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Introduction 
 
As a group, embedded systems programmers tend to be more concerned than other pro-
grammers about the speed and space costs of programming language features, and rightly 
so.  These concerns lead some of them to reject certain features outright in the belief that 
those features are too costly.  In the process, they may adopt poor designs and coding 
techniques just to avoid those language features.  This is often a mistake, because C++ 
offers many ways to fine-tune programs to eliminate those costs, or at least reduce them 
to acceptable levels. 
 
 

The Big Picture 
 
With the possible exception of the smallest, most constrained applications, typical em-
bedded applications are just some combination of capturing input, storing and retrieving 
data, performing computations, and generating output.  In other words, most embedded 
programming is just plain programming, and therefore, by and large, good embedded 
programming technique is just plain good programming technique. 
 
You should resist letting anticipated resource management problems prevent you from 
using general-purpose algorithms and data structures.  For example, linked data structures 
such as lists and trees are useful in a wide range of applications.  Most C programmers 
learn to manage the memory for linked structures using the standard library functions 
malloc and free.  A typically general implementation for malloc and free can be 
relatively slow — so slow that some real-time applications can’t afford to use them.  
Some programmers use this slowness as an excuse to abandon linked structures alto-
gether and use statically allocated global data structures instead.  Unfortunately, pro-
grams with lots of global data are always brittle. 
 
Just because an application can’t afford to use general versions of malloc and free, 
that doesn’t mean the application can’t use linked structures at all.  It only means it can’t 
manage the memory for those structures using malloc and free.  The program might 



be able to use linked structures in conjunction with a less general memory management 
scheme that yields acceptable performance. 
 
Before you get too hung up on avoiding the run-time overhead of certain language fea-
tures, remember these basic principles: 
 
• Choosing the right data structures and algorithms usually has a much greater impact 

on efficiency than localized optimizations do. 
 
• In typical programs, 80% of the resources are used by only 20% of the code.  (This is 

often referred to as the 80-20 Rule.  Some versions of the rule use slightly different 
ratios, such as 90-10.) 

 
It’s usually difficult to predict a priori which 10% or 20% of the code hogs the resources.  
As Bentley [1982] observes: 
 

Programmers are notoriously bad at guessing which parts of the code are the primary 
consumers of the resources.  It is all too common for a programmer to modify a piece 
of code expecting a huge time savings and then to find that it makes no difference at 
all because the code was rarely executed. 

 
Kernighan and Plauger [1976] stress the importance of measuring programs to figure out 
what’s eating up the resources: 
 

The best procedure for obtaining efficient code is to choose a good algorithm, write a 
program that implements it as cleanly as possible, then measure it.  The measure-
ments will lead you directly to one or two routines that are worth making as efficient 
as possible.  If they are clearly written and they hide their information properly, they 
will be easy to change.  Sacrificing readability for efficiency earlier than this, while 
the bulk of code is being written, not only results in wasted effort but also leads to 
code that is hard to improve because it is hard to read. 

 
In short, you should tune parts of your program only after you’ve made measurements 
that clearly identify what needs to be tuned.  Bentley [1982], Meyers [1996], and Bulka 
and Mayhew [2000] echo these sentiments. 
 
Of course, this doesn’t mean you can ignore all concerns about resource management un-
til you’re ready to take measurements.  If at all possible, you should base your design on 
preliminary performance estimates.  However, you shouldn’t use those estimates as a ra-
tionale for making inflexible policy decisions that permeate your code.  Rather, you 
should try to confine each resource management decision to as little of the program as 
possible, preferably within a single class.  Isolating such decisions makes it possible to 
tune the affected data structures and algorithms without disrupting the rest of the pro-
gram. 



 
Also, remember that the fastest parts of a program are those that are done before the pro-
gram even starts.  In general, you should: 
 
• Catch errors during translation time (compiling and linking) rather than at run time.  

You should make the most of type checking and access checking, which means you 
should avoid using casts and void *. 

 
• Simplify run-time computations by doing what you can at compile time. 
 
• If you must do computations at run-time, shift them from the most time-critical parts 

to the least time-critical parts of the program (which is often, but not always, program 
start-up). 

 
• When all else fails, try using C++ as just C. 
 
