Accredited Standards Committee Doc No: X3J16/90-0045
X3, INFORMATION PROCESSING SYSTEMS"® Date: July 6, 1990
Project: C++ Extensions WG
Ref Doc: X3J16/90-0042
Reply To: William M. Miller

Position Paper

on

RESUMPTION IN EXCEPTION HANDLING

Since I've been stirring the pot regarding resumption in exception handling for over two
years (I wrote an article advocating it in the May, 1988 issue of Computer Language
magazine), 1 feel constrained to contribute my $0.02 worth.

I basically agree strongly with the position put forth by Martin O’Riordan in his email
x3j16-ext-29, except that my proposal is a little less extensive than his. Judging from
what he wrote there, he wants to extend the scheme presented in the most recent
Koenig and Stroustrup paper (X3J16/90-0042, henceforth “K&S") to allow for resumable
and non-resumable throw clauses. I would be content merely to provide a
resumable _exception class as part of the standard library. The net result would be
approximately the same. TI'll put forward a specific proposal at the end of this
document, but first I want to deal with some of the objections to resumption and
related issues put forth in K&S and in Bjarne’s email touching on the subject,
x3jl16-ext-20.

In that letter, Bjarne calls resumption “a complicating extension that in my opinion has
no value and violates the fundamental notion of what I'm trying to do.” With no
disrespect intended toward Bjarne, the issue of the value of resumption and whether his
goals are the correct ones is open to debate.

Whether resumption indeed “has no value” should be decided by the objective criterion
of whether there are useful applications of the feature, not on the basis of opinion.
I claim that there is already an existence proof of the usefulness of resumption in the
current definition of C++, namely the set_new_handler() functionality. The
nev_handler function is called when an allocation fails because the heap is full; if the
nev_handler function returns, the allocation is retried on the assumption that some
memory may have been freed. This is resumption, pure and simple! Since section 12
of K&S explicitly lists “memory exhaustion” as one of the intended standard exceptions,
resumption clearly has value in this context as demonstrated by its inclusion in the
current definition.

*Operating under the procedures of the American National Standards Institute (ANSI)
Standards Secretariat: CBEMA, 311 First St. NW, Suite 500, Washington, DC 20001

As another example, consider a personal computer application that needs to access a
floppy disk. If no diskette is present in the drive, the user must be prompted to
rectify the situation, or perhaps the entire program needs to be aborted. This is exactly
the kind of situation for which exceptions are intended, since the floppy driver code
which discovers the problem has no way of determining how to prompt the user: is it
a GUI application, in character mode, or even running over a communications link?
Should the prompt be in English, French, or Japanese? Etc.

It’s apparent that the decision of how to handle the problem should be made by the
calling application; if there are a number of places in the program that do floppy 1/0,
it will be most convenient to attach the handler to a central location, i.e., one that will
be on the stack regardless of which call path discovers the drive to be empty.
However, it is obviously impractical to discard the entire calling context from the
central dispatcher down to the caller of the floppy driver, as would be required by the
termination model. Resumption provides an ideal solution to the dilemma -- the handler
initiates a dialogue with the user, and if the user indicates that the fault has been
resolved, the handler simply returns to the driver that threw the exception and the
access is retried. The alternative without resumption is either massive redundancy,
forcing each caller of the floppy driver to have its own handler, or abandonment of
exception handling altogether in favor of a less convenient error handling methodology.

If the K&S proposal is extended to include asynchronous events -~ an idea I will address
further below -- the resumption model becomes not merely convenient but a logical
necessity. I am not privy to the detailed inner workings of the Microsoft software
mentioned by Martin O’Riordan in x3jl16-ext-29, but he indicates that there is a
substantial need for resumption in their code, as well. My conclusion is that, far from
“having no value,” there are a number of contexts in which resumption is eminently
useful.

