
Timur Doumler
Joshua Berne

ISO C++ Meeting, Sofia, 16-21 June 2025

P3745R0
Slides for EWG presentation of

P3100R2 Implicit Contract Assertions

2Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Idea first published in P1995R0 in March 2020

• P3100R0 published in May 2024

• P3100R1 reviewed by SG21 in Wrocław (November 2024)
Poll: We support the direction of P3100R1 and encourage the authors to
come back with a fully specified proposal.
19 / 6 / 0 / 0 / 0 (Consensus)

• P3100R2 reviewed by SG23 in Sofia (June 2025)
Poll: We should promise more committee time to pursuing P3100R2.
18 / 3 / 1 / 0 / 2 (Consensus)

History

3Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

A standardised framework for runtime detection and mitigation
of undefined behaviour across the entire C++ language.

Goal

4Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

A standardised framework for runtime detection and mitigation
of undefined behaviour across the entire C++ language.

Goal

Target ship vehicle
The "core language UB" white paper

that EWG agreed in Hagenberg to pursue,
and C++29

5Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

6Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

7Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

"Major work items" proposed in P3656R1

• Enumerate cases of language UB
• Perform basic categorisation:

• Which ones are security-related?
• Which are efficiently locally diagnosable?

• List possible tools for handling these UB cases
• Take a first pass at penciling in which tool to use for each UB case
• Group cases (profile names / contract labels)
• Suggested guidance for tags & descriptions in the Standard document

8Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

What P3100R2 does
• Enumerate all cases of explicit language UB in C++
• Group them into 12 categories
• Classify them according to relevant criteria:

• (Relevance for security)
• Local checkability
• Cost of diagnosis
• (Non-)existence of well-defined fallback behaviour
• Discussion of mitigation strategies

• Proposal (with wording) for how to specify, in the C++ Standard,
optional runtime checks and fallback behaviour wherever possible

9Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

What P3100R2 does
• Enumerate all cases of explicit language UB in C++
• Group them into 12 categories
• Classify them according to relevant criteria:

• (Relevance for security)
• Local checkability
• Cost of diagnosis
• (Non-)existence of well-defined fallback behaviour
• Discussion of mitigation strategies

• Proposal (with wording) for how to specify, in the C++ Standard,
optional runtime checks and fallback behaviour wherever possible

10Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Enumerate all UB
• List of UB cases created independently from scratch

(not based on Shafik Yaghmour's work – P1705R1, P3075R0)
• We only consider UB specified explicitly, not implicit UB

(wording must contain the word "undefined")
• We only consider language UB, not library UB
• We do not consider IFNDR
• Stable identifiers for each specified case of UB

e.g. {lifetime.outside.pointer.static.cast}
• PR open against ub-ifndr branch on https://github.com/cplusplus/draft

(to merge our list with the one based on Shafik Yaghmour's)

11Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

90 cases of explicit language UB

12Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

12 categories

I. Initialisation
II. Bounds
III. Type and Lifetime
IV. Arithmetic
V. Threading
VI. Sequencing

VII. Assumptions
VIII.Control Flow
IX. Replacement Functions
X. Coroutines
XI. Templates
XII. Preprocessor

13Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

12 categories

I. Initialisation – 1 case
II. Bounds – 5 cases
III. Type and Lifetime – 52 cases
IV. Arithmetic – 9 cases
V. Threading – 1 case
VI. Sequencing – 1 case

VII. Assumptions – 1 case
VIII.Control Flow – 6 cases
IX. Replacement Functions – 3 cases
X. Coroutines – 2 cases
XI. Templates – 1 case
XII. Preprocessor – 8 cases

14Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

I. Initialisation – 1 case
II. Bounds – 5 cases
III. Type and Lifetime – 52 cases
IV. Arithmetic – 9 cases
V. Threading – 1 case
VI. Sequencing – 1 case

VII. Assumptions – 1 case
VIII.Control Flow – 6 cases
IX. Replacement Functions – 3 cases
X. Coroutines – 2 cases
XI. Templates – 1 case
XII. Preprocessor – 8 cases

Commonly associated with
security vulnerabilities

Security-relevant?

15Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Locally diagnosable at runtime?

2%
1%9%

20%

8%

60%

No
Partially
Yes
Should be IFNDR
Should be unconditionally ill-formed
Should be a note

16Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Well-defined fallback behaviour?

