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• Idea first published in P1995R0 in March 2020 

• P3100R0 published in May 2024 

• P3100R1 reviewed by SG21 in Wrocław (November 2024) 
Poll: We support the direction of P3100R1 and encourage the authors to 
come back with a fully specified proposal.  
19 / 6 / 0 / 0 / 0 (Consensus) 

• P3100R2 reviewed by SG23 in Sofia (June 2025) 
Poll: We should promise more committee time to pursuing P3100R2. 
18 / 3 / 1 / 0 / 2 (Consensus) 

History
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A standardised framework for runtime detection and mitigation  
of undefined behaviour across the entire C++ language.

Goal
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A standardised framework for runtime detection and mitigation  
of undefined behaviour across the entire C++ language.

Goal

Target ship vehicle
The "core language UB" white paper  

that EWG agreed in Hagenberg to pursue, 
and C++29 
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"Major work items" proposed in P3656R1

• Enumerate cases of language UB 
• Perform basic categorisation: 

• Which ones are security-related? 
• Which are efficiently locally diagnosable? 

• List possible tools for handling these UB cases 
• Take a first pass at penciling in which tool to use for each UB case 
• Group cases (profile names / contract labels) 
• Suggested guidance for tags & descriptions in the Standard document
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What P3100R2 does
• Enumerate all cases of explicit language UB in C++ 
• Group them into 12 categories 
• Classify them according to relevant criteria: 

• (Relevance for security) 
• Local checkability 
• Cost of diagnosis 
• (Non-)existence of well-defined fallback behaviour 
• Discussion of mitigation strategies 

• Proposal (with wording) for how to specify, in the C++ Standard, 
optional runtime checks and fallback behaviour wherever possible
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• Cost of diagnosis 
• (Non-)existence of well-defined fallback behaviour 
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Enumerate all UB
• List of UB cases created independently from scratch  

(not based on Shafik Yaghmour's work – P1705R1, P3075R0) 
• We only consider UB specified explicitly, not implicit UB 

(wording must contain the word "undefined") 
• We only consider language UB, not library UB 
• We do not consider IFNDR 
• Stable identifiers for each specified case of UB 

e.g. {lifetime.outside.pointer.static.cast} 
• PR open against ub-ifndr branch on https://github.com/cplusplus/draft 

(to merge our list with the one based on Shafik Yaghmour's)
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90 cases of explicit language UB
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12 categories

I. Initialisation 
II. Bounds 
III. Type and Lifetime 
IV. Arithmetic 
V. Threading 
VI. Sequencing

VII. Assumptions 
VIII.Control Flow 
IX. Replacement Functions 
X. Coroutines 
XI. Templates 
XII. Preprocessor
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12 categories

I. Initialisation – 1 case 
II. Bounds – 5 cases 
III. Type and Lifetime – 52 cases 
IV. Arithmetic – 9 cases 
V. Threading – 1 case 
VI. Sequencing – 1 case

VII. Assumptions – 1 case 
VIII.Control Flow – 6 cases 
IX. Replacement Functions – 3 cases 
X. Coroutines – 2 cases 
XI. Templates – 1 case 
XII. Preprocessor – 8 cases
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I. Initialisation – 1 case 
II. Bounds – 5 cases 
III. Type and Lifetime – 52 cases 
IV. Arithmetic – 9 cases 
V. Threading – 1 case 
VI. Sequencing – 1 case

VII. Assumptions – 1 case 
VIII.Control Flow – 6 cases 
IX. Replacement Functions – 3 cases 
X. Coroutines – 2 cases 
XI. Templates – 1 case 
XII. Preprocessor – 8 cases

Commonly associated with 
security vulnerabilities 

Security-relevant?
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Locally diagnosable at runtime?

2%
1%9%

20%

8%

60%

No
Partially
Yes
Should be IFNDR
Should be unconditionally ill-formed
Should be a note
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Well-defined fallback behaviour?

2%
1%9%

14%

73%

No

Yes
Should be IFNDR
Should be unconditionally ill-formed
Should be a note
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Proposed design
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Part 1: 
systematically introduce  

runtime checks 

Part 2: 
systematically replace UB by 

well-defined fallback behaviour 

Part 3: 
Provide opt-out 
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Part 1: 
systematically introduce  

runtime checks 

Part 2: 
systematically replace UB by 

well-defined fallback behaviour 

Part 3: 
Provide opt-out 
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Refresher: C++26 Contracts

  T& operator[] (size_t index) 
    pre (index < size());   // contract assertion 



21Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Refresher: C++26 Contracts

  T& operator[] (size_t index) 
    pre (index < size());   // contract assertion 

• Evaluated with one of four possible evaluation semantics: 
ignore, observe, enforce, quick-enforce 

• If predicate is checked (observe, enforce, quick-enforce) and check fails: 
• contract violation handler is called (observe, enforce) 
• program is terminated (enforce, quick-enforce) 

• default contract violation handler can be replaced at link time
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Refresher: C++26 Contracts