Bjarne continues in x3j16-ext-20, “Adding multiple entry points for functions would be
a logically similar operation to adding resumption.” Obviously, I disagree with that
analysis. Instead, I would argue that forbidding resumption is more akin to introducing
multiple inheritance without virtual base classes. Virtual base classes clearly complicate
both the definition and the implementation of inheritance, and there is a large set of
applications which can get along very well without them. Nevertheless, they were
included in spite of these considerations, presumably because the set of applications in
which multiple inheritance could be used is larger as a result.

The parallels are strong. The arguments against resumption are similar: K&S section
7 talks about complications, x3j16-ext-20 talks about “diluting a clean model of what
the EH mechanism does.” Yet, as demonstrated earlier, the set of applications addressed
directly by exception handling would be measurably expanded by including (or rather,
by not precluding) resumption.

Turning now to the K&S paper itself, the first objection raised is found in section 7:

if an exception handler can return, that means that a program that throws
an exception must assume that it will get control back. Thus, in a context
like this:

if (something_went_wrong) throw zxc();

Page 2 Document X3J16/90-0045

it would not be possible to be assured that something went_wrong is false
in the code following the test because the zxc handler might resume from
the point of the exception.. With resumption possible, throwing an
exception ceases to be a reliable way of escaping from a context.

This idea is presumably the grounds for Bjarne’s assertion that resumption “violates the
fundamental notion of what I'm trying to do.” Frankly, 'm very surprised that this
argument is still found in the current version of the K&S paper. As far as I know,
no one in the resumption camp advocates making every throw of every exception
resumable. I’ve certainly stated my position on that issue numerous times, both with
Bjarne physically present (at the USENIX C++ Conference Advanced Topics Workshop)
and in online conferences he reads regularly (on BIX). In fact, the code in my paper
(cited as reference 11 in K&S) provides the capability of determining on a per-exception
and/or a per-throw basis whether resumption is permitted. Lesi there be any confusion,
my proposal DOES NOT ALLOW FOR RESUMPTION FROM A PLAIN VANILLA
THROW; it is as “reliable” as in the K&S version. This argument is a straw man.

The paper continues:
Exception handling implies termination

This appears to be nothing more than assuming the conclusion, an attempt to define the
opposing position out of existence. It is evident that others have a broader definition
of the term ‘“exception handling,” and there is nothing in the paper or eisewhere that
I’ve seen to attack the legitimacy of a more inclusive understanding.

Next comes the first of two suggested alternatives to resumption:
resumption can be achieved through ordinary function calls. For example:

void problem X handler(arguments) // pseudo code

// e & &
if (we_cannot_recover) throw X("Oops!");

}

Here, a function simulates an exception that may or may not resume. We
have our doubts about the wisdom of using any strategy that relies on
conditional resumption...

Is this statement to be interpreted as second thoughts about the new_handler functional-
ity?

but it is achievable through ordinary language mechanisms

While true, this argument does not seem to be terribly persuasive in light of the entire
exception handling proposal. In fact, everything provided by the K&S proposal is
“achievable through ordinary language mechanisms,” except for invoking the destructors
of automatic objects in discarded stack frames. If, in fact, the spirit of minimalism
is to be the deciding factor on resumption, we should ask whether such an elaborate
proposal as K&S is warranted; perhaps instead we should simply require that C++
implementations of longjmp() be defined to do the requisite cleanup activities and leave
the rest to “ordinary language mechanisms?” (To paraphrase the last sentence of section

Document X3J16/90-0045 Page 3

13 of K&S, throwing an exception is “simply an obscure way of spelling longjmp().”

)

I'm not really advocating that we do away with exception handling and just rely on
longjmp(), of course; my contention, though, is that the reasons that make an ambitious
exception handling specification desirable are also applicable to the inclusion of
resumption in that specification. What is gained by adding exception handling to the
language instead of leaving it to implementation by ‘“ordinary language mechanisms?”’
To my mind, the premier advantage is that every library will be expected to use the
same error handling facility. The benefits listed in section 13 of K&S really only
accrue on the basis of widespread, indeed, near-universal use of the mechanism
provided, and that popularity depends on a) the guarantee that the facility will be
present, ie., part of the language, and b) the fact that it’s easy to use. We've already
seen that there are a number of applications for resumption -- why should it be an
orphan stepchild, subject to the same sort of roll-your-own fragmentation that the K&S
approach alleviates for the termination case?

