
P3566R2
You shall not pass char* - Safety
concerns working with unbounded
null-terminated strings
Date: 2025-06-11
Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: SG23
Authors: Marco Foco, Joshua Krieghauser, Alexey Shevlyakov, Giuseppe D'Angelo
Contributors:
Reply to: marco.foco@gmail.com

History

R2
● Added reference to P3655R2
● Added discussion about copy overloads
● Added more experiments with QT
● Clarified that treating null pointers as empty strings is a proposed change (moved from

introduction to specific chapter)

R1
● Introduction of SafeStringView and UnsafeStringView concepts
● Impact on existing code
● Null pointer is empty string
● More on implementation experience (both internal and from Giuseppe D'Angelo)
● Added reference to string_ref paper

R0
Document creation

Abstract
strings and string_views are often used as a safer alternative to null-terminated strings.
Unfortunately they suffer from an implicit assumption at creation/assignment time, and in some
of their functions: the presence of a null-terminator in the input sequence.
The absence of the null-terminator can currently lead to undefined behavior inside these
functions.
There are many cases when the length of the sequence can be computed at compile time,
which shouldn’t be ignored. In some other cases, we can turn potential undefined-behaviors into
either well-defined behavior, or "better behaved" undefined behavior (i.e. turning an unbounded
string operation into a bounded string operation).
In this paper we propose to restrict the usage of constructors and functions taking a char*
argument in string, string_view, and zstring_view to improve range-safety in these
operations (together with some other minor improvements).

Introduction
P3038R0 suggests the use of string and string_view as substitute for char*, and
suggests adding range checking to such classes. P3274R0 further clarifies the Ranges profile,
banning subscripting of raw pointers, and introducing a checked indexing operator for strings
and views.

In an effort to improve safety on our codebase, we independently started implementing the
suggestion from P3038R0, and replaced const char*s with string_views as much as we
could in our internal APIs.

As part of our roadmap we also implemented zstring_view, in a similar way as described in
P3655. In R2 of that paper we collaborated with the original authors to include our experience
and consideration in using zstring_view for migrating an existing large codebase.

We realized that, in order to improve memory safety further, we should limit the implicit
construction of string, string_view and zstring_view from an unsafe char*, and only
allow construction from types that will bring along some additional range information (e.g.
bounded char[N]).

Note: For simplicity of notation, we will often mention string, string_view and char*, but
the entire discussion is really about basic_string<CharT>,
basic_string_view<CharT>, basic_zstring_view<CharT>, and CharT*.

Also, right we noticed that passing a null pointer to any of the functions results in Undefined
Behavior. In order to reduce the UB cases, we propose, in all functions, to assume that null
pointers represent an empty string, and act accordingly. In our implementation of

zstring_view, an internal empty string is used (to ensure the presence of the
null-terminator).

Proposal
There are a number of other cases in the standard library where null-terminated strings are
expected, and, while we aim in the future to address most of them, this proposal will be mainly
limited to addressing the issues in string and string_views, and strictly related usages.

We aim to separate the function that take a naked char* in two categories:

● Functions that can be implemented in a safe way (computing them with bounded
memory access)

● Functions that cannot be implemented safely, and need to deal with unbounded
memory access (e.g. unbounded scan for determining the string length)

In some cases, we will be able to separate functions of the second category (unsafe) into two
functions (one unsafe and one safe):

● The first one, taking a bare char* (unsafe) will compute an unbounded string length at
run-time

● The second one (safe) will capture the bounded types before they decay (e.g. char[N]),
and compute the string length only in the safe region (0..N-1).

We propose to then make [[deprecated]] all unsafe usages, and replace them with
equivalent tagged versions of the same functions (proposed tag: unsafe_length, of type
unsafe_length_t).

Safe functions in char_traits
One important aspect of this proposal is the introduction of a new function in char_traits:
length_s. This function is the bounded counterpart of char_traits::length and has two
overloads

template<size_t N>
constexpr size_t length_s(const char_type (&s)[N]) {...}

constexpr size_t length_s(const char_type* s, size_t N) {...}

Both versions behave similarly to strnlen_s, returning the number of characters before the
null terminator if that appears before the size provided (or implied by the underlying array), or N
if the terminator was not found.

Changes to std::string, std::string_view and
std::zstring_view
zstring_view is described in P3081, P3710R0 and P3655R1.
The last two papers have been unified into P3655R2.

