P3745R0
Slides for EWG presentation of
P3100R2 Implicit Contract Assertions

Timur Doumler
Joshua Berne

ISO C++ Meeting, Sofia, 16-21 June 2025

History

» |dea first published in P1995R0 in March 2020

- P3100RO0 published in May 2024

+ P3100R1 reviewed by SG21 in Wroctaw (November 2024)
Poll: We support the direction of P3100R1 and encourage the authors to

come back with a fully specified proposal.
19/6/0/0/0 (Consensus)

- P3100R2 reviewed by SG23 in Sofia (June 2025)
Poll: We should promise more committee time to pursuing P3100R2.

18/3/1/0/2 (Consensus)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Goal

A standardised framework for runtime detection and mitigation
of undefined behaviour across the entire C++ language.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Goal

A standardised framework for runtime detection and mitigation
of undefined behaviour across the entire C++ language.

Target ship vehicle

The "core language UB" white paper
that EWG agreed in Hagenberg to pursue,
and C++29

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Initial draft proposal for core language UB
white paper: Process and major work items

Doc # P3656 R1
Authors Herb Sutter, Gasper Azman
Date 2025-03-23

Audience EWG

Abstract: Background and scope

At Hagenberg 2025-02, EWG encouraged the following work:

Poll: Pursue a language safety white paper in the C++26 timeframe containing systematic
treatment of core language Undefined Behavior in C++, covering Erroneous Behavior,
Profiles, and Contracts. Appoint Herb and Gasper as editors.

SF F N A SA

32 31 6 4 4

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Initial draft proposal for core language UB
white paper: Process and major work items

Doc # P3656 R1
Authors Herb Sutter, Gasper Azman
Date 2025-03-23

Audience EWG

Abstract: Background and scope

At Hagenberg 2025-02, EWG encouraged the following work:

Poll: Pursue a language safety white paper in the C++26 timeframe containing systematic
treatment of core language Undefined Behavior in C++, covering Erroneous Behavior,
Profiles, and Contracts. Appoint Herb and Gasper as editors.

SF F N A SA

32 31 6 4 4

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

"Major work items"™ proposed in P3656R1

- Enumerate cases of language UB
 Perform basic categorisation:
 Which ones are security-related?
+ Which are efficiently locally diagnosable?
» List possible tools for handling these UB cases
+ Take a first pass at penciling in which tool to use for each UB case
» Group cases (profile names / contract labels)
»+ Suggested guidance for tags & descriptions in the Standard document

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 14

What P3100R2 does

- Enumerate all cases of explicit language UB in C++
»+ Group them into 12 categories
- Classify them according to relevant criteria:
+ (Relevance for security)
- Local checkabillity
+ Cost of diagnosis
* (Non-)existence of well-defined fallback behaviour
- Discussion of mitigation strategies

» Proposal (with wording) for how to specify, in the C++ Standard,
optional runtime checks and fallback behaviour wherever possible

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

What P3100R2 does

- Enumerate all cases of explicit language UB in C++
»+ Group them into 12 categories
- Classify them according to relevant criteria:
+ (Relevance for security)
- Local checkabillity
+ Cost of diagnosis
* (Non-)existence of well-defined fallback behaviour
- Discussion of mitigation strategies

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Enumerate all UB

- List of UB cases created independently from scratch
(not based on Shafik Yaghmour's work — P1705R1, P3075R0)

- We only consider UB specified explicitly, not implicit UB
(wording must contain the word "undefined")

- We only consider language UB, not library UB
- We do not consider IFNDR

+ Stable identifiers for each specified case of UB
e.g. {lifetime.outside.pointer.static.cast}

* PR open against ub-ifndr branch on https://github.com/cplusplus/dratft
(to merge our list with the one based on Shafik Yaghmour's)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

10

90 cases of explicit language UB

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

11

12 categories

l. Initialisation VII. Assumptions

Il. Bounds VIIl.Control Flow

Ill. Type and Lifetime |IX. Replacement Functions
V. Arithmetic X. Coroutines

V. Threading Xl. Templates

VI. Sequencing XII. Preprocessor

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

12

12 categories

l. Initialisation — 1 case VIl. Assumptions — 1 case
. Bounds — 5 cases VIIl.Control Flow — 6 cases
Ill. Type and Lifetime — 52 cases |X. Replacement Functions — 3 cases

V. Arithmetic — 9 cases X. Coroutines — 2 cases
V. Threading — 1 case Xl. Templates — 1 case
VI. Sequencing — 1 case XIl. Preprocessor — 8 cases

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 13

Security-relevant?

Commonly associated with
security vulnerabilities

. Initialisation — 1 case VIl. Assumptions — 1 case
. Bounds — 5 cases VIIl.Control Flow — 6 cases
Ill. Type and Lifetime — 52 cases |X. Replacement Functions — 3 cases

V. Arithmetic — 9 cases X. Coroutines — 2 cases
V. Threading — 1 case Xl. Templates — 1 case
VI. Sequencing — 1 case XIl. Preprocessor — 8 cases

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 14

Locally diagnosable at runtime?

