
 
ISO/IEC JTC1/SC22/WG21 P3790R0, 2025-07-13 
 

Pointer lifetime-end zap proposed solutions 
Bag-of-bits pointer class 

Authors: Paul E. McKenney (paulmckrcu@kernel.org), Maged Michael (maged.michael@gmail.com), Jens Maurer, 
Peter Sewell, Hans Boehm, Hubert Tong, Niall Douglas, Thomas Rodgers, Will Deacon, Michael Wong, David 
Goldblatt, Kostya Serebryany, Anthony Williams, Tom Scogland, JF Bastien, and Daniel Krügler. 
Other contributors: Martin Sebor, Florian Weimer, Davis Herring, Rajan Bhakta, Hal Finkel, Lisa Lippincott, Richard 
Smith, JF Bastien, Davis Herring, Chandler Carruth, Evgenii Stepanov, Scott Schurr, Daveed Vandevoorde, Davis 
Herring, Bronek Kozicki, Jens Gustedt, Peter Sewell, Andrew Tomazos, Davis Herring, Martin Uecker, and Jason 
McGuiness. 
Audience: SG1, LEWG, EWG. 
Goal: Provide a launder_bag_of_bits_ptr() function and a bag_of_bits_ptr<T> template class to enable 
zap-susceptible algorithms. 

 

 



 
 
Abstract 3 
Introduction 3 
Terminology 4 
What We Are Asking For 5 
Detailed Proposal 5 

A launder_bag_of_bits_ptr() Function 5 
A bag_of_bits_ptr<T> Template Class 6 

Example 6 
User Tracking of Pointers and realloc() 6 

Wording 8 
Add bag_of_bits_ptr<T>, comparisons, launder_bag_of_bits_ptr(), and hash specialization 8 

History 11 
Appendix: Name-Selection Guide 13 

Historical: Selecting a Name for usable_ptr<T> 14 
Historical: Selecting a Name for make_usable_ptr() 15 

 

 

Page 2 



 

Abstract 
 
The C++ standard currently specifies that all pointers to an object become invalid at the end of its lifetime [basic.life].  
Although this permits additional diagnostics and optimizations which might be of some value, it is not consistent with 
long-standing usage, especially for a range of concurrent and sequential algorithms that rely on loads, stores, equality 
comparisons, and even dereferencing of such pointers.  Similar issues result from object-lifetime aspects of C pointer 
provenance. 
 
We propose (1) the addition to the C++ standard library of the function launder_bag_of_bits_ptr() that takes a 
pointer argument and returns a prospective pointer value corresponding to its argument; and (2) the addition 
to the C++ standard library of the class template std::bag_of_bits_ptr<T> that is a pointer-like type that is still 
usable after the pointed-to object’s lifetime has ended. 
 
Please note that this paper does not propose adding bag-of-bits pointer semantics to the standard.  However, in the 
service of legacy code, it is hoped that implementers provide such semantics, perhaps via some facility such as a 
command-line option that causes all pointers to be exempt from lifetime-end pointer invalidity. 

Introduction 
The C language has been used to implement low-level concurrent algorithms since at least the early 1980s, and C++ 
has been put to this use since its inception.  However, low-level concurrency capabilities did not officially enter either 
language until 2011.  Given decades of independent evolution of C and C++ on the one hand and concurrency on the 
other, it should be no surprise that some corner cases were missed in the efforts to add concurrency to C11 and C++11. 
 
A number of long-standing and heavily used concurrent algorithms, one of which is presented in a later section, involve 
loading, storing, casting, and comparing pointers to objects which might have reached their lifetime end between the 
pointer being loaded and when it is stored, reloaded, cast, and compared, due to concurrent removal and freeing of the 
pointed-to object.  In fact, some long-standing algorithms even rely on dereferencing such pointers, but in C++, only in 
cases where another object of similar type has since been allocated at the same address. This is problematic given that 
the current standards and working drafts for both C and C++ do not permit reliable loading, storing, casting, or 
comparison of such pointers.  To quote Section 6.2.4p2 (“Storage durations of objects”) of the ISO C standard: 
 

The value of a pointer becomes indeterminate when the object it points to (or just past) reaches the end of its 
lifetime. 
 

(See WG14 N2369 and N2443 for more details on the C language’s handling of pointers to lifetime-ended objects and 
WG21 P1726R5 for the corresponding C++ language details.) 
 
