Dmitry Lenkov

HP California Language Lab

19447 Pruneridge Avenue MS 47 LE
Cupertino CA 95014

William M. Miller
GLockenspiel Ltd.

PO Box 366

SudBury, MA 01776-0003

Oct 8, 1990

Request for Consideration: Overloadable Unary operator.()

I humbly request the C+ + standardization committee consider allowing
overloadable operator.(), operator to work analogous to overloaded operator-> 0.

With few exceptions, C+ + allows all its operators be overloaded. The few
exceptions are: . [dot,] .* [dot star,] :: [colon colon,] and ?: [binary selection.] The
commentary on page 330 ARM, gives the following "explanation" :

The reason for disallowing the overloading of ., .*, and :: is that they already have a predefined meaning
for objects of any class as their first operand. Overloading of ?: simply didn't seem worthwhile.

I agree I can't see any worthwhile reason for overloading ?:, but the reason given for
disallowing the other operators cannot hold, because there is already a
counterexample: unary operator& already had a predefined meaning, yet it is
overloadable.

Three questions to be answered in considering operator.() as a candidate for
overloading are: 1) would doing so cause any great problem? 2) are there any
compelling reasons to allow it? 3) what overloadings of operator.() should be
permitted? I claim these questions can be easily answered as follows: 1) allowing
operator.() to be overloaded causes no great problems. 2) there are compelling
reasons to allow it and 3) unary operator overloading analogous to what is
permitted of unary operator->() should be permitted. IE unary member

overloaded operator.(), which can be called with an object or reference of the class
it is defined in, or derived class, on the left hand side, returning a reference or object
of a class to which . can be applied again.

Discussion of these claims:
"Allowing operator.() to be overloaded causes no great problems."

Unary operator& demonstrates that there is no problem overloading a function for
which there is already a pre-defined meaning. The implementation of operator.() in
other respects is similar to operator->() which also has been successfully
implemented by several compilers, demonstrating that no new technology is
required to implement unary operator.(). Like operator&, and operator-> (),
operator.() is never invoked except on a lhs object of a class explicitly overloading
operator.(), thus no existing code can be affected by this change.

Some people have expressed concern that if operator.() is overloadable, then how
does one specify member selection of that class members themselves necessary to
implement operator.() ? In practice, this does not prove to be a problem.
Operator.() is invoked only in situations where . [dot] is explicitly used, and when
writing smart reference classes, proxies, and other simple classes one typically
accesses members via "implied this->", thus one doesn't use . [dot]. In situations
where one would normally use . [dot}, such as when a class instance is passed as a
parameter to a member function, getting an overloaded operator.() can be
sidestepped via pointer syntax: use (&ob)->member, rather than ob.member.
People next complain that this means it will be difficult to simultaneously overload
operator-> () and operator.() to which I reply: Thank God! We don't need classes
that try to act simultaneously as pointers and references! That's the whole point of
allowing operator.() to be overloaded: so that objects that act like pointers can use
pointer syntax, and objects that act like references can follow reference syntax!

"There are compelling reasons to allow it"

Overloading operator.() is necessary in practice to allow "smart reference” classes
similar to the "smart pointer" classes permitted by overloading operator-> ().
Overloading operator-> () to access objects following reference semantics is pretty
workable:

RefCntPtr pob;

pob = pobOther;
pob->DoThis () ;
pob->DoThat () ;

However, if the object needs to follow value semantics, then this solution becomes
onerous:

RefCntHugeIntPtr pA, pB, pC;

/]eon.

*pC = *pA + *pB;

int digit104 = (*pC)[104];
pC->truncateNdigits (100);

What you really want to be able to do for objects that require value semantics is
create smart references as follows:

RefCntHugeIntRef a, b, c;
[oeonn

c=a+b>d
int digitl104 = c[104];
c.truncateNDigits(100);

Another common case where you'd rather have overloaded operator.() rather than
operator-> () is in creating proxy classes. The proxy class just forwards messages to
its destination classes. A proxy class can be used in many ways. An example is a
proxy member, allowing a runtime decision of the actual implementation of that
member. Or a class can even inherit from a proxy, allowing the behavior of its
parent be specified at run.

[Behavior, but not protocol, that is] Of course, pointer syntax can be consistently
used for

these proxy cases, but the underlying implication is that object instances are being
created dynamically on the heap, not statically, nor on the stack.