® No
® Partially
Yes
nould be IFNDR
nould be unconditionally ill-formed
nould pe a note

00
0 WY
O

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

15

Well-defined fallback behaviour?

® Should be IFNDR
ne unconditionally ill-formed
nould pe a note

D
o
C
O

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

16

Proposed design

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Part 1:
systematically introduce
runtime checks

Part 2:
systematically replace UB by
well-defined fallback behaviour

Part 3:
Provide opt-out

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

18

Part 1:
systematically introduce
runtime checks

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

19

Refresher: C++26 Contracts

T& operator[] (size_t index)
pre (index < size());

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

20

Refresher: C++26 Contracts

T& operator[] (size_t index)
pre (index < size());

Evaluated with one of four possible evaluation semantics:
ignore, observe, enforce, quick-enforce

If predicate is checked (observe, enforce, quick-enforce) and check fails;
contract violation handler is called (observe, enforce)
program is terminated (enforce, quick-enforce)

default contract violation handler can be replaced at link time

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

21

Refresher: C++26 Contracts

T& operator[] (size_t index)
pre (index < size());

Evaluated with one of four possible evaluation semantics:
ignore, observe, enforce, quick-enforce

If predicate is checked (observe, enforce, quick-enforce) and check fails;
contract violation handler is called (observe, enforce)
program is terminated (enforce, quick-enforce)

default contract violation handler can be replaced at link time

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

22

Strategy

» If it is In principle possible to insert a runtime check for a case of UB
(even If it's expensive and/or requires global instrumentation),
we specify that check as an implicit contract assertion.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

23

Proposed wording transformation

"Operation A has an implicit
precondition assertion that
X Is true”

"If X Is not true, the behaviour
of operation A is undefined”

-

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

24

Strategy

» If it is In principle possible to insert a runtime check for a case of UB
(even If it's expensive and/or requires global instrumentation),
we specify that check as an implicit contract assertion.

+ behaves the same as an explicit contract assertion

-+ except that it is inserted by the implementation

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

25

enum class assertion_kind :
pre = 1,
post = 2,
assert = 35,

implicit = 4

unspecified {

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

26

Strategy

» If it is In principle possible to insert a runtime check for a case of UB
(even If it's expensive and/or requires global instrumentation),
we specify that check as an implicit contract assertion.

+ behaves the same as an explicit contract assertion

-+ except that it is inserted by the implementation

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

27

Strategy

» If it is In principle possible to insert a runtime check for a case of UB
(even If it's expensive and/or requires global instrumentation),
we specify that check as an implicit contract assertion.

+ behaves the same as an explicit contract assertion
-+ except that it is inserted by the implementation

- we do not require an implementation to provide all possible checks
(lgnore is always a valid choice)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 28

Strategy

» If it is In principle possible to insert a runtime check for a case of UB
(even If it's expensive and/or requires global instrumentation),
we specify that check as an implicit contract assertion.

+ behaves the same as an explicit contract assertion
-+ except that it is inserted by the implementation

- we do not require an implementation to provide all possible checks
(lgnore is always a valid choice)

 but we require an implementation to document the selection
mechanism (which semantic is chosen is implementation-defined)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 29

Benefits
- Bringing compiler flags, sanitisers, etc. that implement these checks
already today into scope of the C++ Standard
 Enabling things like a Standard callback API for diagnosed runtime UB
- Codifying standard names and categories for UB in the Standard

- Enables seamless integration with Contract labels, Profiles, etc.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 30

Part 2:
systematically replace UB by
well-defined fallback behaviour

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

31

Introduce well-defined fallback behaviour

"Operation A has an implicit
precondition assertion that X' is
true; continuing execution past a

violation of this precondition is
undefined behaviour.”
Does fallback

behaviour exist?

"If X'is not true, the
behaviour of operation —

A Is undefined"

"Operation A has an implicit
precondition assertion that

X Is true; after a violation of this
precondition, <fallback behaviour>

happens”.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 32

Part 3:
Provide opt-out

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

33

Four evaluation semantics

Ignore: do not check predicate

observe: check predicate; if false, call contract-violation handler;
when handler returns, continue

enforce check predicate; if false, call contract-violation handler;
when handler returns, terminate

quick-enforce: check predicate; if false, terminate immediately

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

34

Five evaluation semantics

assume: do not check predicate but assume it Is true;
If predicate is not true, the behaviour is undefined

Ignore: do not check predicate

observe: check predicate; if false, call contract-violation handler;
when handler returns, continue

enforce check predicate; if false, call contract-violation handler;
when handler returns, terminate

quick-enforce: check predicate; if false, terminate immediately

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

35

Introducing assume

+ We do not propose to allow assume for explicit contract assertions
» Only for implicit contract assertions

- Every implementation is already conforming with this proposal today
- Because assume is already the default for these assertions today!

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

36

Examples

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Introduce well-defined fallback behaviour

"Operation A has an implicit
precondition assertion that X' is
true; continuing execution past a

violation of this precondition is
undefined behaviour.”
Does fallback

behaviour exist?