However,  (1) concurrent algorithms that rely on loading, storing, casting, and comparing such pointer values have been 
used in production in large bodies of code for decades, (2) automatic recognition of these sorts of algorithms is still very 
much a research topic (even for small bodies of code), and (3) failures due to non-support of the loading, storing, 
comparison, and (in certain special cases) dereferencing of such pointers can lead to catastrophic and hard-to-debug 
failures in systems on which we all depend.  We therefore need a solution that not only preserves valuable 

Page 3 

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2443.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf


 
optimizations and debugging tools, but that also works for existing source code.  After all, any solution relying on 
changes to existing software systems would require that we have a way of locating the vulnerable algorithms, and we 
currently have no such thing. 
 
This is not a new issue: the above semantics have been in the C standard since 1989, and the algorithm called out 
below was put forward in 1973. But this issue’s practical consequences will become more severe as compilers do more 
optimisation, especially link-time optimisation, and especially given the ubiquity of multi-core hardware. 
 
This paper proposes straightforward specific solutions.  This paper was split out from P2414R8 (“Pointer lifetime-end 
zap proposed solutions: atomics and volatile”), which contains proposals for atomic and volatile pointer accesses.   

Terminology 
● Bag of bits:  A simple model of a pointer consisting only of its associated address and type, excluding any 

additional information that might be gleaned from lifetime-end pointer zap and pointer provenance.  A simple 
compiler might well model its pointers as bags of bits.  For the purposes of this paper, a non-simple compiler can 
be induced to treat pointers as bags of bits by marking all pointer accesses and indirections as volatile, 
albeit with possible performance degradation. 

● Invalid pointer:  A pointer referencing an object whose storage duration has ended.  For more detail, please see 
the “What Does the C++ Standard Say?” section of P1726R5, particularly the reference to section 6.7.5.1p4 
[basic.stc.general] of the standard (“When the end of the duration of a region of storage is reached, the values of 
all pointers representing the address of any part of that region of storage become invalid pointer values”).  In the 
C standard, such a pointer is termed an indeterminate pointer. 

● Invalid pointer use: Any use of an invalid pointer (including reading, writing, comparison, casting, passing to a 
non-deallocation function), and indirection through it. [Intended to correspond to [basic.stc.general] p4 "Any 
other use of an invalid pointer value has implementation-defined behavior."] 

● Lifetime-end pointer zap:  An event causing a pointer to become invalid, or, in WG14 parlance, indeterminate.  
Because this is a WG21 document, the term becomes invalid is used in preference to “lifetime-end pointer zap”, 
however, text that needs to cover both C++ and C will use the term “lifetime-end pointer zap”, “pointer zap”, or 
just “zap”. 

● Pointer provenance:  Implementations are permitted to model pointers as more than just a bag of bits. 
● Prospective pointer value:  A pointer value corresponding to an object whose lifetime might not have started, 

including a pointer to an object whose region of storage has not yet been created.  A correct algorithm will not 
compare or dereference a prospective pointer until after an appropriately typed object’s lifetime starts at the 
address indicated by the pointer’s value.  Note that comparison of a prospective pointer’s value representation is 
permitted, for example, as carried out by the .compare_exchange member function.  One way to produce a 
prospective pointer is to cast a valid pointer to uintptr_t and then cast it back to the same pointer type.  
Implementations that do not provide uintptr_t can support these changes via the as-if rule: They need not 
convert pointers to and from integers, but they must discard any provenance not represented in the 
representation value as if they supported uintptr_t. For more information, please see P2434R4. 

● Simple compiler:  A compiler that does no optimization.  For the purposes of this paper, results similar to those 
of a simple compiler can be obtained by treating all pointers as bags of bits.  

● Zap-susceptible algorithm:  An algorithm that relies on invalid pointer use and/or zombie pointer dereference. 
● Zombie pointer:  An invalid pointer whose value representation happens to correspond to the same memory 

address as a currently valid pointer to an object of compatible type. 

Page 4 

https://docs.google.com/document/d/1l1d1f6rtZVOTroUuK5WXuxubZ2sYT6XJwkUoYPIcg2A/edit#heading=h.d9ga4z5sru3
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p2434r3.html


 
● Zombie pointer dereference: Indirection through a zombie pointer. [The relevant part of the standard being 

[basic.stc.general] p4: "Indirection through an invalid pointer value and passing an invalid pointer value to a 
deallocation function have undefined behavior."] 

