
constexpr ‘parallel’
algorithms?

Oliver Rosten

The conundrum

● constexpr is to facilitate compile-time programming
○ Relatively small computations
○ Must be structured enough not to require runtime input

● Parallel execution is for runtime acceleration
○ Medium through to extremely large computations
○ Inputs may be completely unstructured and likely determined at runtime

● Is there any overlap?
○ And, if yes, is the overlap big enough to be interesting?

The Case Against

● The intersection of these two cases is either
○ Non-existent [Rebuttal to follow]
○ Too small to be worthwhile [A matter of taste – that’s why we’re discussing this]

● Making the parallel algorithms constexpr requires
○ Work [Relatively easy, but tedious]
○ Testing
○ Maintenance

● If people want to do it, it’s easy for them
○ Just an if consteval away [No longer strictly true, but still not hard]

● The cost/benefit ratio is considered too high to merit standardization

The Case For

● Regularity of the standard library

● Getting this right is no longer entirely trivial

● Opaque Usage of execution policies

● Lowering the path of resistance for compile time testing

● There are realistic use cases

Regularity of the Standard Library

● The direction of evolution of C++ has been to constexpr all the things

● For C++ 26 (apologies if I’ve missed anything):
○ Language

■ placement new [P2747R2]
■ casting from void* [P2738R1]
■ throwing exceptions [P3068R6]

○ Library
■ A greater range of cmath and complex functions [P1383R2]
■ The stable sorting algorithms [P2562R1]
■ The specialized memory algorithms [P2283R0, P3508R0]
■ atomic and atomic_ref [P3309R3]
■ Exception types [P3068R6, P3378R2]
■ Containers and adaptors [P3372R2]
■ inplace_vector for non-trivial types [P3074R7]

● Excluding the parallel algorithms carves out an irregular corner
○ atomic gives precedent for including things associated with runtime concurrency/parallelism
○ We may be getting constexpr coroutines in C++29

Getting constexpr parallel algos right is no longer trivial

● In essence, the implementation is an if consteval branch

 if consteval { std::sort(first, last); }

 else { std::sort(exec, first, last); }

● But we can now throw exceptions during constant evaluation
○ The runtime semantic of the parallel algos is that uncaught exceptions → termination
○ If the above code is executed at compile time we get different semantics

■ An exception will escape
■ It could be caught within the cone of constant evaluation, giving a constant expression

● A DIY approach to constexpr parallel algos could easily miss this subtle point

Opaque usage

● Functions may use a parallel algorithm under the bonnet

● To make this constexpr currently requires the DIY approach

Hard to love.

constexpr tests

● Parallel algos will likely delegate to sequential ones

● So creating constexpr tests won’t probe the parallelized behaviour

● But there’s still value, to pick up some forms of UB

Possible Scenario

● I’ve unwittingly created UB

● In production, I only use this at runtime and it’s a faff to make it constexpr

● But if only I had, a very simple test would have caught this

constexpr void foo() {

UB in ambient code

// UB

// Parallel algo

}

● The UB cannot be caught during constant evaluation (no constexpr)

● Making the parallel algos constexpr ⇒ path of very low resistance
○ Now the UB can be caught during constant evaluation with a simple test
○ People are more likely to do this, the easier we make it for them

void foo() {

Realistic Use Case 1: Polygons

● Triangles/quads are useful primitives for graphics
○ Why not create the vertices at compile time?

● Large-n polys are useful for e.g. computational geometry
○ Why not accelerate their runtime creation?

In Code

array/vector depending on the size

Rule for creating the container

Algorithm for generating verts

It would be nice to simply add this!

https://godbolt.org/z/eWxe8T9aP

The Extra Wrinkle, if approved

● In principle we may open the door to constant evaluation on multiple threads

● The possibility could have ramifications for existing library implementations
○ Simple increments of atomic in an if consteval branch may have to be rethought

Conclusion

● There are good arguments both for* and against

● There are benefits to making the parallel algorithms constexpr

● The question is whether the benefits are worth the effort

*Additional use case in the appendix

Realistic Use Case 2: Task-oriented programming

● Consider a dependency graph of tasks

● In memory, this could be laid out depth-first

A

B

D

C

Nodes Edge targets 1 3 2

Edges per Node

E

A B C D E 4

2 1 0 1 0

A→B

A→D

B→C

D→E

Data Transformations

● Topological sort, to obtain an execution order in terms of node indices [DFS; no acceleration]

● Set auxiliary data on each node [transform, may be accelerated]
○ Current index in storage
○ Execution order

● sort the new nodes, using the execution order [sort, may be accelerated]

● Fix-up the connectivity data to maintain the graph invariant [transform, may be accelerated]

● Repeatedly execute tasks with met dependencies not yet executed [inner for_each may be accelerated]

