
P3711R1
Safer StringViewLike Functions for
Replacing char* strings
Date: 2025-05-15
Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: SG23, LEWG
Author: Marco Foco
Contributors: Alexey Shevlyakov, Joshua Kriegshauser
Reply to: marco.foco@gmail.com

Introduction
This document introduces a set of string utility functions that we used in NVIDIA Omniverse
Foundation Library, and were key components to remove char* (or more generally CharT*)
strings usage from our codebase replacing them with the implementation proposed in P3566. All
the usages that will still need to use the old-fashioned char*s will be marked accordingly to
P3566, using the proposed unsafe_length tag.

Changes
R1

● Added examples in the form of alternative implementations for starts_with, join and
is_empty_or_null

● Added poll results for Sofia SG23

R0

● Document creation

Concepts
We rely on the concepts of [Safe|Unsafe]StringViewLike, as defined in P3566R2.
SafeStringViewLike represents bounded string_view-like objects (i.e. implicitly
convertible to string_view as described in P3566), while UnsafeStringViewLike
represents unbounded string_view-like objects (implicitly convertible to string_view in
C++26, but not implicitly convertible in P3566, e.g. char*s).

Functions
We define a function as safe if it can perform an operation in a bounded fashion, where bounds
are defined by one or all of the operands. For example, testing for a prefix (starts_with) is a
bounded operation if any of the two operands is bounded (the shortest defines the length), while
testing for a suffix (ends_with) is a bounded operation if and only if the first operand is
bounded, while the second can be unbounded (i.e. it can also be a CharT* or an unbounded
CharT[]).
In accordance with P3566, the unsafe operations are tagged with the same unsafe_length
tag introduced in P3566.

Free function starts_with
The function is equivalent to string_view::starts_with, but can be applied to operands
that are StringViewLike, but aren't strictly string_views.

If the first operand is bounded (SafeStringViewLike), the second is either bounded or
unbounded (StringViewLike):

template<SafeStringViewLike TString, StringViewLike TPrefix>
bool starts_with(TString&& s, TPrefix&& p) {
 return string_view{forward<TString>(s)}
 .starts_with(forward<TPrefix>(p));
}

If the first operand is unbounded, but the second is bounded, the operation is still considered
safe:

template<UnsafeStringViewLike TString, SafeStringViewLike TPrefix>
bool starts_with(TString&& s, TPrefix&& p) {
{
 string_view p1{p};
 // an empty strings can only start with an empty prefix
 if (is_null(s))
 return p1.empty();
 // no terminator between (0..p.size()-1)
 return !string_view::traits_type::find(str, p1.size(), char{}) &&
 string_view::traits_type::compare(str, p1.data(), p1.size()) ==
0;

}

Both operands are unbounded

template <UnsafeStringViewLike TString, UnsafeStringViewLike TPrefix>
bool starts_with(carb::cpp::unsafe_length_t, TString&& s, TPrefix&&
p)
{
 return string_view{unsafe_length, forward<TS>(s)}
 .starts_with(unsafe_length, forward<TP>(p));
}

Current implementations
Currently our experience shows that this problem is solved in a number of ways:
The simplest way to do the same currently is (assuming s and p to be the string and the prefix):

string_view(s).starts_with(p)

P3566 introduces changes to how char* is proposing to (conditionally) deprecate char*
constructors from string, string_view and zstring_view, and that will cause this to become:

string_view(unsafe_length, s).starts_with(p)

This paper builds on top of P3566, and this line would highlight a problem in the implementation
(unsafe length computation) even if the code can be implemented without worrying about the
unboundedness of s if p turns out to be bounded.

despite the fact that testing a string for a prefix is bounded if either the string or the prefix are
bounded. This per se would be already confusing, but unfortunately we've found a number of
ways this has been implemented in other codebases (len_s and len_p to be the length of s
and p respectively)

Implementation Comment

manual loop retains boundedness, verbose

s == strstr(s, p) irrelevant lookup in the rest of the string

strncmp(s, p, len_p) == 0 requires length computation for p if p is an
unbounded string (char*)

(lens >= len_p) &&
 (memcmp(s, p, len_p) == 0)

requires length computation for p or for s if p or s is
unbounded (char*)

Free function ends_with
The function is equivalent to string_view::ends_with, but can be applied to operands that
aren't strictly string_views. Whenever a CharT* value pointing to nullptr is passed, we
assume an empty string (according to the idea that
basic_string_view<CharT>{(CharT*)nullptr} == <an empty string of CharT> as
proposed in P3566).