With these general remarks in mind, let’s look at some specific ways that run-time over-
head can creep into C++ programs.  As you will see, there are usually ways to reduce 
overhead without seriously compromising the design. 
 
 

Parameter Passing 
 
C++ normally passes arguments by value (just as C does).  For example, given: 
 
T v; 
void f(T x); 
 
the call f(v) copies argument v to parameter x just before transferring control to f. 
 
If type T is a built-in type such as int, passing by value is pretty inexpensive — as inex-
pensive as it is in C.  However, if T is a class type, passing by value copies v to x by in-
voking a copy constructor.  Calling the copy constructor isn’t necessarily expensive, but 
it can be very expensive.  C++ offers you several ways to avoid that expense. 
 
As in C, C++ lets you pass parameters by address.  That is, you can declare f as: 
 
void f(T *x); 
 
For large objects, passing by address is clearly faster that passing by value.  Unfortu-
nately, you must then write the call as f(&v), which changes its appearance.  It also 



changes the semantics of the call by making it possible for f to change the value of v.  At 
the very least, you should use the const qualifier in the parameter declaration, as in: 
 
void f(T const *x); 
 
to ensure that f does not change the value of its actual argument. 
 
For objects of modest size (about 8 to 16 bytes), it isn’t always clear at the outset whether 
passing by address will actually be faster than passing by value.  Switching between pass-
by-address and pass-by-value poses a maintenance problem.  Not only must you change 
the function declarations, as in: 
 
void f(T x);    void f(T const *x); 
 
but you must also change all the function calls, as in: 
 
f(v);    f(&v); 
 
The alternative is to declare f using a reference-to-const parameter, as in: 
 
void f(T const &x); 
 
This lets you write the call as f(v) (as if it were still passing by value), but yields the 
efficiency of passing by address.  Again, the const qualifier ensures that f can’t change 
the value of its actual argument, thus preserving the semantics of calling by value. 
 
Passing by reference-to-const may have a surprising cost.  When passing by reference-
to-const the compiler may construct a temporary object holding a copy of the argu-
ment.  When it constructs a temporary, passing by reference-to-const is slower than 
passing by value.  Here’s how it happens. 
 
Normally, a constructor that can be called with one argument is a converting constructor.  
For example, the constructor T(int) in: 
 
class T 
    { 
public: 
    T(); 
    T(int); 
    ... 
    }; 
 
is a converting constructor.  Given: 



 
void f(T const &x); 
 
then calling f(10) creates a temporary T object using the constructor T(int) and 
binds reference parameter x to that temporary.  This is more expensive than passing a T 
by value. 
 
An alternative is to declare f’s parameter as a reference-to-non-const: 
 
void f(T &x); 
 
This inhibits the compiler from creating temporary objects for parameter passing.  (Actu-
ally, some compilers will create the temporary and bind the reference, but issue a warn-
ing.)  Therefore, it lets you pass only T objects to f.  Unfortunately, now the declaration 
permits f to alter the value of its actual argument. 
 
If you are the author of class T as well as function f, then the best solution to this prob-
lem is to declare the constructor T(int) with the keyword explicit, as in: 
 
class T 
    { 
public: 
    T(); 
    explicit T(int); // a non-converting constructor 
    ... 
    }; 
 
A constructor declared explicit is a non-converting constructor.  The compiler can-
not use a non-converting constructor as an implicit conversion.  For example, if T(int) 
is a non-converting constructor, then a call such as f(10) will no longer compile be-
cause the compiler cannot use T(int) to convert 10 to a T implicitly. 
 
• Declare each constructor with the keyword explicit unless you need the construc-

tor to be a converting constructor. 
 
Using non-converting constructors doesn’t make the code any more or less efficient that 
it would otherwise be.  However, it makes the inefficiencies explicit, and avoids other 
nasty surprises. 
 
Declaring the constructor does not completely prevent you from passing a temporary ob-
ject as the parameter to f.  It just prevents you from doing it inadvertently.  You can still 
create a temporary explicitly, using any of explicit conversions: 
 



f((T)10);               // C-style cast 
f(T(10));               // function-style cast 
f(static_cast<T>(10));  // new-style cast 
 
This creates (and later destroys) a temporary, but it makes you go out of your way to do 
it. 
 
