L3 . -

¥ 90-001/
Exception Handling for C++:
An Opinion

Bob Fraley
Hewlett~Packard

March 7, 1990

The paper "Exception Handling in C++" by Koenig and Stroustrup caused some
concern about the intended use of the facility and how to best achieve that
purpose. This paper presents some ideas on exception handling, but falls
short of proposing a complete exception facility. Note that the author has
not tried to implement these ideas within a C++ environment.

The first question is: what is the purpose of an exception handling
facility? The proposal follows along the lines which are popular these
days: post a handler that will intercept an exception notification from

any procedure level within the indicated computation. One must ask why
this is being done. For example, a library routine might return an array
out of bounds exception. The caller, who 1s totally unfamiliar with the
implementation of the library routine, has no idea as to why this exception
occurred, and generally doesn’t know whether it occurred in a high-level
procedure or 27 procedure calls deep within its implementation. Such a
caller is unlikely to know how to respond differently to an array bounds
violation, a division by zero, or a user-defined "symbol not found in table"
exception in such a situation. The only purpose for distinguishing the type
of exception is to allow the caller to serve as an error reporting facility
for the library routine. It seems unreasonable to ask each calling program
to create a library diagnostic facility.

Taking an even higher-level view of what is happening, the only reason that
the calling program needs to intercept an exception generated 27 procedure
calls deep within a library is that the author of the library routine was
sloppy and didn’t take care of the errors within the code. Rather than
providing a facility that will help the caller deal with the library
writer’s mess, it might be better to provide the library writer with a
facility that will help in cleaning up the mess.

Some situations that occur within a library routine need to be reported to
the caller. These seem to fall into three categories:

1. Something happened, and the function which you asked for can’t be
completed.

2. A failure of some specific sort occurred.

3. Several actions are possible, and there is insufficient information
to select one.

The first form can be used for any failure, and should be used when the
other two forms are inappropriate.

The second form only makes sense to report to the caller if its meaning can
be expressed in terms that the caller can understand. In other words, it
must be explainable in terms of the abstraction that the called object is
providing. An exception "Too many input values" can be understood by the user
of a table handling package, while "Array reference out of bounds" could be
caused by some programming error unrelated to the user’s view of the

function, perhaps in an array unknown to the caller.

The third form is characteristic of the situation where the library routine



is capable of resuming execution if some additional information can be
provided. This is dismissed in the Koenig and Stroustrup paper, but will
be considered here.

Why do we need an exception handling facilit{ at all? It is used to
simplify software. One could imagine a pointer dereference syntax that
requires the programmer to specify a statement that will be executed if the
pointer is null; one cannot imagine wanting to program in such a language
or read programs written in it. The same can be said for needing to
explicitly specify the error action on add, divide, and assignment
operations. As the code becomes higher level, the same can be said for
the use of library packages.

There are two objectives of the exception handling facility. The first is
to make software more reliable through improved handling of error
situations. The second is to do so conveniently. To assist in the first
task, the exception facility should help the programmer realize what
exceptions can occur and whether they have been handled.

Abstraction of Exceptions

For C++, it is particularly important to constrain the exceptions which can’
occur within a specific procedure./ For example, a programmer may be =~
writing ‘software knowing only the abstract class, not the various
implementations of that class that might be called, since there may be many
and some might not be written yet. Without standardization of potential
exceptions provided by the abstract class definition, the program writer
won’t know what exceptions need to be considered. Furthermore, similar
situations could arise in different implementations but be given different
names, so that a program that is capable of responding to an exception
won’t be able to do so.

One might ask why the caller should even be concerned about the possible
exceptions. They can just be allowed to pass upward, and not be handled at
this level. Someone else can take them. Many times, however, the program
close to the exception can deal with the situation in a better manner. At
the specific point that the exception occurred, it might be irrelevant.

The function could not be done; too bad. The main objective of the current
function can still be achieved.

Exceptions vs Debugging

For many, the notion that many different exception situations create a single
exception condition, as would be necessary when an abstract class dictates the
available exception conditions, is undesirable. If these error situations

are all lumped into one, then how would an expert find out what is wrong? For
me, this is not the purpose of exception conditions. The exception is raised
because the called routine was not able to carry out the requested operation,
and the caller is being notified so that it can recover in the best manner
possible.

For those who want debugging information, the language system should provide
a debugging log. This would be used to record debugging information. By
making this a part of the language, there would be a single source of
information available to diagnose failures. It might be important to tie
the debugging log to the exception handling facility if procedure frames
would be thrown away, recording those frames for later anal¥sis. However,
the diagnostic facility will not be discussed further in this document.

Exception as a Message

The referenced paper asks whether an exception is a class or an object. Another
possibility is that an exception is a function invocation, and that the message



nanasitar 1s a runcuoion. wnacv, wvnen, 15 peing Qeciarea as an exceptionr 1T 18
a virtual function. One might suggest that it is a pointer to a function, but
as with virtual functions the pointer mechanism is hidden from the user.

We shall regard an exception as an invocation of a function.

The notion of exception as a function invocation raises an interesting issue:
what about the parameters to the exception? These are dismissed b¥ the
referenced paper, with some suggestions as to how to deal with thelr omission;
here they are a natural part of the exception handling process. Parameters
can be passed to communicate to the handler the specific values which

raised the exception (as in a floating point overflow). Likewise, a

return value can be specified when the exception returns to the point that

it was raised, as in returning a specific NaN value as the result of a
floating point overflow.