What We Are Asking For 
In order to support a number of critically important algorithms, this paper proposes a launder_bag_of_bits_ptr() 
function and a bag_of_bits_ptr<T> template class to provide a convenience mechanism for encapsulating the pair of 
reinterpret_cast<> operations used to create a prospective pointer value as described in the “Consequences for 
pointer zap” section of P2434R4. 
 
Note that this paper does not propose blanket bag-of-bits pointer semantics, despite a great many users being strongly 
in favor of such semantics (P2188R1).  It is therefore hoped that implementers will provide some facility to cause 
pointers to be treated as bags of bits from a pointer-invalidity viewpoint, perhaps by implicitly treating all pointer types as 
if they were bag_of_bits_ptr<T>.  This would be helpful for legacy code. 
 
The following sections provide more detail on this proposal.  Those interested in seeing a wider array of historical 
options are invited to review P1726R4, P1726R5, and P2188R1. 
 
Possible polls: 
 

1. Do we want a launder_bag_of_bits_ptr() function that provides a convenience mechanism for 
encapsulating the pair of reinterpret_cast<> operations used to create a prospective pointer value as described 
in the “Consequences for pointer zap” section of P2434R4? 

2. Do we want a bag_of_bits_ptr<T> convenience mechanism for encapsulating the pair of 
reinterpret_cast<> operations used to create a prospective pointer value as described in the “Consequences 
for pointer zap” section of P2434R4? 

3. Do we want launder_bag_of_bits_ptr() usable in constexpr expressions?  (Author position: “no” unless 
and until reinterpret_cast<> operations are usable in constexpr expressions.) 

4. Do we want expressions involving bag_of_bits_ptr<T> usable in constexpr expressions?  (Author position: 
“no” unless and until reinterpret_cast<> operations are usable in constexpr expressions.) 

Detailed Proposal 
As noted earlier, this paper proposes: (1) A launder_bag_of_bits_ptr() function and (2) A bag_of_bits_ptr<T> 
template class. 

A launder_bag_of_bits_ptr() Function 
This section describes a convenience mechanism for encapsulating the pair of reinterpret_cast<> operations used 
to create a prospective pointer value as described in the “Consequences for pointer zap” section of P2434R4. 
 
A launder_bag_of_bits_ptr() function takes a pointer as its argument and returns the corresponding prospective 
pointer value.  This function can be based on a reinterpret_cast pair as suggested in P2434R4 (see the 

Page 5 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2188r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1726r4.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2188r1.html


 
“Consequences for pointer zap” section), for example, by using an uintptr_t data member private to 
bag_of_bits_ptr<T>.  As suggested by the “Proposal” section of that same paper, the memcpy() function could 
instead be used. 
 
The launder_bag_of_bits_ptr() function cannot be used in constexpr contexts because reinterpret_cast<> 
cannot be used in constexpr contexts.  However, should reinterpret_cast<> become usable in constexpr 
contexts, then launder_bag_of_bits_ptr() would also be usable in such contexts. 

A bag_of_bits_ptr<T> Template Class 
This section describes a convenience mechanism for encapsulating the pair of reinterpret_cast<> operations used 
to create a prospective pointer value as described in the “Consequences for pointer zap” section of P2434R4. 
 
A bag_of_bits_ptr<T> template class may be used to mark pointers in order to forgive pointer invalidity. The 
provenance discussion gives a solid basis for this, but there is a need to treat normal user-supplied pointers as if they 
were of the bag_of_bits_ptr<T> template class.  This template class can be based on a reinterpret_cast pair as 
suggested in P2434R4 (see the “Consequences for pointer zap” section), for example, by using an uintptr_t data 
member private to bag_of_bits_ptr<T>.  As suggested by the “Proposal” section of that same paper, the memcpy() 
function could instead be used.  However, this proposal allows for use of the reinterpret_cast pair by avoiding 
marking the bag_of_bits_ptr<T> template class’s constructors as constexpr.  However, the bag_of_bits_ptr<T> 
template class cannot be used in constexpr contexts only because reinterpret_cast<> cannot be used in 
constexpr contexts.  Therefore, should reinterpret_cast<> become usable in constexpr contexts, then 
bag_of_bits_ptr<T> would also become usable in such contexts. 

Example 

User Tracking of Pointers and realloc() 
(Note: It is not clear that this example survives the transition from angelic pointer provenance to non-deterministic 
pointer provenance.  The possibly invalid argumentation is nevertheless retained for future in-depth review.) 
 