Once you know that you really need to construct a T object, you can opt to construct a 
constant T object at namespace scope initialized with the value 10, as in: 
 
T const ten (10); 
 
Then each call f(ten) merely binds a reference-to-const parameter directly to ten, 
without constructing or destroying a temporary object.  The program will construct ten 
once at program startup, and destroy it only once at program termination.  This is as 
cheap as it gets. 
 
 

Temporary Objects 
 
C++ compilers may generate temporary objects not only during parameter passing, but in 
various other situations as well, such as when returning values from function calls and 
during object initialization. 
 
For example, suppose class T represents an arithmetic type with operators such as + and 
-.  That is, you can write expressions such as: 
 
T t, u, v; 
... 
t = u + v; 
 
C++ translates the expression just above into a sequence of function calls: 
 
T temp (operator+(u, v));   // initialize temp with sum 
t.operator=(temp);          // copy temp to t 
temp.~T();                  // destroy temp 
 
Here, the compiler generates code to create a temporary object to hold the result of op-
erator+ before passing it on to operator=.  The compiled program must also de-
stroy the temporary when it’s no longer needed. 
 



Now, if T were a built-in type, such as int or double, the compiler would know 
enough to rewrite the code as: 
 
t = u; 
t += v; 
 
thus eliminating the temporary object.  Unfortunately, C++ makes no guarantees that this 
substitution works for class types, so if you want to eliminate the temporary, you must 
rewrite the expression yourself in terms of +=.  That is, you should: 
 
• Avoid generating temporaries during expression evaluation by writing: 

 
a = b op c; 
 
as: 
 
a = b; 
a op= c; 

 
Here’s another example involving temporary objects.  The STL (Standard Template Li-
brary) that’s now part of the Standard C++ library includes container classes, such as lists 
and queues, which work with iterators.  An iterator is an object that “points” to an ele-
ment in a container.  You can use an iterator to visit each element in a container. 
 
For instance, STL provides a template class list<T> for implementing lists with ele-
ments of type T.  list<T> includes a public member iterator that’s a class for de-
claring iterator objects that can traverse a list<T>.  Here’s some typical code that 
works with a list<T>, where T is string: 
 
list<string> roster; 
list<string>::iterator i; 
... 
for (i = roster.begin(); i != roster.end(); ++i) 
    { 
    // do something with *i 
    } 
 
A list<string> is an abstraction — you can’t tell exactly how it’s implemented.  
However, you can use an list<string>::iterator object, such as i, as a pointer 
to each element in the list.  *i returns the list element that i “points” to, and ++i “in-
crements” i to the next list element. 
 



Many programmers probably would have written the loop using i++ instead of ++i, just 
out of habit.  If i were an int or a true pointer type, there would be no difference in the 
generated code for i++ or ++i when used as a stand-alone expression.  However, when 
i has a class type with operator++ as a non-inline function, i++ actually yields 
poorer (bigger and slower) code because it generates a temporary object.  Here’s why. 
 
The prefix expression ++i generates a call of the form i.operator++().  A typical 
implementation of prefix ++ looks like: 
 
iterator &iterator::operator++() 
    { 
    p = p->next; 
    return *this; 
    } 
 
The call returns a reference to the incremented iterator without creating a temporary. 
 
The postfix expression i++ generates a call of the form i.operator++(0).  A typi-
cal implementation of postfix ++ looks like: 
 
iterator iterator::operator++(int) 
    { 
    iterator i (*this); 
    p = p->next; 
    return i; 
    } 
 
The call returns a temporary copy of the iterator containing the value prior to increment-
ing. 
 
Calling postfix ++ is not necessarily slower than calling prefix ++.  If the call ignores the 
old value of the iterator and postfix operator++ is an inline function, the compiler 
may eliminate the temporary.  If postfix operator++ is an inline function, the compiler 
may avoid passing 0 as well.  But, since prefix ++ never generates a temporary nor 
passes 0, calling prefix ++ is never slower than calling postfix ++.  Therefore, when writ-
ing stand-alone increment expressions... 
 
• Use ++i in preference to i++ no matter what type i is. 
 
Ditto for the -- operator. 
 
