Nicolai Josuttis: P3725R0: Filter View Extensions for Input Ranges

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P3725R0

Date: 2025-06-03

Reply to: Nicolai Josuttis (nico@josuttis.de)

Co-authors:

Audience: SG9, LEWG, LWG

Issues:

Previous:

Filter View Extensions for Input Ranges, Rev 0

Several basic use cases of the current filter view are broken or risky. This paper proposes special
features to give programmers of the filter view an easy option to use filter views more intuitive and with
less risks.

Motivation

Using filter views is both risky and non-intuitive. Let us look at some applications.

UC1) Possible core dumps
For example (see https://www.godbolt.org/z/arMYb3G4d):

std::vector<std::string> colll{"Amsterdam", "Berlin", "Cologne", "LA"};

// move long strings in reverse order to another container:
auto large = []J(const auto& s) { return s.size() > 5; };
auto sub = colll | std::views::filter(large)

| std::views::reverse

| std::views::as_rvalue

| std::ranges::to<std::vector>();

This program has undefined behavior and results in a core dump due to overwriting memory of other
objects.
Note that the core dump depends on the values and predicate used:

e With “Rome” instead of “Berlin” it is “ony” broken (still UB).

e With a predicate “s.size() > 5”itis always well defined and works fine

UC2) Healing “broken” elements
For example (https://www.godbolt.org/z/nG3v5vMev):

// bring all dead monsters back to live:

auto dead = [] (const auto& m) { return m.isDead(); };

for (auto& m : monsters | std::views::filter(dead)) {
m.bringBackToLive(); // undefined behavior

}

The loop to bring all dead monsters back to live works but is formally undefined behavior. The reason is
that it can go wrong when after the filter there are other views like reverse (see the previous example).



Nicolai Josuttis: P3725R0: Filter View Extensions for Input Ranges

UC3) No const iterations supported
For example (see https://www.godbolt.org/z/cjYbsn757, example by Patrice Roy):

void constIterate(const auto& coll);
std::vector<std::string> coll3{"Amsterdam", "Berlin", "Cologne", "LA"};

auto large = [](const auto& s) { return s.size() > 5; };
constIterate(coll3 | std::views::filter(large)); // compile-time ERROR

All three cases mean that ordinary programmers need good insights of the filter view to understand what
is going on and avoid serious mistakes.

This paper provides a simple solutions for these use cases, which is easy to teach and easy to follow. By
using std::views::input_filter() to create the filter the broken basic use cases work fine:
// bring all dead monsters back to live:
auto dead = [] (const auto& m) { return m.isDead(); };
for (auto& m : monsters | std::views::input_filter(dead)) {
m.bringBackToLive(); // well defined and works

}

auto large = [](const auto& s) { return s.size() > 5; };
constIterate(coll3 | std::views::input_filter(large)); // OK

While the broken memory access no longer compiles:

std::vector<std::string> colll{"Amsterdam”, "Berlin", "Cologne", "LA"};

// move long strings in reverse order to another container:
auto large = [](const auto& s) { return s.size() > 5; };
auto sub = colll | std::views::input_filter(large)
| std::views::reverse
| std::views::as_rvalue
| std::ranges::to<std::vector>(); // compile-time ERROR

This compile-time error also occurs in cases previously not broken and working fine. To be able to use
filters here, programmers can still use std::views:::filter().

Proposed Changes

The proposed changes are pretty simple:

a) For filter views, add a new const member functions begin() and end() when it operates on an
input ranges, which supports a const begin().

b) For filter view iterators, relax the wording of
Modification of the element a filter_view::iterator denotes is permitted, but results in undefined
behavior if the resulting value does not satisfy the filter predicate.
to allow all modifications on input iterators:

Modification of the element a filter_view::iterator denotes is permitted, but results in undefined
behavior if the underlying range is a forward_range and the resulting value does not satisfy the
filter predicate.

c) Provide a new range adaptor object std::views::input_filter which forces the underlying range
internally to be used as input_range using the to_input view.



Nicolai Josuttis: P3725R0: Filter View Extensions for Input Ranges

Note that as a result the filter view will have const begin() and end() when operating on an input range. This
sounds surprising, because usually pure input ranges read data with begin() (as with ++) and therefore have no
const begin().

However, from a semantic perspective, here we have a new special case. Being an input range is provided to make
the use of the filter view safer. Technically, begin() is a cheap const operation. We assume that this pattern might
also be established for other views in futire.

Proposed Wording
(All against N5008)

In 25.7.8.1 Overview [range.filter.overview]
Add a new paragraph:

The name views::input_filter denotes a range adaptor object (25.7.2). Given subexpressions E and P, the
expression views::filter(E, P) is expression-equivalent to filter_view(to_input_view(E), P).

in 25.7.8.2 Class template filter_view [range.filter.view]
in the class structure replace:

constexpr iterator begin();

constexpr auto end() {
if constexpr (common_range<V>)
return iterator {*this, ranges::end(base_)};
else
return sentinel {*this};

}
by
constexpr iterator begin();

constexpr iterator begin() const requires (!forward_range<const V>) &&
indirect_unary_predictate<const Pred&, iterator_t<const V>>;

constexpr auto end() {
if constexpr (common_range<V>)
return iterator {*this, ranges::end(base_)};
else
return sentinel {*this};

}

constexpr auto end() const requires (!forward_range<const V>) {
if constexpr (common_range<const V>)
return iterator {*this, ranges::end(base_)};
else
return sentinel {*this};

}

In 24.7.4.2 Class template filter_view [range.filter.view]
Before the definition of

constexpr iterator begin();
add a second member function:

constexpr iterator begin() const requires (!forward_range<const V>) &&
indirect_unary_predictate<const Pred&, iterator_t<const V>>
using the same effects clause.

In 25.7.8.3 Class filter_view::iterator [range.filter.iterator]



Nicolai Josuttis: P3725R0: Filter View Extensions for Input Ranges

Replace

Modification of the element a filter_view::iterator denotes is permitted, but results in undefined behavior
if the resulting value does not satisfy the filter predicate.

by:
Modification of the element a filter_view::iterator denotes is permitted, but results in undefined behavior
if the underlying range is a forward_range and the resulting value does not satisfy the filter predicate.

Feature Test Macro

Add a new ranges or filter_view feature test macro.

Acknowledgements
Thanks to a lot of people who helped and gave support again and again to finally get this proposal done.
Special thanks go to Berry Revzin, Jonathan Muller, Ville Voutilainen, Peter Dimov, Hui Xie, Herb Sutter,

Tristan Brindle, which finally took their time to explain the motivation, discuss options, corrected me, and
proposed details of the current situation.

Rev0:

First initial version.

References




