
Document number: 	 P3784R0

Date: 	 2025-07-10

Project: 	 Programming Language C++

Audience:	 EWG-I

Reply-to:	 Michael Florian Hava <mfh.cpp@gmail.com>
1

range-if

Abstract
This paper proposes adding a ranged if-statement, branching based on the emptiness of the
supplied range. If the range is non-empty it is equivalent to range-for, otherwise an optional
else part is executed.

Tony Table

Revisions
R0: Initial version

Before Proposed

// ❗ if in disguise!
for(auto & x : a-view-pipeline | std::views::take(1)) {
 …
}

if(auto & x : a-view-pipeline | std::views::take(1)) {
 …
}

auto && r = a-view-pipeline;

if(!r.empty()) { // ❌ not all views provide empty()
 for(auto & x : r) {
 …
 }
} else {
 //fallback for empty range
}

if(auto & x : a-view-pipeline) {

 …

} else {
 //fallback for empty range
}

auto && r = a-view-pipeline;

// 😬 explicit iterator use
if(auto it{r.begin()}; it != r.end()) {
 for(; it != r.end(); ++it) { //redundant check
 auto & x{*it};
 …
 }
} else {
 //fallback for empty range
}

if(auto & x : a-view-pipeline) {

 …

} else {
 //fallback for empty range
}

// 😬 iteration flag
auto empty{true};
for(auto & x : a-view-pipeline) {
 empty = false;
 …
}

if(empty) {
 //fallback for empty range
}

if(auto & x : a-view-pipeline) {

 …
} else {

 //fallback for empty range
}

 RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at1

1

mailto:mfh.cpp@gmail.com
mailto:michael.hava@risc-software.at

Motivation
With the adoption of range-for and especially with the introduction of ranges and views it has
become possible to express C++ programs in a more declarative fashion than before, allowing
regular users to avoid dealing with iterators directly. Unfortunately this programming model only
supports loops, not conditionals - there is no simple way to detect an empty view and execute
some alternative code path.

Readers may initially want to push back on the above assertion, pointing to the empty member
function that all views inherit from view_interface. But said member function is actually
constrained and is not available for several types of views, among them input_views (like
generator). The only way to determine whether any given view is empty is by equality comparing
its begin-iterator and end-sentinel, thereby leaving the „declarative world“ and going back
to low-level constructs. As obtaining the begin-iterator may be non-repeatable (e.g. see the
contract of generator::begin) naïve constructs like iterator-comparison followed by range-for
are also highly problematic.

Another „workaround“ we’ve encountered in the wild was the combination of range-for and an
iteration-has-taken-place flag on which a subsequent branch is taken. Neither this nor
manual iterator use is a solution we want to promote to regular users. Whilst we could come up
with a library-based solution, it would suffer the same limitations as for_each does in comparison
to range-for. Therefore we prefer a dedicated language feature.

Design Space
Admittedly we weren’t too happy with re-using the if keyword, but remain unconvinced that the
considered alternatives are superior:

• for (init-statementopt for-range-declaration : for-range-initializer)
statement1 else statement2
works in Python with different semantics, but would change the meaning of existing C++ code.

• if constexpropt for (init-statementopt for-range-declaration : for-range-
initializer) statement1 else statement2
expresses the wrong breaking semantics for the else-path.

• for if constexpropt(init-statementopt for-range-declaration : for-range-
initializer) statement1 else statement2
looks like a conditional loop-body, but would express the right breaking semantics for the whole
construct.

• Introducing a new keyword is always a hassle for existing codebases.

Our imagined syntax for range-if is a combination of the syntaxes of regular if and range-for,
that desugars in a similar fashion to the latter:

An if statement of the form

if constexpropt(init-statementopt for-range-declaration : for-range-initializer)
statement

is equivalent to

{
 init-statementopt
 auto && range = for-range-initializer;
 auto begin = begin-expr;
 auto end = end-expr;
 if constexpropt(begin != end)
 do {
 for-range-declaration = *begin;
 statement
 } while(((void)++begin), begin != end);
}

2

and and if statement of the form

if constexpropt(init-statementopt for-range-declaration : for-range-initializer)
statement1 else statement2

is equivalent to

{
 init-statementopt
 auto && range = for-range-initializer;
 auto begin = begin-expr;
 auto end = end-expr;
 if constexpropt(begin != end)
 do {
 for-range-declaration = *begin;
 statement1
 } while(((void)++begin), begin != end);
 else
 do { statement2 } while(false);
}

Like all other loops range-if supports break and continue. To ensure these jumps appertain to
the same statement in the unprecedented else part of range-if the proposed desugaring wraps
the else-statements in a dummy loop.

We are currently not aware of a need for this functionality in the context of template for, as
based on our reading of P1306R5 expansions over ranges require sized ranges. If such a need
ever arises, we expect template if constexpropt to be an appropriate evolutionary path.

Impact on the Standard
This proposal should be a pure language addition, the proposed syntax is unambiguous and
currently invalid.

Implementation Experience
Not yet.

Proposed Wording
Wording will be provided in a future revision, if further work on this subject is encouraged.

Acknowledgements
Thanks to RISC Software GmbH for supporting this work.

3

https://www.risc-software.at/

	Abstract
	Tony Table
	Revisions
	Motivation
	Design Space
	Impact on the Standard
	Implementation Experience
	Proposed Wording
	Acknowledgements