The K&S suggestion, that is, to rely on auxiliary functions to provide resumability, is
a major complication over incorporating a resumption capability directly into the
exception handling scheme. Consider the number of entities (names or independent
pieces of code) involved in implementing resumption in the two approaches: in the case
of a built-in resumption capability, there are only two, the specific exception being
thrown and a handler block for it. Using the suggested substitute, even assuming a
management facility like that described in K&S Appendix G, there are at least four: the
exception, the handler, the auxiliary function, and the stacking class object. Further-
more, unlike the built-in case, there is no organic connection among the entities: they
are separable. The stacking class object is not necessarily coterminous with the “try”
block, and the auxiliary function is, of necessity, completely disjoint from the handler
block which will be invoked if the auxiliary function decides to throw an exception
rather than resume. The potential exists for mismatch among the pieces; no such
mismatch is possible if the handler block itself contains the code to decide whether
resumption is possible or not,

To summarize, relegating resumption to “ordinary language mechanisms” while providing
a full-blown termination facility is inconsistent and gives unnecessarily short shrift to
applications requiring resumption, perpetuating idiosyncratic error handling and giving
rise to potentially buggy client code.

The next argument raised in K&S against resumption describes possible bugs introduced
by resumption:

Consider, for example, an exception handler trying to correct an error
condition by changing some state variable. Code executed in the function
call chain that led from the block with the handler to the function that
threw the exception might have made decisions that depended on that state
variable. This would leave the program in a state that was impossible
without exception handling; that is, we would have introduced a brand
new kind of bug that is very nasty and hard to find.

While it is true that resumption, like nearly any new feature added to a language, will

allow new and improved bugs as well as new and improved correct processing, the
scenario described is not very plausible. Many resumable exceptions will deal with

Page 4 Document X3J16/90-0045

problems in the program’s environment, such as the heap or a floppy disk drive, and
not with variables and objects directly visible to the program. Repair of these
environmental conditions should have no impact at all in already-executed code. Most
other resumable exceptions will have a narrowly-defined interface between the handler
and the throw point: the exception itself will carry the data about the problem and the
proposed solution. Using some global state variable as the interface is a poor
programming practice and unlikely to occur in code written by anyone who knows what
he/she’s doing. The general rule in the design of C++ has been to give knowledgeable
programmers power to do their job better with reasonable safety against accidents, not
to try to prevent inept programmers from making a mess of things. Resumption falls
squarely in the middle of this tradition.

K&S continues with another suggested alternative to resumption:

In general, it is much safer to re-try the operation that failed from the
exception handler than to resume the operation at the point where the
exception was thrown.

This argument would have mo:< weight -—- indeed, I think it would be decisive -~ in a
single-level propagation scheme like those desciibed by Mike Tiemann (G++) and Rob
Seliger {Extended-C++). However, it is a fundamental assumption of the K&S model
that “there are often several levels of function calls between the point of error and a
caller that knows enough to handle the error” (section 13). Consequently, retrying from
the handler is potentially both expensive and error-prone. The expense is obvious:
quite a great deal of processing may have occurred in the discarded functions that must
be repeated in retrying from the handler. The possibility of bugs arises because of
potential duplication of actions that should not be repeated. Clearly, if interaction
with the user occurs in that code, the integrity of the user interface will be violated
by the presence of redundant prompts or notifications. Other bugs may result from
the unintentional repetition of initialization or serialization code. In sum, retrying will
be more expensive than resumption and not demonstrably less buggy.

The next objection is based on complexity:

If it were possible to resume execution from an exception handler, that
would force the unwinding of the stack to be deferred until the exception
handler exits. If the handler had access to the local variables of its
surrounding scope without unwinding the stack first we would have
introduced an equivalent to nested functions. This would complicate either
the implementation/semantics or the writing of handlers.

