Syntax Proposal for Generation Versionable Classes

Martin J. O'Riordan
Project Lead for C++

Written : 2-February-1990
Revised : 22-February-1990
Revised : 6-July-1990

Introduction

A versionable class is a class for which there is an immutable and a mutable component.
The immutable component may never be altered, whereas the mutable component may
be altered with each revision of an implementation. What makes a versionable class
unique, is its ability to allow clients to see and use only the immutable component,
independently of the mutable component. A C++ 'class’ allows the client to see the whole
definition, and all parts must be present in order to compile.

I wish to describe our system for separate compilation of both parts as being the
separation of 'interface’ and 'implementation’. A further revision of this idea, is that of
"Generation Versioning”, where the interface may go through several generations during
the lifetime of a type. The simple interface/implementation model does not address this,
but interface generations does.

A generation versionable class may be described by three components. The initial
interface, or generation zero interface definition. A sequence of extensions to this

interface which describe the generations of the type. And finally an implementation
component.

Only the initial interface and the implementation component are compulsory. All
modules must see the interface component, but only the implementor of the type need see
the implementation component. All ‘clients’ of the type will generate "Type Initialisation”
code which allows the hidden implementation component to be bound to the complete
type. The 'implementor’ of the type will generate the code necessary to describe these
component bindings required by the clients.

Language Extensions

Extensions to the initial interface may be described between the initial interface and the
implementation. Since the sequence of extensions is critical to the correct behaviour of
the type, sequencing information is necessary. Sequencing information ensures that the
compiler can detect inconsistant versioning of the interface. It also permits the client to
specify interface to a specific version, thus avoiding name conflicts presented by
subsequent versions of the versionable class.

I propose the addition of three new keywords to the language to describe this metaphor.
These are as follows :-

interface
implementor
revision

The syntax would be modified to reflect the use of these new words thus :-

version-head:
interface
implementor
revision [expression]

class-key:
version-head // ‘class' implied
version-head class
version-head struct
class
struct
union

base-specifier:
version-head,,, class-name
virtual access-specifier,,, version-head,, class-name
access-specifier virtual,, version-head,, class-name

The 'expression’ in the revision dimension must be a compile time constant expression.
Declarations of revisions must preserve an ascending sequence of revisions after the
interface. The first revision is revision '1', and subsequent revisions increase in value by
one from the previous revision. The compiler can thus determine the correct visibility
rules, and detect missing or out of sequence revisions. No revisions are permitted after
the implementor class has been declared.

Microsoft Confidential Document

Scope of Definition
The whole collection of components describes the whole type.

All members of all the fragments are considered to exist in the same scope, as if they
were all present in the same class definition. Similarly, all bases introduced in ail

components are considered as part of a single class declaration, and obey the same rules
for ambiguity and visibility.

Mapping of a generation versioned class is maintained by the compiler and is thus not
subject to arbitrary conventions. This mapping of members, and indeed of introduced
bases, is done in strict order of declaration, enabling the correct coexistance of older and
newer versions of applications using the type.

A client may make use of the initial interface, and any number of correctly sequenced
revisions. Visibility and determination of ambiguity and overloading is a function of how
much of the whole class definition has been seen by the time the client declaration
appears. If the revision unspecified type is used between revisions, then only the
information declared to that point is used. Alternatively, the programmer of a client type
using a versionable class, may declare dependence upon a specific version of the class,
by explicitly using one of the 'version-head' forms of declaration. With these two

methods, generation versioning may be done within a module as easily as between
modules or DLLs.

The 'implementor’ part defines the end of the type and signals two activities. Firstly, it
announces that all knowledge about the type is_now present, and the compiler must
generate the necessary support code and data for the versionable type. The compiler may
also make use of its exact knowledge of the type to generate more optimal code than is
possible when only a partial definition is present. Secondly, an implementor component
indicates that no more revisions to the type may be declared.

Microsoft Confidential Document

Consequences and Restrictions

Virtual Base Classes

Only the 'interface' class may introduce a virtual base class, since it is the most derived
class which constructs and maps virtual classes. If this information is not always visible,
a virtual base class introduced later, will fail for two reasons. Firstly, it will not be
initialised by the ultimately derived class, and secondly, it will not share with the same
virtual base class introduced in classes derived from the original 'interface’ class.

Thus it would be an error to introduce a virtual base class at either the generation revision

classes, or at the implementor class. This applies to both direct virtual base classes, and
indirect virtual base classes.

This restriction does not apply to the interface class.

However, a base class introduced at any revision, or in the implementor, may itself be a
versionable class.