Hans’s realloc() example compares the return value of realloc() with its argument to determine whether other 
pointers to the pointed-to object need to be updated.  Here is Hans’s original code: 
 

q = realloc(p, newsize); 

if (q != p) 

update_my_pointers(p, q); 

 
This code can be simplified as follows: 
 

T* p; 

 

q = realloc(p, newsize); 

if (q != p) 

Page 6 



 
p = q; 

 
And then this simplified code can be fixed using bag_of_bits_ptr<T> as follows: 
 

bag_of_bits_ptr<T> p; 
 
q = realloc(p, newsize); 
if (q != p) 
   p = q; 

 
This will re-evaluate provenance on p according to its value representation any time that p would otherwise be an 
invalid pointer. 

 

Page 7 



 

Wording 
The following sections describe adding a bag_of_bits_ptr<T> class, comparison operators, a 
launder_bag_of_bits_ptr() function, and a hash specialization to the <memory> header, referring to N4993: 
C++ Working Draft. 

Add bag_of_bits_ptr<T>, comparisons, launder_bag_of_bits_ptr(), 
and hash specialization 
n.m Class bag_of_bits_ptr [usable.ptr] 
 
n.m.1 General [usable.ptr.general] 
 
A pointer’s value representation can contain address and provenance information, and the C++ implementation might 
maintain additional provenance information that is not contained in that value representation.  This additional 
provenance information can be problematic for certain types of concurrent algorithms and debugging code, which might 
need comparison and hashing functions to be consistent with the value representation.  This consistency is especially 
important for concurrent algorithms using the compare_exchange family of functions. 
 
This template class relies on conversions from integer to pointer producing pointers (if any) that result in defined 
behavior, even if all pointers having the corresponding value representation are invalid at that point in time.  However, in 
order to preserve important optimizations, if a conversion from integer to pointer happens before the operation (such as 
an allocation) that makes such a pointer valid, the implementation is free to produce an invalid pointer. 
 
namespace std { 
  template <typename T> 
  class bag_of_bits_ptr { 
    bag_of_bits_ptr_internal iptr; // Exposition only 
  public: 
 
    // n.m.2, member functions 
    bag_of_bits_ptr(T* ptr) noexcept; 
    bag_of_bits_ptr(nullptr_t); 
    T& operator*() const noexcept; 
    operator T*() const; 
    T* operator->() const; 
    T* get() const noexcept; 
    T* operator=(T* ptr) noexcept; 
  }; 
 
  // n.m.3, non-member functions 
  template<class T> 
    friend const bool operator<=>(const bag_of_bits_ptr<T>& a, const 
bag_of_bits_ptr<U>& b) noexcept; 

Page 8 

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/n4993.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/n4993.pdf


 
    friend const bool operator<=>(const bag_of_bits_ptr<T>& a, U *b) noexcept; 
    friend const bool operator<=>(const bag_of_bits_ptr<T>& a, nullptr_t b) noexcept; 
    T* launder_bag_of_bits_ptr(T* ptr) noexcept; 
 
  // n.m.4, hash support 
  template<class T> struct hash<bag_of_bits_ptr,T>>; 
} 
 
bag_of_bits_ptr_internal is an unspecified type that satisfies the requirements for converting a pointer to an 
integer [expr.reinterpret.cast]/4. 
 
[ Note: It is possible that the bag_of_bits_ptr_internal type is not otherwise available to the user.  -- end note ] 
 
[ Note: Accesses to iptr are not observable behavior.  -- end note ] 
 
 
n.m.2 Member functions [usable.ptr.members] 
 
bag_of_bits_ptr(T* ptr = nullptr) noexcept; 
 
Effects: Initializes iptr with reinterpret_cast<uintptr_t>(ptr). 
 
bag_of_bits_ptr(nullptr_t) noexcept; 
 
Effects: Initializes iptr with 0. 
 
T& operator*() const; 
 
Returns: *get(). 
 
operator T*() const noexcept; 
 
Returns: get(). 
 
T* operator->() const noexcept; 
 
Returns: get(). 
 
T* get() const noexcept; 
 
Returns: reinterpret_cast<T*>(iptr). 
 
T* operator=(T* ptr) noexcept; 
 
Effects: Assigns reinterpret_cast<uintptr_t>(ptr) to iptr. 
 