Constructing and assigning
Construction and assignment from char* of both classes requires an unbounded memory scan
to determine the string length. At the moment, this constructor is typically used for both bounded
strings (char[N]) and unbounded (char*, char[]). We want to separate bounded and
unbounded cases, keeping the former and deprecating the latter. We will then introduce a
tagged replacement for the deprecated functions.

Example for string_view

Before:
constexpr string_view(const char *p) noexcept : _data(p),
_size(Traits::length(p)) {...}

After:
[[deprecated]] constexpr string_view(const char *p) noexcept :
_data(p), _size(Traits::length(p)) {...}

template<size_t N>
string_view(const char (&p)[N]) noexcept : _data(p),
_size(Traits::length_s(p)) noexcept {...}

explicit constexpr string_view(unsafe_length_t, const char *p)
noexcept : _data(p), _size(Traits::length(p)) {...}

The bounded-memory-range constructor/assignment will be used when dealing with string
literals and strings built within a fixed-size array. In these cases, we will use N as the length of
the string should no null-terminator be found within the range.

This does not represent a breaking change with respect to status quo, as all the usages with
non-null-terminated char sequences would currently result in undefined behavior (out of
bounds access), and we're just giving a well-defined behavior to this operation.

In addition, zstring_view guarantees the presence of the null-terminator when built from
bounded-ranges. This can be achieved by computing length_s on the provided sequence,
and verifying that the effective length returned is less than N-1 (with N being the number of
characters in the sequence).

Member function: copy
The char* parameter passed to the copy member functions of string, string_view and
zstring_view is bounded by the current object's length and the count of characters
requested, and is therefore considered safe.
We also propose to introduce overloads of this function with char[N], see the section "New copy
Overloads" later in this document.

Member function: compare and operator <=>
The potentially unsafe member function has signature:

constexpr int compare(const char* s) const;

This member function does not require any unbounded operation because it will exit as soon as
the first difference is encountered.

It will compare the first size() characters of both sequences, and only if they're all equal, it will
check the size()+1 character (s[size()]), to verify the sequence s terminates correctly.

The non-member overloads of the operator <=> can all be defined in terms of the compare
member function (exactly as today).

Member function: starts_with
The potentially unsafe member function has signature:

constexpr bool starts_with(const char* s) const;

This member function does not require any unbounded operation because it will exit as soon as
the first difference is encountered.

It will compare at most size() characters from the sequence s (as it doesn't need to verify that
the sequence is terminating).

Member function: ends_with
The potentially unsafe member function has signature:

constexpr bool ends_with(const char* s) const;

This member function does not require any unbounded operation because it can compute sz =
length_s(s, size()+1)

● If the result is size()+1 the provided suffix is longer than the current object, and the
result is false

● If the result is smaller, we can compare the sequences by returning
ends_with(string_view(s, sz))

It will visit at most size()+1 characters from the sequence s.

Member function contains
The potentially unsafe member function has signature:

constexpr bool contains(const char* s) const;

This member function does not require any unbounded operation because it can compute sz =
length_s(s, size()+1)

● If the result is size()+1 the provided suffix is longer than the current object, and the
result is false

● If the result is smaller, we can compare the sequences by returning
contains(string_view(s, sz))

It will visit at most size()+1 characters from the sequence s.

Member function find and rfind
The potentially unsafe member functions have signatures:

constexpr size_type [r]find(const char* s) const;

This member function does not require any unbounded operation because it can compute sz =
length_s(s, size()+1)

● If the result is size()+1 the provided sequence is longer than the current object, and
the result is false

● If the result is smaller, we can compare the sequences by returning
[r]find(string_view(s, sz))

It will visit at most size()+1 characters from the sequence s.

Member Functions find_first_of, find_last_of,
find_first_not_of and find_last_not_of

The unsafe member functions has signature (example with find_first_of):

constexpr size_type find_first_of(const char* s, size_type pos = 0)
const;

It’s impossible to deduce an upper bound for the length of s. As with the
construction/assignment case, we must split these usages, deprecate the unsafe versions, and
add the tagged member functions:

Example with find_first_of

[[deprecated]] constexpr size_type find_first_of(const char* s,
size_type pos = 0) const;

template<size_t N>
constexpr size_type find_first_of(const char (&s)[N], size_type pos =
0) const noexcept;

constexpr size_type find_first_of(unsafe_length_t, const char* s,
size_type pos = 0) const;

Changes to std::string only

Member function insert
Unsafe member function:

constexpr string& insert(size_type index, const char* s);

It's impossible to deduce an upper bound for the length of s, so we deprecate the member
function with the usual outcome:

[[deprecated]] string& insert(size_type index, const char* s);

template<size_t N>
constexpr string& insert(size_type index, const char (&s)[N]);

constexpr string& insert(unsafe_length_t, size_type index, const
char* s);

Member function append and operator +=
Unsafe member functions:

constexpr string& append(const char* s);
constexpr string& operator +=(const char* s);

It's impossible to deduce an upper bound for the length of s, so we deprecate the member
function with the usual outcome:

[[deprecated]] constexpr string& append(const char* s);
[[deprecated]] constexpr string& operator +=(const char* s);

template<size_t N>
constexpr string& append(const char (&s)[N]);
template<size_t N>
constexpr string& operator +=(const char (&s)[N]);

constexpr string& append(unsafe_length_t, const char* s);

No tagged replacement can be offered for the operator +=

Member function replace
Unsafe overloads:

constexpr string& replace(size_type pos, size_type count, const char*
s);
constexpr string& replace(const_iterator first, const_iterator last,
const char* s);

It's impossible to deduce an upper bound for the length of s, so we deprecate the member
function with the usual outcome:

[[deprecated]] constexpr string& replace(size_type pos, size_type
count, const char* s);
[[deprecated]] constexpr string& replace(const_iterator first,
const_iterator last, const char* s);

template<size_t N>
constexpr string& replace(size_type pos, size_type count, const char
(&s)[N]);
template<size_t N>
constexpr string& replace(const_iterator first, const_iterator last,
const char (&s)[N]);

constexpr string& replace(unsafe_length_t, size_type pos, size_type
count, const char* s);
constexpr string& replace(unsafe_length_t, const_iterator first,
const_iterator last, const char* s);

Non-member operator+
Unsafe overloads:

constexpr string operator+(const string& lhs, const Char* rhs);
constexpr string operator+(const char* lhs, const string& rhs);
constexpr string operator+(string&& lhs, const char* rhs);
constexpr string operator+(const char* lhs, string&& rhs);

It's impossible to deduce an upper bound for the length of s, so we deprecate the member
function with the usual outcome:

[[deprecated]] constexpr string operator+(const string& lhs, const
Char* rhs);
[[deprecated]] constexpr string operator+(const char* lhs, const
string& rhs);
[[deprecated]] constexpr string operator+(string&& lhs, const char*
rhs);
[[deprecated]] constexpr string operator+(const char* lhs, string&&
rhs);

template<size_t N>
constexpr string operator+(const string& lhs, const char (&rhs)[N]);
template<size_t N>
constexpr string operator+(const char (&lhs)[N], const string& rhs);
template<size_t N>
constexpr string operator+(string&& lhs, const char (&rhs)[N]);
template<size_t N>
constexpr string operator+(const char (&lhs)[N], string&& rhs);

No tagged replacement can be offered for the operator+

Null pointer is empty string
Right now, passing a null pointer to any of the functions results in Undefined Behavior.
In order to reduce the UB cases, we propose, in all functions, to assume that null pointers
represent an empty string, and act accordingly.

New copy overloads (not proposed yet)
To further improve safety, we considered adding overloads taking a char[N], that can implicitly
compute the range size.

template <size_t N>

constexpr size_type copy(const char (&dest)[N], size_type pos = 0)
const
{
 copy((char*)dest, pos);
}

Unfortunately this member function would be disregarded, because of the decay char[N] ->
char* that would pick up the pre-existing overload, with an incorrect count argument. Implicitly
excluding char[N] from the existing overload would change the meaning of existing code that
relies on char[N] -> char* conversion.

Therefore we consider adding a new function retaining the count parameter which would allow
disambiguation between the char* version of the function, and allow a precondition that would
verify that the count specified is within the bounds of the array:

template <size_t N>
constexpr size_type copy(const char (&dest)[N], size_type count,
size_type pos = 0) const
 pre(count <= N)
{
 copy((char*)dest, count, pos);
}

In order to keep the proposal as similar as possible to the previous version, we're not proposing
this in this version, but we explicitly ask for feedback (in the form of a poll).

Concepts
In order to better represent the types expressed here, we introduce some new informal
concepts:

● StringViewLike
○ Remains unchanged from C++26, i.e. StringViewLike is any type implicitly

convertible to string_view AS DESCRIBED IN THE C++26 STANDARD.
● SafeStringViewLike

○ StringViewLike is any type implicitly convertible to string_view AS DESCRIBED
IN THIS DOCUMENT.