 



Streamlining Initialization 
 
Let’s look again at the code for the loop: 
 
list<string> roster; 
list<string>::iterator i; 
... 
for (i = roster.begin(); i != roster.end(); ++i) 
   { 
   // do something with *i 
   } 
 
This definition: 
 
list<string>::iterator i; 
 
uses default initialization.  That is, it calls a default constructor.  This later statement: 
 
i = roster.begin(); 
 
uses assignment to replace the default value.  The program never uses i until after the 
assignment, so initializing i by default is wasted effort.  You can avoid the overhead of 
default initialization by initializing i with the assigned value, as in: 
 
list<string>::iterator i = roster.begin(); 
 
Unfortunately, even this initialization might produce a temporary: 
 
• Initialization of the form T x = a is called copy initialization, and may create a 

temporary. 
 
• Initialization of the form T x (a) is called direct initialization, and does not create 

a temporary. 
 
Thus, you can assuredly avoid creating a temporary iterator by writing i’s declaration as: 
 
list<string>::iterator i (roster.begin()); 
 
So here’s the general advice: 
 
• Avoid unnecessary default initialization.  Initialize objects by direct initialization 

rather than by copy initialization whenever possible.  Delay the declaration and ini-
tialization of an object until just prior to the first use of the object. 



 
Here’s a little more fine-tuning you can do.  This loop calls roster.end() on each 
iteration: 
 
list<string>::iterator i (roster.begin()); 
for (; i != roster.end(); ++i) 
    { 
    // do something with *i 
    } 
 
If list<string>::end is not an inline function, then the call contributes overhead to 
the loop.  Of course, you can avoid the recalculation by rewriting the loop as follows: 
 
list<string>::iterator i (roster.begin()); 
list<string>::iterator const end (roster.end()); 
for (; i != end; ++i) 
    { 
    // do something with *i 
    } 
 
 

Narrow Vs. Wide Interfaces 
 
Always remember that simplicity leads to correctness, maintainability, and other good 
things.  Therefore, you should build classes that are simple enough to do the job, and no 
more.  However, a simple (narrow) class interface may incur performance penalties.  You 
can avoid some of those penalties by adding more functions — widening the interface. 
 
Consider a class for rational numbers (exact fractions).  For example, 
 
rational r1 (1, 3), r2 (4, 5); 
 
defines r1 with initial value 1/3, and r2 with initial value 4/5.  We can’t make rational 
numbers look entirely as if they were built in, but we can come pretty close.  This exam-
ple implements a rational number as a pair of long integers representing the numerator 
and denominator: 
 



// rat.h - rational number interface 
 
class rational 
    { 
public: 
    rational(long n = 0, long d = 1); 
    rational &operator+=(rational const &ro); 
    rational &operator-=(rational const &ro); 
    ... 
private: 
    ... 
    long num, denom; 
    }; 
 
The constructor: 
 
rational(long n = 0, long d = 1); 
 
can be called with zero, one or two arguments: 
 
rational r1;            // 0/1 
rational r2 (9);        // 9/1 
rational r3 (-1, 4);    // -1/4 
 
Since it can be called with one argument, and it is not declared explicit, it is another 
example of a converting constructor. 
 
For example, for rational r, 
 
r = 3; 
 
converts 3 to rational by calling the converting constructor, and passes that ra-
tional to the copy assignment.  That is, the assignment generates: 
 
r.operator=(rational(3, 1)); 
 
The converting constructor allows implicit conversions from any integral type to rational.  
The converting constructor can apply to the right-hand operand of all rational operators, 
such as += and -=, as well as =.  For example: 
 
r = 3L;  // r = long int 
r += 2U; // r += unsigned int 
 
Unfortunately, each conversion creates a temporary.  For example, 



 
r = 3L;  // r = long int 
 
translates more-or-less into: 
 
rational temp (3L, 1L); 
r.operator=(temp); 
temp.~rational();   // destroy temp 
 
The compiler may be able to generate code that avoids creating the temporary objects, 
but there’s no guarantee that it can.  You can help the program avoid creating and de-
stroying temporary rational objects by implementing a wider interface for the rational 
number class.  That is, you can define additional members and friends with parameter 
types chosen to reduce the need for implicit argument conversions.  For example, in addi-
tion to the compiler-generated copy assignment: 
 
rational &operator=(rational const &r); 
 
you can declare: 
 
rational &operator=(int i); 
rational &operator=(long l); 
 
and possibly others for other integral types, as needed.  Then an assignment such as: 
 
r = 3L; 
 
translates into just: 
 
r.operator=(3L); 
 