2%
1%9%

14%

73%

No

Yes
Should be IFNDR
Should be unconditionally ill-formed
Should be a note

17Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Proposed design

18Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Part 1:
systematically introduce

runtime checks

Part 2:
systematically replace UB by

well-defined fallback behaviour

Part 3:
Provide opt-out

19Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Part 1:
systematically introduce

runtime checks

Part 2:
systematically replace UB by

well-defined fallback behaviour

Part 3:
Provide opt-out

20Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Refresher: C++26 Contracts

 T& operator[] (size_t index)
 pre (index < size()); // contract assertion

21Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Refresher: C++26 Contracts

 T& operator[] (size_t index)
 pre (index < size()); // contract assertion

• Evaluated with one of four possible evaluation semantics:
ignore, observe, enforce, quick-enforce

• If predicate is checked (observe, enforce, quick-enforce) and check fails:
• contract violation handler is called (observe, enforce)
• program is terminated (enforce, quick-enforce)

• default contract violation handler can be replaced at link time

22Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Refresher: C++26 Contracts

 T& operator[] (size_t index)
 pre (index < size()); // explicit contract assertion

• Evaluated with one of four possible evaluation semantics:
ignore, observe, enforce, quick-enforce

• If predicate is checked (observe, enforce, quick-enforce) and check fails:
• contract violation handler is called (observe, enforce)
• program is terminated (enforce, quick-enforce)

• default contract violation handler can be replaced at link time

23Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Strategy
• If it is in principle possible to insert a runtime check for a case of UB

(even if it's expensive and/or requires global instrumentation),
we specify that check as an implicit contract assertion.

24Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Proposed wording transformation

"If X is not true, the behaviour
of operation A is undefined"

"Operation A has an implicit
precondition assertion that
X is true"

25Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Strategy
• If it is in principle possible to insert a runtime check for a case of UB

(even if it's expensive and/or requires global instrumentation),
we specify that check as an implicit contract assertion.
• behaves the same as an explicit contract assertion
• except that it is inserted by the implementation

26Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

enum class assertion_kind : unspecified {
 pre = 1,
 post = 2,
 assert = 3,
 implicit = 4
}

27Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Strategy
• If it is in principle possible to insert a runtime check for a case of UB

(even if it's expensive and/or requires global instrumentation),
we specify that check as an implicit contract assertion.
• behaves the same as an explicit contract assertion
• except that it is inserted by the implementation

28Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Strategy
• If it is in principle possible to insert a runtime check for a case of UB

(even if it's expensive and/or requires global instrumentation),
we specify that check as an implicit contract assertion.
• behaves the same as an explicit contract assertion
• except that it is inserted by the implementation
• we do not require an implementation to provide all possible checks

(ignore is always a valid choice)

29Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Strategy
• If it is in principle possible to insert a runtime check for a case of UB

(even if it's expensive and/or requires global instrumentation),
we specify that check as an implicit contract assertion.
• behaves the same as an explicit contract assertion
• except that it is inserted by the implementation
• we do not require an implementation to provide all possible checks

(ignore is always a valid choice)
• but we require an implementation to document the selection

mechanism (which semantic is chosen is implementation-defined)

30Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Benefits
• Bringing compiler flags, sanitisers, etc. that implement these checks

already today into scope of the C++ Standard
• Enabling things like a Standard callback API for diagnosed runtime UB
• Codifying standard names and categories for UB in the Standard
• Enables seamless integration with Contract labels, Profiles, etc.

31Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Part 1:
systematically introduce

runtime checks

Part 2:
systematically replace UB by

well-defined fallback behaviour

Part 3:
Provide opt-out

32Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Introduce well-defined fallback behaviour

"If X is not true, the
behaviour of operation
A is undefined"

"Operation A has an implicit
precondition assertion that X is
true; continuing execution past a
violation of this precondition is
undefined behaviour."

"Operation A has an implicit
precondition assertion that
X is true; after a violation of this
precondition, <fallback behaviour>
happens".

Does fallback
behaviour exist?

33Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Part 1:
systematically introduce

runtime checks

Part 2:
systematically replace UB by

well-defined fallback behaviour

Part 3:
Provide opt-out

34Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Four evaluation semantics

• ignore: do not check predicate

• observe: check predicate; if false, call contract-violation handler;
when handler returns, continue

• enforce check predicate; if false, call contract-violation handler;
when handler returns, terminate

• quick-enforce: check predicate; if false, terminate immediately

35Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Five evaluation semantics

• assume: do not check predicate but assume it is true;
if predicate is not true, the behaviour is undefined

• ignore: do not check predicate

• observe: check predicate; if false, call contract-violation handler;
when handler returns, continue

• enforce check predicate; if false, call contract-violation handler;
when handler returns, terminate

• quick-enforce: check predicate; if false, terminate immediately

36Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Introducing assume
• We do not propose to allow assume for explicit contract assertions
• Only for implicit contract assertions
• Every implementation is already conforming with this proposal today
• Because assume is already the default for these assertions today!

37Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Examples

38Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Introduce well-defined fallback behaviour

"If X is not true, the
behaviour of operation
A is undefined"

"Operation A has an implicit
precondition assertion that X is
true; continuing execution past a
violation of this precondition is
undefined behaviour."

"Operation A has an implicit
precondition assertion that
X is true; after a violation of this
precondition, <fallback behaviour>
happens".

Does fallback
behaviour exist?

39Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Introduce well-defined fallback behaviour

"If X is not true, the
behaviour of operation
A is undefined"

"Operation A has an implicit
precondition assertion that X is
true; continuing execution past a
violation of this precondition is
undefined behaviour."