While it is true that deferring stack unwinding until after the handler has completed
its execution will indeed add to the complexity of the implementation, the problems are
neither novel nor insoluble, having been dealt with successfully in numerous other
languages. 1 have designed a simple, portable approach to allow handlers access to
local variables in a C-generating implementation like cfront, and Andy Koenig has
agreed that it was feasible. (If anyone is interested in details, please ask; this
document is long enough already that I don’t want to include it just to show that it
can be done) The real issue is not the added complexity, which is relatively minor,
but whether the complexity is worth it. On that count I have little to say other than
to refer to the arguments I've already made: that there are real applications for
resumption, that the alternatives are unpalatable, and that resumption ought to be

Document X3J16/90-0045 Page 5

judged on the same basis as the other features of the exception handling scheme: new
language syntax, runtime type representation, and special storage management are all
significant “complications” beyond simply fixing longjmp().

Another factor bearing on this issue is that, as Martin pointed out in his letter
x3j16-ext-29, there is an offsetting simplification that results from deferring stack
unwinding until after the handler has completed: there is no need to do a copy of the
operand of the throw, eliminating the complex storage management issues involved.
Since the stack frame of the throw point is still valid, a reference in the catch clause
can refer directly to the thrown object.

The final issue raised by K&S is contained in section 9:

Can exceptions be used to handle things like signals? Aimost certainly not
in most C environments. The trouble is that C uses functions like malloc
that are not re-entrant. If an interrupt occurs in the middle of malloc
and causes an exception, there is no way to prevent the exception handler
from executing malloc again.

A C++ implementation where calling sequences and the entire run-time
library are designed around the requirement for reentrancy would make
it possible for signals to throw exceptions. Until such implementations are
commonplace, if ever, we must recommend that exceptions and signals be
kept strictly separate from a language point of view.

There are two problems with this argument. The first is that it assumes something
that X3J16 has not yet decided: that C++ will impose no tighter environmental
restrictions than are embodied in current C implementations. I don’t think that’s a
reasonable assumption. If the committee adopts a position soon (this year or early
next) that libraries and calling sequences must be reentrant, that will give implementors
at least two years’ notice of the requirement in advance of the effective date of the
standard, a period that should be long enough not to inflict undue hardship even on
existing implementations desiring to be standard-compliant. Don’t forget that we're not
just descriptive of current practice -- the very fact that we are considering new features
like exception handling is implicit recognition of our prescriptive role. Will “such
implementations [ever be] commonplace?’ They will if we require them to be.

The other problem is that the argument assumes that the (admittedly draconian)
requirements placed on signal handlers are too strict for C++ exception handlers. I
claim that, even if the committee chooses to live within the limits of the C environ-
ment, the restrictions on signal handlers are no more burdensome in C++ than they are
in C -- that is, that someone writing, say, a SIGINT handler would write exactly the
same code as if there were an interactive_interrupt (resumable) exception available,
except that he/she would have to learn the C library interface instead of being able to
use the built-in features of the C++ language.

This latter point really gets to the heart of the reason I favor allowing resumption in
the exception handling scheme. Adding exception handling to the language is a
marvelous opportunity to bring simplicity to chaos, to unify overlapping, redundant, and
inconsistent features. I fully expect that exception handling will eliminate the need
for C++ programmers to learn about setjmp/longjmp, errno, and various out-of-band
function return values. Given the fact that there are applications for resumable

Page 6 Document X3J16/90-0045

exceptions (I consider that to be beyond dispute; the argument is over whether to
support them or not), it seems much preferable to incorporate them for a small expense
into the standard mechanism than to relegate them to an ad-hoc, mostly redundant
parallel mechanism (auxiliary functions like new_handler). And, assuming the existence
of resumable exceptions, the redundancy of C signals is glaringly apparent, so that’s
another C-ish feature like longjmp() that can be subsumed and ignored. Exceptions,
resumptions, and signals are all very closely related -- why live with the complexity of
three separate mechanisms that do very similar things when one mechanism can do it
all?