Similarly, you can declare members: 
 
rational &operator+=(int i); 
rational &operator+=(long l); 
 
to go with: 
 
rational &operator+=(rational const &r); 
 
In general, you should design classes with narrow interfaces.  You should widen the in-
terface only as needed to eliminate compiler-generated temporary objects at function 
calls.  Wide interfaces generally increase code size and hinder maintenance.  You 
shouldn’t design wide interfaces without just cause. 



 
 

Virtual Functions 
 
C++ provides virtual functions as a way of implementing subtle differences in behavior 
among related types, while at the same time hiding those differences behind a common 
interface.  Virtual functions employ dynamic (late) binding.  That is, for a given virtual 
function call, the program can’t decide which function it will call until it actually makes 
the call.  Thus virtual functions, while powerful, also have a run-time cost.  That cost is 
typically 2 to 4 instructions per call. 
 
The cost of a virtual function call is usually small enough that you need not worry about 
it.  However, a virtual call may appear in a time-critical part of the program where even 
this small overhead is unacceptable.  For example, the call might appear inside a very 
busy loop: 
 
for (i = 0; i < gazillion; ++i) 
    { 
    bp->f(i);       // f is virtual 
    // other stuff 
    } 
 
In that case, you might look for ways to use a non-virtual call instead.  (This example as-
sumes that bp is declared with type B *, where class B is the root of an inheritance hier-
archy and f is a virtual member function of B.) 
 
If you have access to the source code for the class, you can try rewriting the function in 
question as a non-virtual function.  However, there’s a good chance this will adversely 
affect (break!) other parts of the program.  Fortunately, C++ offers a simple notation for 
turning an individual call to a virtual function into a non-virtual call: if f is a virtual 
member function of class T, a call expression that refers to that function by its fully-
qualified name T::f is an non-virtual function call. 
 
For example, if you somehow know that bp actually points to a B object (rather than an 
object of a type derived from B), then you simply rewrite the call: 
 
bp->f(i);       // virtual call 
 
as: 
 
bp->B::f(i);    // non-virtual call 
 



The problem is, how can you know that bp actually points to a B?  If there’s a class D 
derived from B, then bp might point to a D object.  Turning off the virtual call may make 
the call faster, but then it might call the wrong function. 
 
One solution is to use run-time type information in a part of the program that’s less time-
critical than the loop.  For example, if bp might point to either a B object or a D object 
(where D is derived from B), you can write: 
 
if (D *dp = dynamic_cast<D *>(bp)) 
    { 
    for (i = 0; i < gazillion; ++i) 
        { 
        dp->D::f(i);        // non-virtual call to D::f 
        // other stuff 
        } 
    } 
else // *bp really is a B 
    { 
    for (i = 0; i < gazillion; ++i) 
        { 
        bp->B::f(i);        // non-virtual call to B::f 
        // other stuff 
        } 
    } 
 
dynamic_cast is a built-in operator in C++.  dynamic_cast<D *>(bp) attempts 
to convert the value of bp to type D *.  If it succeeds (because bp points to an object 
with type D or a type derived from D), the cast returns a pointer to the complete D object 
surrounding *bp.  Otherwise, it returns a null pointer. 
 
The code above works fine if D is the only type derived from B.  If *bp actually points to 
an F object, where F is derived from D, then the dynamic_cast expression: 
 
D *dp = dynamic_cast<D *>(bp) 
 
will still succeed (because an F is a D).  Unfortunately, then the call: 
 
dp->D::f(i);        // non-virtual call to D::f 
 
will treat the F object as a D object.  That is, it will call D::f instead of F::f.  This 
might yield an erroneous result. 
 