Structuring the Language Features

Let’s look at the three types of exceptions, and discuss how they could be
handled.

3. Several actions are possible, and there is insufficient information
to select one.

An example of this type of exception is the floating point underflow. 1In
performing a floating point add, the exponent could become too small to
represent a normalized answer in the machine’s representation. The choices
are:

Represent the result as a denormalized number and continue the
computation.

Represent the result as 0, and continue the computation.

Record the fact that the error occurred (say in a variable) and
continue the computation in one of the ways indicated above.

Terminate the computation with an exception condition.

This is best handled as an exception having parameters, which might be used
to compute the denormalized number, or might be recorded in .the error 1log.

The result must be passed to the point of invocation in the first 3 cases.

The role of the exception handler should be to allow the caller to specify

the handler without needing to code it for each floating point operation.

An important design question for the exception facility is whether the
handler should be chosen by a lexical specification (where one can look at
the software near the floating operation and determine whether which
handler will be invoked), or a dynamic specification (where different
invocations of the containing procedure might have different handlers).
Unfortunately, the floating point community is divided on this issue, but
quite often the algorithm will be dependent on the behavior of the handler,
so a lexical technique seems to be more appropriate.

The try/catch construct is rather wordy for this type of exception, since it
must be specified in each procedure body. More appropriate would be a
declaration at the compilation unit or class level. A single declaration
could then be used within many procedure bodies. There could be a
performance issue if several exception routine pointers need to be set for
each procedure call, so the language design should allow the caller to
understand the global settings needed by the called program, so that only
those that differ need to be set.

Another of the exception types is:

2. A failure of some specific sort occurred.



In this case the function has terminated, and cannot resume. The exception
handler needs to divert execution from code which follows the function
invocation, take appropriate actions, and then resume execution at an
agpropriate point or raise the exception to a higher level if appropriate.
The exception must be handled in he function from which the invocation
occurred, since only it can be aware of the calling context. A lexically
scoped handler is again appropriate, since the existence of this exception
situation should not be known outside of the procedure. Parameters could
be included with the exception message, but no return (and therefore
result) is possible.

The final case of exception handling:

1. Something happened, and the function which you asked for can’t be
completed.

This type of exception happens when there is no handler for an exception,
or when the program cannot handle a situation and there is no specific
exception available in its abstraction that is appropriate. The compiler
ought to be able to detect that no handler is available, and give a
warning, but execution might take place anyway. It would be appropriate
for this type of failure to be handled dynamically, with the exception
being passed up multiple levels in the call chain until a handler is found.
This exception shall be called the "Uncaught" exception. Since the
exception could strip many stack frames, 1t needs to be tied with the debug
log facility to save the frames for later diagnostic investigations.

Declaration of Exceptions

In order to maintain the strong typing of C++, exception handler parameter
structures must be declared. In addition, the exceptions that may be
raised by a procedure must be declared. The syntax is left as an exercise
for the reader.

Constructors and Destructors

Constructors and destructors are functions. They operate like other functions.
Destructors can never declare exception returns, so they may only raise the
Uncaught exception. This could occur while processing another exception, in
which case the original exception processing is abandoned.

Constructors are more interesting. Constructors are not called directly,
but are (effectively) called by the function "new" to which they are passed
as a function parameter. "new", of course, accepts any function of any
parameter structure and (we’ll presume) any exception returns, so it is a
bit different from other functions. The invocation of "new" leads to the
invocation of the constructor, which can fail. This exception may be
passed to the point of call of the "new" function. A question: can any
procedure that has a function parameter raise to its caller the exceptions
stated for the function parameter?

Debuggers

The debugger should indicate its interest in stopping if a particular
exception (or any exception) occurs. This will reduce the difficulty of
determining whether a handler already exists for the exception, and will
allow the debugger to intervene even if a handler does exist.

Nested Exception Handlers

Each handler applies to all handlers contained within its scope. This is



s L

true of the try--catch statement, where a later catch agglies to all
previous catch statements, and to globally declared handlers, where the
first declared applies to all later ones. No handler loops are possible.

A raise statement always terminates the current function execution, even if
it is contained within a try statement having a catch for the same condition.

Grouping of Exceptions

Grouping of exceptions does not seem necessary. In the conventional
exception handling situation, the file system might indicate one of 57
conditions that has made it impossible to read a record, and the progran

is only interested in 2: end of file, and file error. In this case grouping
would be essential. Once a failure logging facilitX is provided, the need
for reporting such detail upwards disappears and only a few exception types
should remain.

Of course, a single handler can handle multiple exception types (if they have
the same parameter structure). There should be some way to ldentify the
actual exception which took place. (Should there be a "Catch anything and
ignore the parameters"?)

Exception Naming

Naming conventions must be put in place. A probable method would be to use
standard C++ naming, where exceptions declared within a class public area
are called Class::exception.

Multiple Processes

The exception handlers for one process should be distinct from those for
another process. This is even true if an Unhandled exception leaves the
procedure which contains the fork which created it.

Summary

This paper proposes in principle a mechanism for handling exceptions in
C++. It differs from Koenig and Stroustrup in using lexical scoping for
the declaration of many handlers, and it allows parameters to be passed to
handlers and results to be returned to the point of exception. It
preserves the notion of abstraction which class declarations provide by
limiting the implementor to raising only those exceptions which are
permitted by the class declaration. While some exception situations would
become more wordy, the lexical scoping can actually reduce the wordiness of
some constructs.