Having dealt, I think, with all the objections that have been levelled against resumption,
at least all the ones I've seen in print, I'd like to conclude this document with a
specific proposal. The change to the K&S scheme is small, requiring no syntax changes:
all that is needed is to defer unwinding the stack until after the selected handler
finishes its execution. Given that one modification, resumption can then be imple-
mented by means of a standard library class, as follows:

class resumable exception {
public: -

resumable exception();

int toss();

int resumption permitted();

void resume(int = 0);
private:

int toss_on_stack;

struct résumption {

int valj;
’

With this definition (the implementation of which is described below), the floppy drive
access example mentioned at the beginning of the letter can be programmed as follows:

class floppy_door_open: public resumable exception { };

void main_loop() {
try’ {
// dispatch on events/commands/whatever

catch§floppy door open& excp) {
if (excp.resumption permitted()) {
grintf("Floppy door open: retry (Y/N)? ");
f (getchar() == 'Y?)
excp.resume(); // will not return

printf{"Flopgy access aborted.\n");

// Falling off bottom of handler => termination
} // catch(floppy_door_open&)
// for (;3)

} // main_loop()

/...

Document X3J16/90-0045 Page 7

void floppy write(const char* buff, size_t count) {
ppy door open excp;
whi e (floppy_door_is_ open)
excp.toss();
5; Floppy door now known to be closed

}

Here is the implementation of the resumable exception class:

resumable_exception::resumable_exception(): toss_on_stack(0) { }

int resumable exception::toss() S
tossTon stack = 1; // allow resumption
try

throw *this;

catca (resumption& r
toss_on_stack = 0; // disallow resumption
return r.val;

}

int resumable_exception::resumption_permitted() {
return tosSs_on_stack;

void resumable exceptlon tresume(int val) {
if (!toss_on_stack)
terminate(); // illegal resumption
resumption r;
r.val = val;
throv r;

A few comments on the resumable_exception class are in order. The purpose of the
toss_on_stack data member is to provide a per-throw choice of whether resumption is
permitted; simply throwing a resumable exception does not allow resumption. The
only way resumption is permitted is by a) using a resumable_exception type and
b) using the member function toss().

Resumption is accomplished in the resume() member function by throwing the nested
private struct resumption. This exception is caught in the toss() member function,
which is still on the stack. When the catch clause in toss() exits, the stack is
unwound back to the return to the caller of toss(), effectuating resumption.

This process might be clarified with a depiction of the stack after calling resume().
Given the floppy drive example, the stack will look like this (earlier in the stack is
toward the top of the picture) immediately prior to the return r.val statement in
toss():

Page 8 Document X3J16/90-0045

main_loop()

floppy write()

floppy_door_open::toss()

throw(floppy_door_open)

main_loop$catch(floppy door_open&)

floppy_docr_open::resume()

throw(resumption)

floppy_door_ open::toss$catch(resumption&)

The return from the catch clause in toss() will exit the handler, unwinding the stack
back into the main frame for toss(), which then returns normally to the caill from
floppy_write(). Note that resume() must be implemented via throw in order to
achieve full generality -- the catch clause in main_loop() might have instantiated
destructible auto objects during its processing, and these must be cleaned up prior to
the return to the thrower.

The resumption object thrown by resume() has an integer member, used to provide a
primitive narrow-bandwidth interface between the catch clause and the throw point.
This will be sufficient for many applications (e.g., to distinguish between resumption to
retry the action and resumption to ignore the problem, where such a distinction might
make sense). Of course, it is possible to put additional data members and member
functions into the class derived from resumable exception in order to provide as
extensive an information flow as needed by the application at hand -- since the thrown
object can be passed by reference to the catch clause, changes made to it can be
interrogated by the throwing function after resumption.

In conclusion, then, my position is that resumption in exception handling is not very
hard to implement and meets real needs; I hope we can agree on a specification that
accommodates those needs rather than an artificially limited one that discriminates
against them. I'll look forward to additional discussion in Seattle.

Document X3J16/90-0045 Page 9