One way to solve this problem is to rewrite the code as follows: 



 
if (typeid(*bp) == typeid(D)) 
    { 
    D *dp = dynamic_cast<D *>(bp); 
    for (i = 0; i < gazillion; ++i) 
        { 
        dp->D::f(); // non-virtual call to D::f 
        // other stuff 
        } 
    } 
else if (typeid(*bp) == typeid(B)) 
    { 
    for (i = 0; i < gazillion; ++i) 
        { 
        bp->B::f();// non-virtual call to B::f 
        // other stuff 
        } 
    } 
else // *bp is neither a B nor a D 
    { 
    for (i = 0; i < gazillion; ++i) 
        { 
        bp->f();    // virtual call 
        // other stuff 
        } 
    } 
 
typeid is another built-in operator in C++.  typeid(e) returns a typeinfo object 
that describes the dynamic type of expression e.  typeinfo is a class defined in the 
standard header <typeinfo>.  An expression such as: 
 
typeid(*bp) == typeid(D) 
 
is true if bp points to an object whose type is exactly D, not something derived from D. 
 
The code holds up even if the type hierarchy is extended with new types.  The if-clause 
handles objects of type B using non-virtual calls to B::f..  The else-if clause handles 
objects of type D using non-virtual calls to D::f.  The trailing else-clause handles all 
other types derived from B using a virtual call.  That virtual call may be slow, but it will 
produce correct results. 
 
This coding technique trades space for speed.  It moves the dynamic binding decision to a 
point outside the loop at the expense of duplicating the code for the loop.  This is not 
something you want to do very often, but it probably beats the alternatives in this case.  



It’s a localized hack that introduces local complexity, but it preserves the overall design 
of the program. 
 
 

Operators New and Delete 
 
Some embedded systems developers avoid dynamic memory because dynamic allocation 
and deallocation are allegedly slow.  However, dynamic allocation often uses memory 
more efficiently than static allocation.  A statically allocated object always occupies 
memory, whereas a program can release the memory used by a dynamically allocated ob-
ject and reuse that memory for another object. 
 
Most parts of a real-time system are not time-critical.  You need be concerned about the 
speed of dynamic allocation and deallocation only in the time-critical parts of your soft-
ware.  Moreover, C++ offers techniques to speed dynamic allocation so that it can meet 
the demands of all but maybe the most time-critical applications.  The techniques involve 
redefining operators new and delete. 
 
A new-expression actually allocates memory for non-array objects by calling an alloca-
tion function named operator new.  Every C++ environment provides a default im-
plementation for a global function operator new, declared in the C++ standard 
header <new> as: 
 
void *operator new(std::size_t n) throw (std::bad_alloc); 
 
The argument to operator new is a value of type std::size_t representing the 
size (in bytes) of the requested storage.  The throw-specification: 
 
throw (std::bad_alloc) 
 
at the end of the function heading stipulates that, if the allocation fails, the function shall 
throw an exception only of the standard class std::bad_alloc derived from the 
standard class std::exception. 
 
std is the namespace that contains nearly all the standard library components.  Even 
though it is not declared in namespace std, the global operator new is declared in 
terms of the names size_t and bad_alloc which are declared in std.  For the re-
mainder of this discussion, I shall refer to size_t and bad_alloc without the std:: 
prefix.  That is, you should assume that the using-directive: 
 
using namespace std; 
 



is in force from here on. 
 
An expression such as: 
 
p = new T; 
 
translates into something (sort of) like: 
 
p = (T *)operator new(sizeof(T)); // allocate 
p->T();                           // initialize 
 
That is, it acquires memory for the object by calling an operator new, and then ap-
plies a constructor to that storage.  (The latter expression — an explicit constructor call 
— is not something you can actually write in C++.) 
 
A delete-expression deallocates memory for non-array objects by calling a deallocation 
function named operator delete.  Each C++ environment provides a default im-
plementation for a global function operator delete, declared in <new> as: 
 
void operator delete(void *p) throw (); 
 
The empty throw-specification: 
 
throw () 
 
indicates that the function shall not throw any exceptions. 
 
An expression such as: 
 
delete p;                       // for T *p 
 
translates into something resembling: 
 
if (p != NULL) 
    p->~T();                    // destroy 
operator delete(p);             // deallocate 
 
That is, if p is not null, the delete-expression applies a destructor to *p, and the releases 
the storage for *p by calling an operator delete.  The explicit destructor call is 
something you can write in C++. 
 
