, the base
\ J L class could define a function to return a float, and the derived class could redefine
F Q@ the function to return an int. 2 W
V¢ WL
9 &

In this way, the proposal goes i onventional object.-orient,ed/'7

programming, In effect, it allows a virtual member function to Feturn semantical——.
T_V—W%ﬁlues depending upon the context of the invocation.t Allowing the pro-

grammer to specify arbitrarily different code for D::f and D::B:f (the “variation”)

is even more alien to object-oriented programming.

Acknowledgments

This proposal has benefited greatly from discussions with Peter Canning and

Dmitry Lenkov. Dmitry suggested the impl mentati?: described in this note.
i /\[f saul ?/ 54 *

M(\(’r age) (Zta

@l

C++ Subtyping Proposal Page 6