"Operation A has an implicit
precondition assertion that
X is true; after a violation of this
precondition, <fallback behaviour>
happens".

Does fallback
behaviour exist?

40Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Example 1: Out of bounds array access

 int main() {
 int a[10] = { 1, 1, 2, 3, 5 }; // array of known bounds
 std::size_t i;
 std::cin >> i;
 return a[i]; // potential UB here
 }

41Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Example 1: Out of bounds array access

 int main() {
 int a[10] = { 1, 1, 2, 3, 5 }; // array of known bounds
 std::size_t i;
 std::cin >> i;
 return a[i]; // potential UB here
 }

 template <typename T, std::size_t N>
 T& __index_into_array(T (&a)[N], std::size_t i) {
 return *(&a + i);
 }

42Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Example 1: Out of bounds array access

 int main() {
 int a[10] = { 1, 1, 2, 3, 5 }; // array of known bounds
 std::size_t i;
 std::cin >> i;
 return a[i]; // potential UB here
 }

 template <typename T, std::size_t N>
 T& __index_into_array(T (&a)[N], std::size_t i)
 pre (i < N) { // implicit contract assertion
 return *(&a + i);
 }

43Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Example 1: Out of bounds array access

 int main() {
 int a[10] = { 1, 1, 2, 3, 5 }; // array of known bounds
 std::size_t i;
 std::cin >> i;
 return a[i]; // potential UB here
 }

 template <typename T, std::size_t N>
 T& __index_into_array(T (&a)[N], std::size_t i)
 pre (i < N) { // implicit contract assertion
 return *(&a + i);
 }

ignore == status quo
enforce for all arrays == AddressSanitizer
quick-enforce for arrays of known bound
== Clang's -fbounds-safety

44Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Introduce well-defined fallback behaviour

"If X is not true, the
behaviour of operation
A is undefined"

"Operation A has an implicit
precondition assertion that X is
true; continuing execution past a
violation of this precondition is
undefined behaviour."

"Operation A has an implicit
precondition assertion that
X is true; after a violation of this
precondition, <fallback behaviour>
happens".

Does fallback
behaviour exist?

45Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Example 2: Signed integer overflow

int g(int i, int j) {
 return i + j;
}

// We pretend that built-in integer addition was performed as-if by:
int operator+(int a, int b)
pre ((b >= 0 && a <= INT_MAX - b) || (b < 0 && a >= INT_MIN - b));

46Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Example 2: Signed integer overflow

int g(int i, int j) {
 return i + j;
}

// We pretend that built-in integer addition was performed as-if by:
int operator+(int a, int b)
pre ((b >= 0 && a <= INT_MAX - b) || (b < 0 && a >= INT_MIN - b)) {
 // well-defined behaviour
}

assume == status quo
ignore == GCC -fwrapv (one possibility)
quick-enforce == GCC -ftrapv
enforce == UBSan

47Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Introduce well-defined fallback behaviour

"If X is not true, the
behaviour of operation
A is undefined"

"Operation A has an implicit
precondition assertion that X is
true; continuing execution past a
violation of this precondition is
undefined behaviour."

"Operation A has an implicit
precondition assertion that
X is true; after a violation of this
precondition, <fallback behaviour>
happens".

Does fallback
behaviour exist?

48Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Additional features with Labels

(P3400, not this paper)

49Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

How labels extend P3100:
Categories

• Implicit contract assertions have implicit labels
• These labels have standard names
• These labels are organised in standard categories (i.e., "bounds")
• You can add your own contract assertions to those categories:
MyVector::operator[] (size_t i)
 pre <category::bounds> (i < size());

• You can name the cases / categories of UB in the contract-violation
handler, branch on them, etc.

50Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

How labels extend P3100:
In-source semantic control

• Directive that adds labels to specified implicit contract assertions
in a scope (file, class, function, block)

• These labels can control the semantic of these assertions
(quick-enforce all lifetime assertions, observe all arithmetic
assertions...)

51Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

How labels extend P3100:
In-source semantic control

• Directive that adds labels to specified implicit contract assertions
in a scope (file, class, function, block)

• These labels can control the semantic of these assertions
(quick-enforce all lifetime assertions, observe all arithmetic
assertions...)

int f(int a, int b) {
 contract_assert implicit arithmetic |= always_enforce;
 return a + b;
}

52Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

How does all this fit into the
bigger picture?

53Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Legacy code New code /
code you can change

New
features

(e.g., borrow
checking, std::
saturate_cast)

Erroneous
behaviour

(e.g., return an
erroneous

value)

Runtime
checks

(e.g., -ftrapw,
sanitisers)

Language
subsetting
(e.g., disallow
C-style casts)

Towards Safe C++

Redefined
behaviour

(e.g., P2644R1
range-based for

loop fix)

Annotations
(e.g., lifetime
annotations,

Clang's
__counted_by)

Configurable
Profiles

Named configuration presets
for the features belowP3100