Page 9 



 
[ Note: The result can differ from the original pointer value ([expr.reinterpret.cast]).  -- end note ] 
 
Returns: get() using the new value of iptr. 
 
n.m.3 Non-member functions [usable.ptr.func] 
 
friend const bool operator<=>(const bag_of_bits_ptr<T>& a, const bag_of_bits_ptr<U>& b) 
noexcept; 
 
Returns: a.iptr <=> b.iptr. 
 
friend const bool operator<=>(const bag_of_bits_ptr<T>& a, nullptr_t b) noexcept; 
 
Returns:  a.iptr <=> 0. 
 
friend const bool operator<=>(const bag_of_bits_ptr<T>& a, U *b) noexcept; 
 
Returns: a.iptr <=> bag_of_bits_ptr(b).iptr. 
 
template<class T> T* launder_bag_of_bits_ptr(T* ptr) noexcept; 
 
Returns: reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(ptr)). 
 
[  Note: The result can differ from ptr ([expr.reinterpret.cast]).  -- end note ] 
 
n.m.3 Hash support [usable.ptr.hash] 
 
template<class T> struct hash<bag_of_bits_ptr,T>>; 
 
For an object p of type bag_of_bits_ptr<T>, hash<bag_of_bits_ptr<T>>()(p) evaluates to the same value 
as hash<typename bag_of_bits_ptr<T>::element_type*>()(p.iptr). 
 
[ Note: The operation of hash<bag_of_bits_ptr<T>>()(p) should be consistent with operator<=>().  -- end 
note ] 
 
Note that, strictly speaking, p.iptr is ill-formed because iptr is a private member.  Is this OK? 
 

 

Page 10 



 

History 
P3790R0: 

● Split the launder_bag_of_bits_ptr() function and the bag_of_bits_ptr<T> template class out of P2414 
(“Pointer lifetime-end zap proposed solutions: atomics and volatile”) in order to permit P2414 to make progress 
while naming and other details are hammered out. 

● Add implementer encouragement to make the hash specialization consistent with the <=> operator.  By 
definition, the <=> operator is consistent with the value-representation comparison used by the 
compare_exchange functions, as needed by concurrent algorithms. 

 
P2414R8: 

● Following Anthony Williams's P2188R1 ("Zap the Zap: Pointers are sometimes just bags of bits"): 
○ Rename usable_ptr<T> to bag_of_bits_ptr<T>. 
○ Rename make_usable_ptr() to launder_bag_of_bits_ptr(). 

 
D2414R8: 

● Move the non-direct-pointer access example to D3347R3. 
● Update terms based on Davis Herring feedback. 
● Add name-selection guide. 
● Note relationships to constexpr contexts. 

 
P2414R7: 

● Rebase discussion onto “P2434R4 Nondeterministic pointer provenance”. 
● Add a LIFO Push algorithm with exposed pointers to help demonstrate the limits of pointer-zap ergonomics if 

there is no angelic provenance. 
 
D2414R7: 

● Switch comparisons to spaceship operator (<=>) based on feedback from SG1 and from Daveed Vandevoorde 
at the 2025 Hagenberg meeting. 

● Additional changes based on feedback from SG1 at the 2025 Hagenberg meeting: 
○ Make only T& dereference operator be constexpr. 
○ Make operator==() be const rather than constexpr. 
○ Remove class D from hash specification. 
○ Change name from make_ptr_prospective() to make_usable_ptr(). 
○ Implementations lacking uintptr_t can still implement this via the as-if rule. 

● Make the nullptr_t constructor for usable_ptr<T> initialize iptr to zero in order to make it compatible 
with the comparison operators. 

 
P2414R6: 

● Apply Frank Birbacher feedback: 
○ Add page numbers. 
○ Fix unbalanced parentheses and double negative in LIFO Push code sample. 
○ Add operator->(), operator=(), and get() to usable_ptr<T> synopsis. 
○ Add comparison operators to usable_ptr<T>. 

Page 11 

https://isocpp.org/files/papers/P2434R4.htmlaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa


 
○ Add nullptr_t constructor to usable_ptr<T>. 
○ Define make_ptr_prospective() in terms of usable_ptr<T>. 

● Apply Mark Hoemmen feedback by removing constexpr from usable_ptr<T> constructors and adding a 
sentence explaining why. 

● Apply Bryan St. Amour feedback by supplying a usable_ptr<T> specialization for std::hash. 
 