In many C++ development systems, the default implementation for operator new 
calls malloc, and the default implementation for operator delete calls free.  



However, if the default allocation/deallocation algorithm isn’t right for your application, 
you can write your own versions of operators new and delete.  Somewhere in your 
program, you can define functions such as: 
 
void *operator new(size_t n) throw (bad_alloc) 
    { 
    void *p = my_allocator(n); 
    if (p == NULL) 
        throw bad_alloc(); 
    return p; 
    } 
 
void operator delete(void *p) throw () 
    { 
    my_deallocator(p); 
    } 
 
where my_allocator and my_deallocator represent your customized memory 
management algorithm(s). 
 
Writing your own global memory manager can be very challenging because a global 
memory manager must handle memory requests of widely varying sizes.  There are com-
panies in the business of writing replacement dynamic memory managers, and you 
should consider buying one before you write your own. 
 
In many applications, the majority of dynamically allocated objects tend to be of just a 
few types.  You may be able to achieve significant performance improvements by using 
special-purpose allocation and deallocation functions for just those few heavily-used 
types, while still using the library’s general-purpose allocation and deallocation functions 
for all the other (less often used) types.  C++ lets you implement special-purpose memory 
managers for objects of a given class by defining operator new and operator 
delete as members of that class.  For example: 
 
class T 
    { 
public: 
    void *operator new(size_t n) throw (bad_alloc); 
    void operator delete(void *p) throw (); 
    ... 
    }; 
 
defines class T with class-specific versions of operator new and operator de-
lete.  Thereafter, a new-expression such as: 
 



pt = new T; 
 
allocates memory using T::operator new rather than the global operator new.  
Likewise: 
 
delete pt; 
 
deallocates memory using T::operator delete.  Both T::operator new and 
T::operator delete are static member functions, whether or not declared with the 
keyword static.  They cannot be virtual. 
 
Allocation and deallocation for scalar types (built-in arithmetic types, enumerations and 
pointers), as well as class types without member operators new and delete, always use 
the global new and delete.  If class T has its own new and delete, you can still re-
quest the global new and delete for T objects by explicitly using ::, as in: 
 
p = ::new T;        // calls ::operator new 
... 
::delete p;         // calls ::operator delete 
 
 

Available Lists 
 
One of the simplest, most effective strategies for speeding up dynamic allocation for a 
class T is to maintain memory for free T objects in a linked list.  This is particularly easy 
to implement if class T already has a member of type T *.  For example: 
 
class T 
    { 
public: 
    void *operator new(size_t) throw (bad_alloc); 
    void operator delete(void *) throw (); 
    static void acquire(size_t); 
    static void release(); 
    T(); 
    T(int); 
    ~T(); 
    ... 



private: 
    T *next; 
    // ... other non-static data ... 
    static T *available; 
    }; 
 
T *T::available = NULL; 
 
available points to the head of a list of T objects that are not currently in use.  T’s 
operator new allocates storage for a T object simply by taking the first object from 
the head of the available list: 
 
void *T::operator new(size_t n) throw (bad_alloc) 
    { 
    T *p = available; 
    if (p == NULL || n != sizeof(T)) 
        throw bad_alloc(); 
    available = available->next; 
    return p; 
    } 
 
T’s operator delete discards objects by inserting them at the head of the list: 
 
void T::operator delete(void *p) throw () 
    { 
    if (p != NULL) 
        { 
        T *xp = static_cast<T *>(p); 
        xp->next = available; 
        available = xp; 
        } 
    } 
 
How does the program initially populate the available list?  One simple and efficient ap-
proach is to allocate an array of T objects at program start-up, and thread the array ele-
ments into a list: 
 



void T::acquire(size_t n) 
    { 
    available = ::operator new(n * sizeof(T)); 
    T *p = available; 
    for (; p < available + n - 1; ++p) 
        p->next = p + 1; 
    p->next = NULL; 
    } 
 
 

New and Delete for Arrays 
 
In early dialects of C++, allocating an array of T objects always used ::operator 
new even for a class T that defines its own operator new.  That is: 
 
p = new T [n]; 
 
ignored T::operator new and used ::operator new.  Similarly, deleting that 
array using: 
 
delete [] p; 
 
ignored T::operator delete and used ::operator delete. 
 