Special Member Functions

The compiler can generate certain special functions on the behalf of a type in the absense
of explicit user provided declarations of these special functions. The functions in
question are specifically :-

The Default Constructor

The Copy Constructor

The Assignment Operator

The Destructor

The 'sizeof’ Operator
These are normally supplied by the compiler as implicit inlines. However, with
versionable classes, they must have external linkage, so that alternative deﬁmuqns may
be provided by future revisions. Of course, they obey the normal rules of inlinability
when explicitly provided.
The 'sizeof operator is special. Since the actual size is only known to modules where the
'implementor’ clause is visible, most clients will be unaware of the actual size. For this
reason, the compiler must synthesise an externally linked constant or function to

determine the actual size of the type. This does not provide the programmer with the
facility to define or override the sizeof operator.

Microsoft Confidential Document

Allocation and Storage Class

Since actual size is not known at compile time for most clients, the allocation of static or
automatic objects involving versionable types is very difficult. Indeed, using a C++ to C
translator, it may not be possible to do so without using indirection and allocating the
versionable component on the free-store. However, all modules which see the

implementor’ clause may freely allocate static and automatic objects involving
versionable components.

In many cases, with compiler help, it is possible to manage the dynamically sized
automatic versionable objects. This can be done by first allocating all of the automatic
objects of known size on the stack in the usual way, and also the non-versionable
components of the versionable classes. The non-versionable parts include the original
'interface’ part, which is completely immutable. After this has been done, the compiler
may generate code to determine and reserved space for the versionable components. The
constructors for the versionable classes may then initialise the object to refer to the
versionable parts.

Static objects are generally much harder, and to implement correctly would require
specialised help from the linker and run-time loader. The linker would need to know how
to allocate the fixed parts of static objects, and then reserve a variant amount of space,
which the loader could determine when the program is started. This could require special
OS support in some environments.

I believe that it is an acceptable restriction to disallow the allocation of static or
automatic versionable objects, when the implementor clause is not visible.

Microsoft Confidential Document

Name Space Conflicts

If a client type is described using the original version of a versionable class, and a newer
revision of that versionable class is provided, then the object code and runtime for the
client will continue to perform exactly as before (unless the client has embedded some
form of size dependency). However, if the client recompiles using the newer version of
the declaration for the versionable class, it is possible that the new revision will contain
names which conflict with names the client already has. This 'after-the-fact' name conflict
could present considerable problems to the client code. Perhaps much code would need
changing, depending upon the particular nature of the conflict.

This proposal presents two possible ways of resolving the problem. Firstly, the client may
place the dependent type declaration before the revision declaration which presents the
conflict. Since only information to that point is visible at the time, the mechanism will
resolve all of the name space according to the information presented so far.

For example :-

interface class Ver { ... };
revision[1] class Ver { ... };

class Dependent : Ver { ... };

revision[2] class Ver { ... };

Thus, the dependent class is not aware of 'revision[2]' and later, and the conflict
presented by revision[2] may be avoided.

This may not always be feasible, especially if the new revision is in the same header file
as the original and previous revisions. The second solution permits the client to specify in
the declaration of the dependent type, precisely which revision they are interested in.

Thus :-

interface class Ver { ... };
revision[1] class Ver {

}:
revision[2] class Ver { }:

class Dependent : revision[llVer { ... };

Similarly, members and object declarations may be made in a revision dependent way.

Both of these approaches have the problem that the client type may not avail of
improvements and extensions provided by the new revision.

However, another possible way of circumventing the name conflict is to use another

proposed C++ language extension "Renaming”. Renaming would permit the programmer
to specify alternate names for the base class members presenting the conflict.

Microsoft Confidential Document

A Possible Mechanism

There are several methods for implementing this type of construction. Given specialised
compiler help, very optimal representations may be developed, involving no indirection,
and run-time constant determination of member displacements. This is generally not
possible, and what I intend to outline, is a portable implementation, which is still
relatively small in cost, and easily implemented using current C++ translator technology.

Reusing the Virtual Base Mechanism

The whole mechanism can be described and maintained after a fashion very similar to the
virtual base mechanism already implemented in todays C++ translators and compilers.
The virtual base mechanism allows for a constant component, and a movable component.
For versionable classes, the constant component is the original interface, and the movable

and in this case, resizable component is the composite of the revisions and implementor
parts.

However, unlike virtual bases, the versionable component is not shared with other
versionable parts (unless of course it is a virtual base class also). The same mechanisms
for member selection and virtual function calling is retained. But the visibility and
ambiguity rules are as for non-virtual bases. Thus there is a very simple and orthogonal
'fit'" with existing C++. The immutable part (the interface) contains a pointer to the
mutable part, and this pointer is initialised by the most derived class, just as the pointers
to the virtual base classes are in the existing C++ translators/compilers.

All client components will make external requests for information regarding the position
and size of the actual object. This includes accessing a virtual function table of arbitrary
length and version. The client modules will never generate a virtual function table, or any
of the special purpose functions described earlier.

The implementor module will automatically generate the set of special functions if
required, and the virtual function table. In addition, it is the responsibility of the
implementor module to supply the necessary external constants for performing 'this’
adjustments, and size computations for the versionable type.

Microsoft Confidential Document