P2414R5: 

● Update references to P2434 to the latest version. 
● Move Martin Uecker from author list to contributor list at his request. 
● Apply SG1 feedback: 

○ Add more alternative names for usable_ptr<T>. 
○ Fix declaration of * operator for usable_ptr<T>. 
○ Fix code for casting to volatile atomic<T>. 
○ Reviewed P2434R1 for “words of power” for prospective provenance, but found none. 

● Apply EWG feedback: 
○ Rework atomics wording to avoid the need to otherwise duplicate all atomic operations in 

[atomics.types.pointer]. 
○ Add similar wording to [atomics.ref.pointer]. 
○ Rework volatile wording (also in response to private communications with Davis Herring). 
○ Extract the pointer-handling material to P3347R0 Invalid/Prospective Pointer Operations. 

● Updated from “representation bytes” to “value representation” to track N4993: C++ Working Draft. 
● Updated the definition of “prospective pointer value” to cover the possibility that multiple instances of an object 

might be created and deleted before that pointer’s provenance is established. 
 
P2414R4: 

● Updated based on the June 24, 2024 St. Louis SG1 review: 
○ Fix numerous typos. 
○ Drop discussion of defining load, store, and arithmetic operations on invalid and prospective pointers to 

allow them to be in their own paper. 
○ Add function as well as class. 

● Added draft wording and updated per Daniel Krügler feedback. 
● Move the history section to the end of the paper. 

 
D2414R4: 

● Updated based on the June 24, 2024 St. Louis EWG review and forwarding of P2434R1: Nondeterministic 
pointer provenance from Davis Herring and subsequent discussions: 

○ The prospective-pointer semantics remove the need for a provenance fence, but add the need for a 
definition of “prospective pointer”. 

○ Leverage prospective pointer values. 
○ Adjust example code accordingly. 

 
P2414R3: 

● Includes feedback from the March 20, 2024 Tokyo SG1 and EWG meetings, and also from post-meeting email 
reflector discussions. 

● Change from reachability to fence semantic, resulting in provenance_fence(). 
● Add reference to C++ Working Draft [basic.life]. 

Page 12 

https://docs.google.com/document/d/1_58GWhNx_Q9WvhrmnHkaWBD0KoNnmAq-8KTdIXwa-Bc/edit?usp=sharing
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/n4993.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2434r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2434r1.html


 
 
P2414R2: 

● Includes feedback from the September 1, 2021 EWG meeting. 
● Includes feedback from the November 2022 Kona meeting and subsequent electronic discussions, especially 

those with Davis Herring on pointer provenance. 
● Includes updates based on inspection of LIFO Push algorithms in the wild, particularly the fact that a LIFO Push 

library might not have direct access to the stack node’s pointer to the next node. 
● Drops the options not selected to focus on a specific solution, so that P2414R1 serves as an informational 

reference for roads not taken. 
● Focuses solely on approaches that allow the implementation to reconsider pointer invalidity only at specific 

well-marked points in the source code. 
 
P2414R1 captures email-reflector discussions: 

● Adds a summary of the requested changes to the abstract. 
● Adds a forward reference to detailed expositions for atomics and volatiles to the “What We Are Asking For” 

section. 
● Add a function atomic_usable_ref and change usable_ptr::ref to usable_ref. Change A2, A3, and 

Appendix A accordingly. 
● Rewrite of section B5 for clarity. 

 
P2414R0 extracts and builds upon the solutions sections from P1726R5 and P2188R1.  Please see P1726R5 for 
discussion of the relevant portions of the standard, rationales for current pointer-zap semantics, expositions of 
prominent susceptible algorithms, the relationship between pointer zap and both happens-before and 
value-representation access, and historical discussions of options to handle pointer zap. 
 
The WG14 C-Language counterparts to this paper, N2369 and N2443, have been presented at the 2019 London and 
Ithaca meetings, respectively. 

Appendix: Name-Selection Guide 
This appendix lists alternative names for usable_ptr<T> and make_usable_ptr(). 
 
TL;DR: bag_of_bits_ptr<T> and launder_bag_of_bits_ptr() were chosen, following Anthony Williams's 
P2188R1 ("Zap the Zap: Pointers are sometimes just bags of bits").  There is still some contention on these names. 
 
Please see P3580R0 (“The Naming of Things”) for good advice on name selection. 