Standard C++ now provides a separate set of dynamic memory management functions for 
arrays of objects: 
 
void *operator new[](size_t n) throw (bad_alloc); 
void operator delete[](void *p) throw (); 
 
Thus, an expression such as: 
 
p = new T [n]; 
 
uses an operator new[] instead of an operator new, and 
 
delete [] p; 
 
uses an operator delete[] instead of an operator delete.  We often refer to 
operator new[] and operator delete[] as array new and array delete, re-
spectively. 
 



You can define operator new[] and operator delete[] for individual classes, 
either with or without new and delete as well.  For example, if you define: 
 
class T 
    { 
public: 
    void *operator new(size_t) throw (bad_alloc); 
    void *operator new[](size_t) throw (bad_alloc); 
    void operator delete(void *p) throw (); 
    void operator delete[](void *p) throw (); 
    ... 
    }; 
 
then 
 
p = new T [n]; 
 
uses T::operator new[] instead of ::operator new[]. 
 
 

New with Placement 
 
You can overload operator new and operator new[].  In particular, you can de-
clare functions with these names that have additional parameters after the first parameter 
of type size_t.  For example, in addition to the usual: 
 
void *operator new(size_t) throw (bad_alloc); 
 
the Standard C++ library provides: 
 
void *operator new(size_t n, void *p); 
 
to allocate memory from the pool addressed by p.  You can call this alternative opera-
tor new using the placement syntax, which supplies additional arguments immediately 
after the keyword new, as in: 
 
p = new (pool) T; 
 
The call passes sizeof(T) as the first argument (of type size_t), and pool as the 
second argument (of type void *). 
 
The general form of a (non-array) new-expression is: 



 
new (p2, ... pi) T (a1, ... aj) 
 
where: 
• (p2, ... pi) are the 2nd through ith arguments to operator new (the first 

argument is always the size of the requested storage) 
• T is the type of requested object 
• (a1, ... aj) are the arguments to a T constructor 
 
You can use placement arguments with operator new[].  You can also use place-
ment arguments with operator new and operator new[] as class members. 
 
The general form of an array new-expression is: 
 
new (p2, ... pi) T [n] 
 
where: 
• (p2, ... pi) are the 2nd through ith arguments to operator new[] (again, 

the first argument is always the size of the requested storage) 
• T is the element type of the requested array 
• n is the number of elements in the requested array 
 
Array allocation always uses the default constructor. 
 
You can use new with placement to reduce the cost of storage allocation and dealloca-
tion.  For example, suppose some part of your program deletes a pointer p pointing to a T 
object, and then turns around almost immediately and allocates another T object, as in: 
 
delete p; 
... 
p = new T; 
 
If your performance measurements indicate that the overhead of deallocating and reallo-
cating these objects is too costly at this point in the program, you might be able to reduce 
that overhead by rewriting the code as: 
 
p->~T();    // destroy an object 
... 
new (p) T;  // construct a new one 
 
This code destroys the object addressed by p, but does not call a deallocation function to 
discard the storage for that object.  It later uses new with placement to construct a new T 
object in the storage formerly occupied by the T object that was.  As long as the distance 



between these two statements is short, and there’s a comment to explain this little hack, 
this is probably acceptable style. 
 
If you would like to prevent your application from allocating objects of a certain type T 
on the free store, simply declare the operators new and delete for T as private: 
 
class T 
    { 
public: 
    ... 
private: 
    void *operator new(size_t); 
    void operator delete(void *); 
    ... 
    }; 
 
You may wish to do the same for array new and delete. 
 
 

Closing Remarks 
 
Embedded systems have widely varying needs for resource management.  Consequently, 
you must evaluate the needs of each system individually.  In general, good programs fo-
cus on abstract data types and algorithms.  They confine resource management decisions 
to relatively small parts of the program (such as individual classes). 
 
C++ lets you redefine many facilities to improve performance significantly.  You should 
keep an open mind about most C++ facilities – don’t reject a particular C++ facility just 
because the default implementation is too inefficient for some part of your application.  
Look for ways to fine-tune that facility before dismissing it. 
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