
P3637R0 
INHERIT 
STD::META::EXCEPTION 
FROM STD::EXCEPTION

JUNE 16TH, 2025

VICTOR ZVEROVICH NEVIN LIBER MICHAEL HAVA



P3560 ERROR HANDLING IN REFLECTION
Hagenberg

▪ POLL: std::meta::exception should 
inherit from std::exception (explore 
required modifications for what()) 

▪ Attendance: 20 (IP) + 3 (R) 

▪ Author’s Position: SA 

▪ Outcome: No Consensus 

▪ VZ/NL/MH: but close

▪ POLL: Forward P3560R1 to LWG for C++26 

▪ Attendance: 21 (IP) + 3 (R) 

▪ Author’s Position: SF 

▪ Outcome: Consensus in favor 

▪ A: Name exception for ADL reasons 

▪ SA: Not inheriting from std::exception

SF F N A SA
4 3 5 1 3

SF F N A SA
5 9 0 2 1



THE WHAT() ISSUE

▪ Later discussion showed encoding concern based on outdated information from LWG4087 
Standard exception messages have unspecified encoding 

▪ Already addressed in [exception]: 

 constexpr virtual const char what () const noexcept; 

Returns: An implementation-defined NTBS, which during constant evaluation is encoded with the 
ordinary literal encoding. 

Remarks: The message may be a null-terminated multibyte string, suitable for conversion and 
display as a wstring. The return value remains valid until the exception object from which it is 
obtained is destroyed or a non-const member function of the exception object is called.

https://wg21.link/lwg4087
https://wg21.link/lwg4087
https://eel.is/c++draft/exception#6
https://eel.is/c++draft/multibyte.strings#def:ntmbs


THE WHAT() ISSUE

▪ Encoding-wise this is compatible with P3560 

▪ This addresses the motivation for not inheriting from std::exception



WHY INHERIT FROM STD::EXCEPTION?

▪ Consistency 

▪ This would be the first standard exception not inheriting from std::exception 

▪ Users typically inherit from std::exception as well 

▪ Generic exception handling 

▪ It is a very common pattern to catch std::exception (including for tests, logging, 
etc.) when more specific info is not needed 

▪ Adding a new hierarchy means they have to add another catch block



WHY INHERIT FROM STD::EXCEPTION?

▪ Copy operations can throw 

▪ Move operations exist 

▪ Neither of these violates [exception]: 

Except where explicitly specified otherwise, each standard library class T that derives from class exception
has the following publicly accessible member functions, each of them having a non-throwing exception
specification:
— default constructor (unless the class synopsis shows other constructors)
— copy constructor
— copy assignment operator

Minor differences from other standard exceptions

https://eel.is/c++draft/exception#2


MAIN CHANGES TO P3560

class exception : public std::exception { 
 private: 
  optional<string> what_; // exposition only 
  u8string u8 what_;      // exposition only 
  info from_;             // exposition only 
  source_location where_; // exposition only 
     
 public: 
  constexpr const char* what() const noexcept override; 
  consteval string what() const noexcept; 
  // ... 
};

consteval exception(u8string_view 
what, /* ... */) noexcept; 

Effects : Initializes u8what_  with what  , 
from_ with from and where_ with where. If 
what can be represented in the ordinary literal 
encoding, initializes what_  with what, 
transcoded from UTF-8 to the ordinary literal 
encoding. 



CURRENT STATUS OF P3560

▪ The author of P3560 already added this to 
P3560R1! 

▪ Modulo bugs, such as they 
accidentally used private inheritance.  
They will have that fixed in P3560R2. 

▪ P3560 author(s) are now in favor of 
this change!

▪ We need LEWG to poll this.



▪ This research used resources from the Argonne Leadership Computing Facility, a U.S. 
DOE Office of Science user facility at Argonne National Laboratory, which is supported by 
the Office of Science of the U.S. DOE under Contract No. DE-AC02-06CH11357.




