constexpr ‘parallel’
algorithms??

Oliver Rosten

The conundrum

e constexpr is to facilitate compile-time programming
o Relatively small computations
o Must be structured enough not to require runtime input

e Parallel execution is for runtime acceleration

o Medium through to extremely large computations
o Inputs may be completely unstructured and likely determined at runtime

e Is there any overlap?
o And, if yes, is the overlap big enough to be interesting?

The Case Against

e The intersection of these two cases is either
o Non-existent [Rebuttal to follow]
o Too small to be worthwhile [A matter of taste — that’'s why we’re discussing this]

e Making the parallel algorithms constexpr requires
o Work [Relatively easy, but tedious]
o Testing
o Maintenance

e If people want to do it, it's easy for them
o Justanif constevalaway [No longer strictly true, but still not hard]

e The cost/benefit ratio is considered too high to merit standardization

The Case For

Regularity of the standard library

Getting this right is no longer entirely trivial

Opaque Usage of execution policies

Lowering the path of resistance for compile time testing

There are realistic use cases

Regularity of the Standard Library

constexpr ALL THE_
THINGS!

e The direction of evolution of C++ has been to constexpr all the things

e For C++ 26 (apologies if I've missed anything):
o Language
[placement new [P2747R2]
[casting from void* [P2738R1]
[throwing exceptions [P3068R6]
o Library
[A greater range of cmath and complex functions [P1383R2]
The stable sorting algorithms [P2562R1]
The specialized memory algorithms [P2283R0, P3508R0]
atomic and atomic_ref [P3309R3]
Exception types [P3068R6, P3378R2]
Containers and adaptors [P3372R2]
inplace vector for non-trivial types [P3074R7]

e Excluding the parallel algorithms carves out an irregular corner
o atomic gives precedent for including things associated with runtime concurrency/parallelism
o We may be getting constexpr coroutines in C++29

Getting constexpr parallel algos right is no longer trivial

e In essence, the implementationis an if consteval branch
if consteval { std::sort(first, last); }

else { std::sort (exec, first, last); }

e But we can now throw exceptions during constant evaluation
o The runtime semantic of the parallel algos is that uncaught exceptions — termination
o If the above code is executed at compile time we get different semantics
m An exception will escape
m It could be caught within the cone of constant evaluation, giving a constant expression

e ADIY approach to constexpr parallel algos could easily miss this subtle point

Opaque usage

e Functions may use a parallel algorithm under the bonnet

Float sum(std::span<const float> s) { std::reduce(std::execution::par, s.begin(), s.end()); }

e To make this constexpr currently requires the DIY approach

onstexpr float sum(std::span<const f
if consteval {
try {
return std::reduce(s.begin(), s.end());
}
catch(...)-{
std: :terminate();
}
}
else {
return std::reduce(std: :execution::par, s.begin(), s.end());

}
3

Hard to love.

constexpr tests

e Parallel algos will likely delegate to sequential ones

e So creating constexpr tests won't probe the parallelized behaviour

e But there’s still value, to pick up some forms of UB

Possible Scenario
e |'ve unwittingly created UB @

oat sum(std::span<const float> s) { std::reduce(std::execution::par, s.end(), s.begin()); }

e In production, | only use this at runtime and it's a faff to make it constexpr

e Butif only I had, a very simple test would have caught this

0o x = sum({std::array{1.0f}}); x

UB in ambient code

vondtémprt) véid foo () |
// UB

// Parallel algo
}

e The UB cannot be caught during constant evaluation (no constexpr)

e Making the parallel algos constexpr = path of very low resistance
o Now the UB can be caught during constant evaluation with a simple test
o People are more likely to do this, the easier we make it for them

Realistic Use Case 1: Polygons

e Triangles/quads are useful primitives for graphics
o Why not create the vertices at compile time?

e Large-n polys are useful for e.g. computational geometry
o Why not accelerate their runtime creation?

In Code

array/vector depending on the size

Rule for creating the container

Algorithm for generating verts

It would be nice to simply add this!

e<std::floating_point T>
t-vertex{ T-x{}, vi}; };

e<std::floating_point T, std::size_t N>
polygon {

small{N <= 64};

container_t = std::conditional_t<small, std::array<vertex<T>, N>, std::vector<vertex<T>>>;

ic container_t make_storage() {
r(small)
return container_t{};

return container_t(N);
1
J

container_t m_Values{};

anges: :random_access_range R>
R&& build_poly(R&& r) {
pi{std: :numbers: :pi_v<T>};
anges: : transform(

std: :views::iota(Guz, N),
r.begin(),
::size_t i) -> vertex<T> {
o theta{2 *» pi * i / N};
n {-std::sin(theta), std::cos(theta)};

return r;

expr polygon() : m_Values{build_poly(make_storage())} {}

https://godbolt.org/z/eWxe8T9aP

The Extra Wrinkle, if approved

e In principle we may open the door to constant evaluation on multiple threads

e The possibility could have ramifications for existing library implementations
o Simple increments of atomicinan if consteval branch may have to be rethought

Conclusion

e There are good arguments both for* and against

e There are benefits to making the parallel algorithms constexpr

e The question is whether the benefits are worth the effort

*Additional use case in the appendix

Realistic Use Case 2: Task-oriented programming

e Consider a dependency graph of tasks

B ¢
A <
"5
e In memory, this could be laid out depth-first AD DoE
Nodes A|lBIC|D|E Edge targets 113124

A—B B—C

Edges per Node 21110110

Data Transformations

e Topological sort, to obtain an execution order in terms of node indices [DFS; no acceleration]

e Set auxiliary data on each node [transform, may be accelerated]
o Current index in storage
o Execution order

e sort the new nodes, using the execution order [sort, may be accelerated]
e Fix-up the connectivity data to maintain the graph invariant [transform, may be accelerated]

e Repeatedly execute tasks with met dependencies not yet executed [inner for each may be accelerated]