Note, that at a relatively high leve of pain, classes obeying reference semantics can
already be created: One simply writes a class that contains a pointer that can be
assigned to the forwarding object, and write an inline forwarder function for each
and every member function in the protocol:

class FooProxy

{

foo* pfoo;
public:

FooProxy (foo* pfooT) : pfoo(pfooT) {}

void DoThis() { pfoo =-> DoThis(); }

void DoThat(int i) { pfoo -> DoThat(i); }

int ReturnInt() { pfoo -> ReturnInt(); }
/] ...

void NthMemberOfProtocol() {pfoo =->
NthMemberOfProtocol() ;}

}i

Needless to say, when most class writers are faced with the prospect of manually
writing a forwarding function for each and every function in a protocol, they don't!
They punt instead, and overload operator-> (), even when the rest of their class
follows value semantics. Thus, class users end up having to guess whether to use . or
-> as the member selector in every context. If operator.() is overloadable as well as
operator->(), then customers can learn the simple convention: "Use . whenever
dealing with object obeying value semantics, use -> whenever dealing with objects
obeying reference semantics."

In short, lacking operator.(), class writers are forced to violate convention meaning
of operator-> (). Instead, we should enable a complete set of overloadable
operators, so that class writers can maintain historical meanings and usages of these
operators.

I therefore ask due consideration be given to allowing operator.() to be overloaded
analogous to operator->(). I suspect that the committee should then consider also
whether operator.*() be overloadable analogous to operator->*(). However, I am
not asking for that, since I do not consider myself sufficiently experienced with
member pointers to be aware of the ramifications. Let someone else propose the
necessary changes for operator.*(), if they so choose.

The necessary changes to the Annotated Reference Manual to support operator.()
are listed below. Ilist the changes necessary in ARM, rather than the product
reference manual, since the changes necessary to ARM are a pure superset of the
changes necessary to the product reference manual.

Jim Adcock, Oct. 8, 1990
EJ %

Section 7.2.1¢

Compiler vendors would need to add a convention for encoding operator. [dot.] But
this is not an issue for the standardization effort.

Section 12.3¢

Add the following table entry:

. [operator dot] | yes | yes | yes | member no
Chapter 13, page 307, line 6, change to:

and unary class member accessors -> and . [dot]) when at least one operand is a class object.

Page 330:
operator: one of -- add . [dot] to the list

The following operators cannot be overloaded: remove . [dot] from the list.

The reason for disallowing the overloading of ., .*, and :: is that they already have a predefined meaning
for objects of any class as their first operand. Overloading of ?: simply didn't seem worthwhile.

Change To:

The reason for disallowing the overloading of :: and ?: is that it simply didn't seem worthwhile.

Section 13.4.6
Add the following text:
Class member access using . [dot]
primary-expression . primary-expression
is considered a unary operator. An expression x.m is interpreted as (x.operator.()).m
for a class object x. It follows that operator.() must return either a reference to a

class or an object of or a reference to a class for which operator. () is defined.
operator.() must be a nonstatic member function.

Commentary:

Note that Ellis and Stroustrup's annotated notes on page 337 could have been just as well written as
follows: '

Consider creating classes of object intended to behave like what one might call "smart references” --
references that do isome additional work, like updating a use counter on each access through them.

struct Y { int m;);

class Yref ¢
Y* p;
// information
public:
Yref(const char* arg);
Y& operator.();
x;

Yref::Yref(const char* arg)
(
p=0;

// store away information
// based on ‘arg’

>
Y& Yref::operator.()
¢
if (p) (
// check p
// update information
)
else ¢
// initialize p using information
3
return *p;
2}

Class Yrefs . [dot] operator could be used as follows:

void f(Yref y, Yref& yr, Yref* yp)

{

int i =y.m; // y.operator.().m

i=yr.m // yr.operator.().m

i=yp.m // error: Yref does not have a member m
>

Class member access is a unary operator. An operator.() must return something that can be used as an
object or reference.

Note that there is nothing special about the binary operator .* [dot star.] The rules in this section
apply only to . [dot].

End Commentary.

Thank you for your consideration, and please inform me of your decisions.

James L. Adcock
Microsoft

One Microsoft Way
Redmond, WA 98052-6399