○ SafeStringViewLike<T> is true for all types T that are implicitly convertible to
string_view as described in this paper: doesn't accept CharT*

● UnsafeStringViewLike
○ StringViewLike && !SafeStringViewLike
○ UnsafeStringViewLike<T> is true for all types T that are implicitly convertible to

old string_view, but are not SafeStringViewLike

Implementation Experience

NVIDIA/Omniverse Experience
We implemented the changes proposed in this paper in our Foundation library of the Omniverse
project in NVIDIA, together with other changes proposed in P3710R0/P3655R2
(zstring_view) and P3711R0 (string utility functions).
These tools proved to be useful to migrate an old codebase to a new, safer string standard, by
providing the following:

● Reducing the use of unsafe C string functions (strlen, strchr, strstr, strcpy, ...)
● Creating a clear migration to a safer standard for our code and our APIs:

○ API input parameters
■ Long term goal: switch all the input parameters to be string_view (ideally)
■ Short term: migrate the input parameters to be either string_view (if

possible) or zstring_view (always possible, see P3710).
○ API returns

■ replace const string& return types to zstring_view.
■ Only use string_view as return type for returns that do not guarantee

null termination (e.g. substrings)
○ Code

■ Replace implicit conversions need to be replaced with explicit
unsafe_length-tagged conversions

■ Replace internal use of char* to string_view (if possible) or zstring_view
■ Change the way string literals are declared. Instead of using const

char* x = "..."; (a C++26 StringViewLike, but unfortunately
UnsafeStringViewLike), we use [static] constexpr char x[] =
"...";, as the latter will retain the bounds in the type (making it a
SafeStringViewLike, and usable in string_view described in this paper, but
also zstring_view described in P3710 and string utility function described
in P3711).

Despite starting in 2017, our project started with a very C-oriented mindset (original target was
C++11), migrated to C++14 in 2019, and only recently ported to C++17 (late 2024). This
resulted in a lot of code still using plain old C strings. Nonetheless, only few of the usages
required an explicit unsafe_length-tagged cast, as many of our use-cases used string literals or
constant strings, that were treated separately with the aforementioned search & replace of
const char* x = "..."; to constexpr char x[] = "...";, which can be applied
automatically to an entire codebase.

Giuseppe D'Angelo Qt Experience
Giuseppe D'Angelo tested the changes on the Qt Library (excluding tests and examples).

Qt has many string and string view classes: QString and QStringView (UTF-16),
QByteArray and QByteArrayView (raw bytes, à la std::string), QLatin1StringView
(mostly used as a wrapper for string literals), and recently even QUtf8StringView (UTF-8)
and QAnyStringView (type-erased view over Latin1, UTF-8, UTF-16). These classes have
very complicated overload sets for their constructors, mostly for historical and compatibility
reasons.

Qt string(view) classes already accept null pointers, and create empty string(view)s.

Applying the changes of this paper to the various string(view) classes yields mixed results:

● QString has a constructor from const char *, but it’s already disabled during Qt’s
own build. This is something that also users can do for their own projects. The reason for
this ability is to prevent encoding mistakes: the constructor expects data encoded as
UTF-8, but it’s easy to accidentally pass data in other encodings. To aid users QString
already also has a constructor that takes a const char[N] (like what is proposed in
this paper), to deal with string literals; and a
QString::fromUtf8(QByteArrayView) factory function that clearly indicates what
is the expected encoding of the data.

● Introducing the proposed deprecations for QStringView deprecations resulted in very
few breakages, around 200LOC, most of which were fairly mechanical to fix.

● The real pain point is introducing the deprecations into QByteArray and
QByteArrayView as those classes are widely used when dealing with char data.
Several hundred cases were hit by the just-introduced deprecation notices. Some notes:

○ Many times the length of the data was actually available (e.g. data coming from
compile-time tables), but it was just “lost in the way”. Of course one could switch
to the new constructor, but a better solution would be to refactor the functions
that read data out these tables so that they yield views (i.e. carry the size) rather
than raw pointers.

○ A significant percentage of cases were just API mistakes, e.g. a QByteArray
was passed to a function taking a QByteArrayView but data() was called on
the array. It’s likely that the function signature was changed from taking const
char * to take a QByteArrayView, but the call site was never changed.

○ The entire translation system is based on macros and const char *, although
most of the time these are just string literals in the source code. Changing these
APIs to use e.g. QByteArrayView may introduce too many source
incompatibilities.