  T& operator[] (size_t index) 
    pre (index < size());   // explicit contract assertion 

• Evaluated with one of four possible evaluation semantics: 
ignore, observe, enforce, quick-enforce 

• If predicate is checked (observe, enforce, quick-enforce) and check fails: 
• contract violation handler is called (observe, enforce) 
• program is terminated (enforce, quick-enforce) 

• default contract violation handler can be replaced at link time
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Strategy
• If it is in principle possible to insert a runtime check for a case of UB 

(even if it's expensive and/or requires global instrumentation), 
we specify that check as an implicit contract assertion.
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Proposed wording transformation

"If X is not true, the behaviour 
of operation A is undefined"

"Operation A has an implicit 
precondition assertion that  
X is true"
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Strategy
• If it is in principle possible to insert a runtime check for a case of UB 

(even if it's expensive and/or requires global instrumentation), 
we specify that check as an implicit contract assertion. 
• behaves the same as an explicit contract assertion 
• except that it is inserted by the implementation
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enum class assertion_kind : unspecified { 
  pre = 1, 
  post = 2, 
  assert = 3, 
  implicit = 4 
}
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Strategy
• If it is in principle possible to insert a runtime check for a case of UB 

(even if it's expensive and/or requires global instrumentation), 
we specify that check as an implicit contract assertion. 
• behaves the same as an explicit contract assertion 
• except that it is inserted by the implementation
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Strategy
• If it is in principle possible to insert a runtime check for a case of UB 

(even if it's expensive and/or requires global instrumentation), 
we specify that check as an implicit contract assertion. 
• behaves the same as an explicit contract assertion 
• except that it is inserted by the implementation 
• we do not require an implementation to provide all possible checks 

(ignore is always a valid choice)
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Strategy
• If it is in principle possible to insert a runtime check for a case of UB 

(even if it's expensive and/or requires global instrumentation), 
we specify that check as an implicit contract assertion. 
• behaves the same as an explicit contract assertion 
• except that it is inserted by the implementation 
• we do not require an implementation to provide all possible checks 

(ignore is always a valid choice) 
• but we require an implementation to document the selection 

mechanism (which semantic is chosen is implementation-defined)
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Benefits
• Bringing compiler flags, sanitisers, etc. that implement these checks 

already today into scope of the C++ Standard 
• Enabling things like a Standard callback API for diagnosed runtime UB 
• Codifying standard names and categories for UB in the Standard 
• Enables seamless integration with Contract labels, Profiles, etc.
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Part 1: 
systematically introduce  

runtime checks 

Part 2: 
systematically replace UB by 

well-defined fallback behaviour 

Part 3: 
Provide opt-out 
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Introduce well-defined fallback behaviour

"If X is not true, the 
behaviour of operation 
A is undefined"

"Operation A has an implicit 
precondition assertion that X is 
true; continuing execution past a 
violation of this precondition is 
undefined behaviour."

"Operation A has an implicit 
precondition assertion that  
X is true; after a violation of this 
precondition, <fallback behaviour> 
happens".

Does fallback 
behaviour exist?
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Part 1: 
systematically introduce  

runtime checks 

Part 2: 
systematically replace UB by 

well-defined fallback behaviour 

Part 3: 
Provide opt-out 
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Four evaluation semantics

• ignore: do not check predicate 

• observe: check predicate; if false, call contract-violation handler;  
when handler returns, continue 

• enforce check predicate; if false, call contract-violation handler;  
when handler returns, terminate 

• quick-enforce: check predicate; if false, terminate immediately
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Five evaluation semantics

• assume: do not check predicate but assume it is true;  
if predicate is not true, the behaviour is undefined 

• ignore: do not check predicate 

• observe: check predicate; if false, call contract-violation handler;  
when handler returns, continue 

• enforce check predicate; if false, call contract-violation handler;  
when handler returns, terminate 

• quick-enforce: check predicate; if false, terminate immediately
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Introducing assume
• We do not propose to allow assume for explicit contract assertions 
• Only for implicit contract assertions 
• Every implementation is already conforming with this proposal today 
• Because assume is already the default for these assertions today!
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Examples
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Introduce well-defined fallback behaviour

"If X is not true, the 
behaviour of operation 
A is undefined"

"Operation A has an implicit 
precondition assertion that X is 
true; continuing execution past a 
violation of this precondition is 
undefined behaviour."

"Operation A has an implicit 
precondition assertion that  
X is true; after a violation of this 
precondition, <fallback behaviour> 
happens".

Does fallback 
behaviour exist?
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Introduce well-defined fallback behaviour

"If X is not true, the 
behaviour of operation 
A is undefined"

"Operation A has an implicit 
precondition assertion that X is 
true; continuing execution past a 
violation of this precondition is 
undefined behaviour."

"Operation A has an implicit 
precondition assertion that  
X is true; after a violation of this 
precondition, <fallback behaviour> 
happens".