"If X'is not true, the
behaviour of operation —

A Is undefined"

"Operation A has an implicit
precondition assertion that

X Is true; after a violation of this
precondition, <fallback behaviour>

happens”.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 38

Introduce well-defined fallback behaviour

"Operation A has an implicit
precondition assertion that X' is
true; continuing execution past a

violation of this precondition is
undefined behaviour.”
Does fallback

behaviour exist?

"If X'is not true, the
behaviour of operation —

A Is undefined"

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

39

Example 1: Out of bounds array access

int main() {
int a[10] = {1, 1, 2, 3, 5 };
std::size_t 1;
std::cin >> i;
return al[il;

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

40

Example 1: Out of bounds array access

int main() {

te
T&

int a[10] = {1, 1, 2, 3, 5 };
std::size_t 1;

std::cin >> i;

return al[il;

mplate <typename T, std::size_t N>
__index_into_array(T (&a)[N], std::size_t i) {
return *(&a + 1i);

Copyright

(c) Timur Doumler | Y @timur_audio | https://timur.audio

41

Example 1: Out of bounds array access

int main() {
int a[10] = {1, 1, 2, 3, 5 };
std::size_t 1;
std::cin >> i;
return al[il;

template <typename T, std::size_t N>
T& __index_into_array(T (&a)[N], std::size_t i)
pre (i < N) {

return *(&a + 1i);

}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

42

Example 1: Out of bounds array access

int main() { ignore == status quo
int 3[10] = { 1, 1,

, , enforce for all arrays == AddressSanitizer
std::size_t 1;

quick-enforce for arrays of known bound
== Clang's -fbounds-safety

std::cin >> 1;
return alil;

}

template <typename T, std::size_t N>
T& __index_into_array(T (&a)[N], std::size_t i)
pre (i < N) {

return *(&a + 1i);

}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

43

Introduce well-defined fallback behaviour

"If X Is not true, the
behaviour of operation —
A Is undefined"

Does fallback
behaviour exist?

"Operation A has an implicit
precondition assertion that

X Is true; after a violation of this
precondition, <fallback behaviour>
happens”.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Example 2: Sighed integer overflow

int g(int i, int j) {
return 1 + J;

// We pretend that built-in integer addition was performed as-if by:
int operator+(int a, int b)
pre ((b >= 0 && a <= INT_MAX - b) |] (b < 0 && a >= INT_MIN - b));

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

45

Example 2: Sighed integer overflow

assume == status quo

ignore == GCC -fwrapv (one possibility)

ick-enforce == -ft
int g(int i, int §) 4 quick-enforce == GCC rapv

return i + j; enforce == UBSan

// We pretend that built-in integer addition was performed as-if by:

int operator+(int a, int b)

pre ((b >= 0 && a <= INT_MAX - b) || (b < 0 && a >= INT_MIN - b)) {
// well-defined behaviour

1

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

46

Introduce well-defined fallback behaviour

"Operation A has an implicit
precondition assertion that X' is
true; continuing execution past a

violation of this precondition is
undefined behaviour.”
Does fallback

behaviour exist?

"If X'is not true, the
behaviour of operation —

A Is undefined"

"Operation A has an implicit
precondition assertion that

X Is true; after a violation of this
precondition, <fallback behaviour>

happens”.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 47

Additional features with Labels

(P3400, not this paper)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

How labels extend P3100:
Categories

- Implicit contract assertions have implicit labels

- These labels have standard names

+ These labels are organised in standard categories (i.e., "bounds")
 You can add your own contract assertions to those categories:

MyVector: :operator[] (size_t i)
pre <category::bounds> (1 < size());

* You can name the cases / categories of UB in the contract-violation
handler, branch on them, etc.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

49

How labels extend P3100:
In-source semantic control

» Directive that adds labels to specified implicit contract assertions
In a scope (file, class, function, block)

» These labels can control the semantic of these assertions
(quick-enforce all lifetime assertions, observe all arithmetic
assertions...)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

50

How labels extend P3100:
In-source semantic control

» Directive that adds labels to specified implicit contract assertions
In a scope (file, class, function, block)

» These labels can control the semantic of these assertions
(quick-enforce all lifetime assertions, observe all arithmetic
assertions...)

int f(int a, int b) {
contract_assert implicit arithmetic |= always_enforce;
return a + b;

}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

51

How does all this fit into the
bigger picture?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Towards Safe C++

Profiles
Named configuration presets

P3 1 0 O for the features below

Redefined Erroneous

behaviour behaviour
(e.g., P2644R1 ‘ (e.g., return an

Runtime Language Annotations New
checks subsetting

(e.g., lifetime features
annotations, (e.g., borrow
Clang's checking, std::
__counted_by) saturate cast)

(e.g., -ftrapw, (e.g., disallow

range-based for erroneous sanitisers) C-style casts)

loop fix) value)

New code /

Legacy code code you can change

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 53