If the first operand is bounded, the operation is safe:

template <SafeStringViewLike TString, StringViewLike TSuffix>
bool ends_with(TString&& str, TSuffix&& suffix) {
 string_view{str}.starts_with(suffix);
}

If the first operand is unbounded, the operation is unsafe:

template <UnsafeStringViewLike TString, StringViewLike TSuffix>
bool ends_with(unsafe_length_t, TString str, TSuffix suffix) {
 string_view{unsafe_length, str}.starts_with(suffix);
}

Free function join
Concatenate a set of strings together.

The return type can be specified, or left unspecified (default is void). If the return type is
unspecified, it's assumed to be a specialization of basic_string<CharT, Traits>, where
the CharT is deduced from the arguments, and the Traits type is either deduced, or assumed
to be std::char_traits<CharT>, if it cannot be deduced.

The safeness of the operation is defined by the operands. If they're all bounded (i.e. all
SafeStringViewLike), the join operation is considered safe.

template<typename RetType = void, SafeStringViewLike... Args>
auto join(const Args... args);

If one of the operands is not safe, an unsafe_length tag is required:

template<typename RetType = void, StringViewLike... Args>
 requires /* At least one Args... is NOT SafeStringViewLike */
auto join(unsafe_length_t, const Args... args);

In our implementation we also proposed other functions, such as a concatenation with a
separator, and a concatenation for iterators. These functions are not proposed in this document
(we suggest a poll for interest).

Current implementations
Current implementations use a very common idiom (cast to string and +), that is as inefficient as
common. When concatenating three StringViewLike objects a, b and c, one user would write:

result = string(a) + b + c

Which results in multiple allocation and copies:

● allocate space for a copy of a (tmp1)
● copy a into tmp1
● allocate space for tmp1+b (tmp2)
● copy tmp1 into the first part of tmp2
● copy b into tmp2
● allocate space for tmp2+c (tmp3)
● copy tmp2 into tmp3
● copy c into tmp3
● assign to result (not counted, as it's probably moved or erased)

for a grand total of 3 allocations and 5 copies (two of size len_a, two of size len_a+len_b, and
one of size len_c).

Our implementation does exactly one allocation of the right size, and 3 copies.

Free function is_null_or_empty
This function is really simple, it just checks if the parameter is null or is a valid pointer pointing to
an empty string. This function is useful for CharT*, and is safe by accessing just the first
element of the string, and only if the string is not nullptr.

template<Char T>
bool is_null_or_empty(const CharT* s) {
 return (!s) || (!*s);
}

Current implementations
We've seen this function implemented in a number of different ways, some of which included
strlen/wcslen, which is an unnecessary unbounded scan of the string.

Previous polls

2025-06-17 Sofia (SG23)
We should promise more committee time to pursuing P3711R0 from a safety and security
perspective

SF F N A SA

2 7 2 2 0

Consensus

Is there interest in: (Note: some people said they did not have sufficient information at this time to
express an opinion and voted N)

starts_with/ends_with:

F N A

4 7 1

join:

F N A

3 7 1

is_empty:

F N A

1 3 7

Conclusion
In this paper we proposed the free function equivalent of a subset of member functions on
string_view, to operate on StringViewLike objects, separating them into their safe and
unsafe counterparts.

This paper builds on top of P3566R2, but it can also be implemented independently from it. In
our opinion, and each of these utility functions can be separated into a specific paper and
proposed independently from the others, and from P3566R2.

https://wiki.edg.com/bin/view/Wg21sofia2025/SG23_P3711R0?sortcol=0;table=1;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21sofia2025/SG23_P3711R0?sortcol=1;table=1;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21sofia2025/SG23_P3711R0?sortcol=2;table=1;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21sofia2025/SG23_P3711R0?sortcol=3;table=1;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21sofia2025/SG23_P3711R0?sortcol=4;table=1;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21sofia2025/SG23_P3711R0?sortcol=0;table=2;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21sofia2025/SG23_P3711R0?sortcol=1;table=2;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21sofia2025/SG23_P3711R0?sortcol=2;table=2;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21sofia2025/SG23_P3711R0?sortcol=0;table=3;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21sofia2025/SG23_P3711R0?sortcol=1;table=3;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21sofia2025/SG23_P3711R0?sortcol=2;table=3;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21sofia2025/SG23_P3711R0?sortcol=0;table=4;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21sofia2025/SG23_P3711R0?sortcol=1;table=4;up=0#sorted_table
https://wiki.edg.com/bin/view/Wg21sofia2025/SG23_P3711R0?sortcol=2;table=4;up=0#sorted_table

	P3711R1
	Safer StringViewLike Functions for Replacing char* strings
	Introduction
	Changes
	Concepts
	Functions
	Free function starts_with
	Current implementations

	Free function ends_with
	Free function join
	Current implementations

	Free function is_null_or_empty
	Current implementations

	Previous polls
	2025-06-17 Sofia (SG23)

	Conclusion