Does fallback 
behaviour exist?
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Example 1: Out of bounds array access

  int main() { 
    int a[10] = { 1, 1, 2, 3, 5 };  // array of known bounds 
    std::size_t i; 
    std::cin >> i; 
    return a[i];  // potential UB here 
  } 
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Example 1: Out of bounds array access

  int main() { 
    int a[10] = { 1, 1, 2, 3, 5 };  // array of known bounds 
    std::size_t i; 
    std::cin >> i; 
    return a[i];  // potential UB here 
  } 

  template <typename T, std::size_t N> 
  T& __index_into_array(T (&a)[N], std::size_t i) {   
    return *(&a + i); 
  } 
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Example 1: Out of bounds array access

  int main() { 
    int a[10] = { 1, 1, 2, 3, 5 };  // array of known bounds 
    std::size_t i; 
    std::cin >> i; 
    return a[i];  // potential UB here 
  } 

  template <typename T, std::size_t N> 
  T& __index_into_array(T (&a)[N], std::size_t i) 
  pre (i < N) {   // implicit contract assertion 
    return *(&a + i); 
  } 
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Example 1: Out of bounds array access

  int main() { 
    int a[10] = { 1, 1, 2, 3, 5 };  // array of known bounds 
    std::size_t i; 
    std::cin >> i; 
    return a[i];  // potential UB here 
  } 

  template <typename T, std::size_t N> 
  T& __index_into_array(T (&a)[N], std::size_t i) 
  pre (i < N) {   // implicit contract assertion 
    return *(&a + i); 
  } 

ignore == status quo 
enforce for all arrays == AddressSanitizer 
quick-enforce for arrays of known bound 
== Clang's -fbounds-safety 
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Introduce well-defined fallback behaviour

"If X is not true, the 
behaviour of operation 
A is undefined"

"Operation A has an implicit 
precondition assertion that X is 
true; continuing execution past a 
violation of this precondition is 
undefined behaviour."

"Operation A has an implicit 
precondition assertion that  
X is true; after a violation of this 
precondition, <fallback behaviour> 
happens".

Does fallback 
behaviour exist?
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Example 2: Signed integer overflow

int g(int i, int j) { 
  return i + j; 
} 

// We pretend that built-in integer addition was performed as-if by: 
int operator+(int a, int b) 
pre ((b >= 0 && a <= INT_MAX - b) || (b < 0 && a >= INT_MIN - b));
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Example 2: Signed integer overflow

int g(int i, int j) { 
  return i + j; 
} 

// We pretend that built-in integer addition was performed as-if by: 
int operator+(int a, int b) 
pre ((b >= 0 && a <= INT_MAX - b) || (b < 0 && a >= INT_MIN - b)) {   
  // well-defined behaviour 
}

assume == status quo 
ignore == GCC -fwrapv (one possibility) 
quick-enforce == GCC -ftrapv 
enforce == UBSan
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Introduce well-defined fallback behaviour

"If X is not true, the 
behaviour of operation 
A is undefined"

"Operation A has an implicit 
precondition assertion that X is 
true; continuing execution past a 
violation of this precondition is 
undefined behaviour."

"Operation A has an implicit 
precondition assertion that  
X is true; after a violation of this 
precondition, <fallback behaviour> 
happens".

Does fallback 
behaviour exist?
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Additional features with Labels 
 

(P3400, not this paper)
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How labels extend P3100:  
Categories

• Implicit contract assertions have implicit labels  
• These labels have standard names 
• These labels are organised in standard categories (i.e., "bounds") 
• You can add your own contract assertions to those categories: 
MyVector::operator[] (size_t i)  
  pre <category::bounds> (i < size()); 

• You can name the cases / categories of UB in the contract-violation 
handler, branch on them, etc.
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How labels extend P3100:  
In-source semantic control

• Directive that adds labels to specified implicit contract assertions  
in a scope (file, class, function, block ....) 

• These labels can control the semantic of these assertions 
(quick-enforce all lifetime assertions, observe all arithmetic 
assertions...)
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How labels extend P3100:  
In-source semantic control

• Directive that adds labels to specified implicit contract assertions  
in a scope (file, class, function, block ....) 

• These labels can control the semantic of these assertions 
(quick-enforce all lifetime assertions, observe all arithmetic 
assertions...)

int f(int a, int b) { 
  contract_assert implicit arithmetic |= always_enforce; 
  return a + b; 
} 
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How does all this fit into the 
bigger picture?
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Legacy code New code /  
code you can change

New 
features 

(e.g., borrow 
checking, std:: 
saturate_cast)

Erroneous 
behaviour 

(e.g., return an 
erroneous 

value)

Runtime 
checks 

(e.g., -ftrapw, 
sanitisers)

Language 
subsetting 
(e.g., disallow  
C-style casts)

Towards Safe C++

Redefined 
behaviour 

(e.g., P2644R1 
range-based for 

loop fix)

Annotations 
(e.g., lifetime 
annotations, 

Clang's 
__counted_by)

Configurable 
Profiles 

Named configuration presets  
for the features belowP3100