Additional Alternatives 
These were also put forward for bag_of_bits_ptr<T>: 

● ptr_bits<T>: (Daveed Vandevoorde <daveed@edg.com>) 
● pointer_bits<T>:  (Daveed Vandevoorde <daveed@edg.com>) 
● pointer_value<T>: (Tony V E <tvaneerd@gmail.com>) 
● potential_pointer<T>: (Tony V E <tvaneerd@gmail.com>) 
● pob_ptr<T>:  (Matt Bentley <mattreecebentley@gmail.com>) 

Page 13 

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2188r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2443.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3580r0.pdf


 
● rawbits_pointer<T>: (Matt Bentley <mattreecebentley@gmail.com>) 
● representation_pointer<T>: (Tom Honermann <tom@honermann.net>) 
● rep_pointer<T>: (Tom Honermann <tom@honermann.net>) 
● representation_ptr<T>: (Tom Honermann <tom@honermann.net>) 
● rep_ptr<T>: (Tom Honermann <tom@honermann.net>) 
● value_representation_pointer<T>: 
● value_rep_ptr<T>: 
● value_representation_ptr<T>: 
● value_rep_ptr<T>: 

Evaluation Criteria 
From an email by Timur Doumler: 
 

● List naming design goals. 
● Sort goals by priority. 
● List all proposed names. 
● Determine which names best satisfy the design goals. 

 
The intent is to apply this methodology to the list of names called out above. 

Historical: Selecting a Name for usable_ptr<T> 
Although this name is very clear to those of us who have been doing pointer-zap, it does leave open the question 
“usable for what???”. Here is a list of alternatives, with the current choice highlighted in green: 
 

● prospective_ptr<T>: (Fabio Fracassi <f.fracassi@gmx.net>) 
○ + Says what it relates to. 
○ - Might not mean much to those unfamiliar with this issue. 
○ - Also is misleading on systems such as ARM MTE that reify some provenance bits. 

● provenance_ptr<T>: (Ville Voutilainen <ville.voutilainen@gmail.com> and Alisdair Meredith 
<alisdairm@me.com>) 

○ + Says what it relates to. 
○ - Might not mean much to those unfamiliar with this issue. 
○ - Also is misleading on systems such as ARM MTE that reify provenance. 

● unzappable_ptr<T>: 
○ + Easily understood. 
○ - Not as accurate as one might want. 
○ - The term “zap” is fun, but does not connect to any formal terminology. 

● zap_immune_ptr<T>: 
○ + Easily understood. 
○ - Not as accurate as one might want. 
○ - The term “zap” is fun, but does not connect to any formal terminology. 

● valid_ptr<T>: (Matthew Bentley <mattreecebentley@gmail.com>) 
○ + Easily understood. 

Page 14 



 
○ - Not all that accurate because if you read out a valid_ptr<T> before the allocation, the pointer is 

invalid. 
● comparable_ptr<T>: (Bronek Kozicki <brok@incorrekt.com>) 

○ + Easily understood. 
○ - Does not indicate the motivating use case, namely ABA-tolerant concurrent algorithms. 

● address_ptr<T>: (Davis Herring <herring@lanl.gov>) 
○ + Easily understood. 
○ + Explains what is really happening in many implementations. 
○ - Inaccurate for implementations (such as ARM MTE) that reify some provenance bits. 

● bag_of_bits_ptr<T>: (Ville Voutilainen <ville.voutilainen@gmail.com> and Paul E. McKenney 
<paulmck@kernel.org>) 

○ + Easily understood, particularly with reference to P2188R1 ("Zap the Zap: Pointers are sometimes just 
bags of bits"). 

○ + Explains what is happening on all implementations. 
○ + Is not making provenance or validity promises that it cannot keep. 

● Your ideas here!  But it is too late, because bag_of_bits_ptr<T> beat you to it. 
 
The following summarizes bag_of_bits_ptr<T> semantics: 
 

It is just a bag of bits. 
And a pointer to type T.  
It's untyped just right now. 
And a T* it soon will be! 
 
But if you do an allocation, 
And convert to T* some time before 
Then head right to the train station. 
For all meaning's out the door! 

Historical: Selecting a Name for make_usable_ptr() 
There are a number of issues with the name make_usable_ptr(), perhaps first and foremost that it returns a T* rather 
than a usable_ptr<T>.  Here is a list of alternatives, with the current choice highlighted in green: 
 

● launder_prospective(): 
○ + Leverages the name of the existing std::launder() function. 
○ + Extends the std::launder() function by accepting arguments that are invalid pointers. 
○ + Allows the std::launder() function to continue to diagnose the passing of invalid pointers. 
○ - Inaccurate for implementations (such as ARM MTE) that reify some provenance bits. 

