

Document:P3802R0

Revises: (none)
Date: 15-Jul-2025

Audience: EWG, LEWG
Authors: Daveed Vandevoorde (daveed@edg.com)

Poor Functions
Intro
C++ functions have never been limited to functions in a "mathematical sense". However, recently, we
have introduced a few functions that are less "function-like" than any C++ functions before that. I'd like
us to step back from that decision, and move the non-function-like behavior to a construct of its own.

To illustrate the issue, consider the original culprit: std::source_location::current(). It is
declared as follows:

namespace std {
 struct source_location {
 static consteval source_location current() noexcept;
 ...
 };
}

This looks like a normal C++ function, which would imply that I can wrap it with my own convenience
function:

consteval auto curr_loc() {
 return std::source_location::current();
}

but that doesn't work: std::source_location::current() is dependent not on parameters
(there are none) or global state (e.g., the AST-like structure maintained by the implementation), but also
on the local context in which its invocation appears. For example, if I write:

using srcloc = std::source_location;
consteval auto number(srcloc loc = srcloc::current()) {
 return loc.line();
}
auto r = number();

I cannot replace srcloc::current() by curr_loc() because srcloc::current() (i.e.,
std::source_location::current()) is "doubly magical":

1) ordinarily, it picks up the source-location context in which it appears, but
2) when it appears as a default argument it instead picks up the source-location context where that

default argument is used.
My function srcloc above has no way to model either of those behaviors.

std::source_location::current() was the first such "function" introduced in the language,
but P2996 added another one: std::meta::access_context::current(). It is also a function
that cannot be wrapped because it sneakily passes in local context.

Furthermore, there is already talk about introducing additional "functions" of this sort. So far I've been in
discussions that suggest std::meta::current_function() and
std::meta::current_class(), but no doubt there are other "local context queries" that we will
want to add in the future.

Proposal
Instead of hiding the dependence on local context in the identity of a growing set of functions, I think we
should make that local context explicit and pass it into the functions under discussion as a (default)
argument written as an independent construct (i.e., not a function call, or a magic variable, etc.). For
example:

namespace std {
 struct source_location {
 static consteval
 source_location current(std::meta::info = __local_ctx) noexcept;
 ...
 };
}

With that declaration, I can write my curr_loc() function as follows:

consteval auto curr_loc(std::meta::info c = __local_ctx) {
 return std::source_location::current(c);
}

and it will have all the expected/required behaviors: The magic is no longer in the function, but in a
separate construct (__local_ctx) that need not be bound by existing expectations.Here,
__local_ctx is a keyword, but it could also be formulated some other way, e.g. involving punctuation:
Its raison d'etre is to capture a unique language mechanism so that other existing mechanisms do not

have to be corrupted to shoe-horn desired semantics. In particular, __local_ctx becomes subject to the
special rules for default arguments and default member initializers that were previously applicable to
source_location::current(...) and meta::access_context::current(...), and
those functions no longer need those special rules themselves.

For C++26, we can let __local_ctx be an implementation-dependent construct. It doesn't have to
produce a std::meta::info object per se, but since std::meta::info is already the type to
represent implementation internals, it seems entirely appropriate for this use.

Eventually (after C++26), we could raise something like __local_ctx to a standard-syntax construct,
especially if we encounter a need for many more context-sensitive queries. We can use one
__local_ctx construct (with an alternative spelling) for each of the functions that need this behavior
(in C++26 that would be std::source_location::current(...) and
std::meta::access_context::current(...)), or we can use different constructs for each
(e.g., __local_ctx<"location">, __local_ctx<"access">, etc.).

	Intro
	Proposal

