
Allowing access to enclosing
object using offsetof

(Slides for P3407R1)
Brian Bi

Document number: P3601R0
Presented to EWG on June 17, 2025

Intrusive data structures in C

struct ListNode {

 struct ListNode* prev;

 struct ListNode* next;

};

typedef struct {

 int data;

 struct ListNode node;

} Foo;

Foo* next_foo(Foo* foo) {

 struct ListNode* next_node = foo->node;

 return (Foo*)((char*)next_node - offsetof(Foo, node)); // <----- UB in C++

}

Proposal: make this do the right thing in C++

● There is no better way to write the code in C.
● The behavior used to be well-defined before C++17.
● We should restore compatibility with C.
● No implementations need to change. They do the right thing already.

Problem 1: Pointer arithmetic within objects

We don’t define the meaning of this subexpression:

(char*)next_node - offsetof(Foo, node)

next_node doesn’t point into an array of char.

Pointer arithmetic within object representations is the subject of P1839R7. But that
paper doesn’t address “escaping” from a subobject into the enclosing object.

https://open-std.org/jtc1/sc22/wg21/docs/papers/2025/p1839r7.html

Problem 2: Reachability

struct S {

 int x;

 int y;

};

void modify_S_x(int* py);

int f() {

 S s {};

 modify_S_x(&s.y);

 return s.x * s.x; // Compiler can optimize this to return 0;

}

Problem: s.y is not reachable from a pointer to s.x

But no C++ compiler is ever going to do that!

● C++ compilers need to consume C code and link with C translation units.
● C code can access the enclosing struct given a pointer to a subobject.
● Implementing the optimization would silently break such code, giving it the

unbounded behavior of UB. This is presumably why no compilers do it.
● We should just standardize existing practice!

But there are some subtleties

What if the member we start from already has type char or array of char?
struct S2 {
 int data;
 char buf[100];
};
int get_data(char* p) {
 return ((struct S2*)(p - offsetof(S2, buf)))->data; // out of bounds pointer arithmetic
}
void f5() {
 S2 s;
 // ...
 get_data(s->buf);
 // ...
}

But there are some subtleties

What if the member we start from already has type char or array of char?

● Can you just subtract from it to get to the start of the enclosing object?
● Or do you need to cast the pointer to its own type, char*, first?
● Or do you need to cast to a different type, unsigned char*?

Compilers already let you do it in all three cases… but sanitizers might have a
different opinion.

I propose the last option. We can relax it later if we have to. More analysis is in the
paper itself.

But there are some subtleties

This cast to char* already has a different meaning:

struct S3 {
 char a;
 int b;
};
struct S4 {
 char c;
 struct S3 d;
};

struct S4* get_s4(struct S3* s3) {
 // The inner cast actually produces a pointer to d.a
 return (struct S4*)((char*)s3 - offsetof(S4, d));
}

Idea: use “angelic nondeterminism”: you get whichever pointer gives you well defined behavior.

Wording strategy

● In P1839R7:
○ Each subobject has its own object representation array (array of unsigned char)
○ You can’t escape from a subobject’s object representation array to that of the enclosing object
○ Except when the subobject is the first member of a standard-layout struct (current reachability

rule)
● P3407R1 would go further than P1839R7, in order to enable access to the

enclosing object:
○ Every byte of a complete object is reachable from a pointer to any part of the complete object
○ Each complete object has an object representation array
○ Casting to unsigned char* from a pointer to a subobject just puts you somewhere in the

object representation of the complete object

Future direction: opt in to dangerous optimizations

● “I want innocuous-looking code to have UB so that the compiler can make other
code go faster” is bad for safety.

● We should make it easy for beginners to write correct code, and give experts the
tools with sharp edges to introduce UB, like [[assume]].

● Perhaps there should be an opt-in mechanism to tell the compiler that a pointer to
a subobject cannot reach any other members of the enclosing object?

● restrict provides a way to do this in ISO C. Appendix A of the paper outlines a
possible alternative facility that might pose less specification difficulty in C++, and
could be added to C as well. The idea is based on the provenance model of
CHERI and Rust: a pointer value remembers the range of bytes it is allowed to
reach. An expert has to explicitly narrow that range to enable optimizations.