● launder_invalid_pointer(): see launder_prospective().  (Nic <n.morales.0@gmail.com>) 
● launder_invptr(): see launder_prospective(). 
● launder_ptr_provenance(): see launder_prospective(). 
● launder_valid_pointer():  (Matthew Bentley <mattreecebentley@gmail.com>) 

○ + Leverages the name of the existing std::launder() function. 
○ + Extends the std::launder() function by accepting arguments that are invalid pointers. 

Page 15 



 
○ + Allows the std::launder() function to continue to diagnose the passing of invalid pointers. 
○ - Inaccurate for implementations (such as ARM MTE) that reify some provenance bits, which this function 

will not launder. 
○ - Could confuse people into thinking that it has effect only on valid pointers. 

● make_raw_usable_ptr(): (Nico Josuttis <nico@josuttis.de>) 
○ + Says what it does. 
○ + Notes the raw-pointer nature of the API. 
○ - Loses analogy with std::launder(). 
○ - Only makes the pointer usable if it does not happen before the allocation that provides validity. 

● prospective_provenance_ptr(): 
○ + Says what it does. 
○ - Loses analogy with std::launder(). 
○ - Inaccurate for implementations (such as ARM MTE) that reify some provenance bits, which this function 

does not affect. 
● revalidate_pointer(): 

○ + Says what it does. 
○ - Loses analogy with std::launder(). 
○ - Inaccurate for implementations (such as ARM MTE) that reify some provenance bits, which this function 

does not affect. 
● reevaluate_provenance_ptr(): 

○ +/- Kind of says what it does. 
○ - Loses analogy with std::launder(). 
○ - Inaccurate for implementations (such as ARM MTE) that reify some provenance bits, which this function 

does not affect. 
● regenerate_provenance_ptr(): 

○ +/- Kind of says what it does. 
○ - Loses analogy with std::launder(). 
○ - Inaccurate for implementations (such as ARM MTE) that reify some provenance bits, which this function 

does not affect. 
● recompute_provenance(): (Ville Voutilainen <ville.voutilainen@gmail.com> and Alisdair Meredith 

<alisdairm@me.com>) 
○ +/- Kind of says what it does. 
○ - Loses analogy with std::launder(). 
○ - Inaccurate for implementations (such as ARM MTE) that reify some provenance bits, which this function 

does not affect. 
● recompute_ptr_provenance(): (Fabio Fracassi <f.fracassi@gmx.net>) 

○ +/- Kind of says what it does. 
○ -/- Misleading for implementations (such as ARM MTE) that reify some provenance bits, which this 

function does not affect. 
○ - Loses analogy with std::launder(). 

● update_provenance_ptr(): 
○ +/- Kind of says what it does. 
○ - Loses analogy with std::launder(). 

● ptr_immune_to_zap(): 
○ - Overstates the case. 
○ - The term “zap” is fun, but does not connect to any formal terminology. 

Page 16 



 
● make_comparable_ptr<T>: (Bronek Kozicki <brok@incorrekt.com>) 

○ + Easily understood. 
○ - Does not indicate the most important use case, namely ABA-tolerant concurrent algorithms. 

● launder_bag_of_bits_ptr(): 
○ + Retains the connection to laundering. 
○ + Retains the connection to bag_of_bits_ptr<T>. 
○ + Says what it really does: Launders the pointer from a bag-of-bits perspective, thus easily understood, 

especially with reference to P2188R1 ("Zap the Zap: Pointers are sometimes just bags of bits"). 
○ + Avoids confusion for implementations such as ARM MTE that have some provenance information in 

the actual in-memory representation. 
● Your ideas here! 

 
But what is in a name?  But it is too late, because launder_bag_of_bits_ptr() beat you to it. 
 

Page 17 


	Pointer lifetime-end zap proposed solutions 
	 

	Abstract 
	Introduction 
	Terminology 
	What We Are Asking For 
	Detailed Proposal 
	A launder_bag_of_bits_ptr() Function 
	A bag_of_bits_ptr<T> Template Class 

	Example 
	User Tracking of Pointers and realloc() 

	 
	Wording 
	Add bag_of_bits_ptr<T>, comparisons, launder_bag_of_bits_ptr(), and hash specialization 

	 
	History 
	Appendix: Name-Selection Guide 
	Additional Alternatives 
	Evaluation Criteria 
	Historical: Selecting a Name for usable_ptr<T> 
	Historical: Selecting a Name for make_usable_ptr() 