○ Similarly, for historical reasons, all of Qt’s runtime reflection APIs yield const char
*, causing many warnings that one is unable to quickly address. One could
concoct adding new APIs and migrating usages, but that’s certainly a non-trivial
amount of work; it’s unclear how much of it could be automated by e.g. a Clazy
check.

https://github.com/KDE/clazy

This experiment also led to an interesting observation: certain language constructs force
decaying from string literals (arrays) to pointers; notably, the ternary operator and initializer lists.
A snippet like this:

void f(std::string_view);
f(cond ? “first” : “second”);

is going to decay the arguments into pointers and then call the (now) deprecated constructor of
std::string_view. There is a straightforward workaround, which is deploying user-defined literals:

f(cond ? “first”sv : “second”sv);

What Giuseppe has observed in Qt is that this actually results in a better code generation: calls
to strlen that were present in the original version disappear once the UDLs are used
(example on Compiler Explorer).

Alternatives
In P3566R0 we discussed the alternative of applying the changes under profile. This wasn't
polled, and was left as an exploration. Now that profiles will be delivered as whitepaper and not
as a core feature, we want to reevaluate the matter, and understand the direction the
committee prefers, polling the two alternatives (see "Proposed polls" section).

Proposed Polls
We propose a few polls for continuing this effort in a direction that is aligned with the committee:

● Whether the committee wants to see this proposal connected to the profiles, having the
char* constructor to be conditionally deprecated under some security profile, or if we
want to deprecate those constructors in C++29, and suggest the users to fix their code
by using explicit unsafe casts (replacing cases where implicit char* ->
string[_view] cast is happening, e.g. changing calls like f(x), to explicit casts to
f(string_view(unsafe_length, x)).

○ If we want to frame this proposal in the "profiles" framework, we propose to
introduce a new annotation (e.g. [[ranges_deprecated]]) which will be
used when passing unbounded memory ranges. This will deprecated the
offending constructor selectively, without incurring in ODR violations (we
evaluated other options, where the offending functions were "disappearing" under
the ranges profile, but that would generate ODR violations in codebases that mix
different profile configurations)

https://gcc.godbolt.org/z/31zjTrxGh

○ Another alternative is the direct removal of any function marked as
[[deprecated]] in this document

● About the "treat null pointers as empty string" option
○ Keep in this proposal, removing the precondition on all functions
○ Only apply if preconditions are disabled
○ Move to a different paper, expand the scope to the entire

● Include the "New copy overloads" section in the proposal?

Conclusion
In this paper we proposed to restrict the usage of constructors and functions taking a char*
argument in string, string_view, and zstring_view with the scope of improving
range-safety of these operations.
In addition to it we proposed to treat all null-pointers in these classes as if they were empty
strings.
Changes of the same nature were also proposed for methods in the same classes.

The changes proposed in this document allow to remove or mitigate the effects of undefined
behavior in string, string_view, and zstring_view.

Appendix A
Resources on safe C++

● Bjarne Stroustrup :: Approaching C++ Safety - YouTube
A presentation at Core C++ 2023 where Stoustrup present the idea of a "profile"

● P2816R0: Bjarne Stroustrup, Gabriel Dos Reis - "Safety Profiles: Type and resource
Safe programming in ISO Standard C++"

● P3274R0: Bjarne Stroustrup - "A framework for Profiles development"
● P3081R0: Herb Sutter - "Core safety Profiles: Specification, adoptability, and impact"
● P3436R1: Herb Sutter - "Strategy for removing safety-related UB by default"
● N3442: Jeffrey Yasskin - "String_ref: a non-owning reference to a string"
● P3655R2: Peter Bindels, Hana Dusíková, Jeremy Rifkin, Marco Foco, Alexey

Shevlyakov - "std::zstring_view"

https://www.youtube.com/watch?v=eo-4ZSLn3jc
https://wg21.link/p2816r0
https://wg21.link/p3274r0
https://wg21.link/p3081
https://wg21.link/P3436R1
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3442.html
https://isocpp.org/files/papers/P3655R2.html

	P3566R2
	You shall not pass char* - Safety concerns working with unbounded null-terminated strings
	History
	R2
	R1
	R0

	Abstract
	Introduction
	Proposal
	Safe functions in char_traits
	Changes to std::string, std::string_view and std::zstring_view
	Constructing and assigning
	Member function: copy
	Member function: compare and operator <=>
	Member function: starts_with
	Member function: ends_with
	Member function contains
	Member function find and rfind
	Member Functions find_first_of, find_last_of, find_first_not_of and find_last_not_of

	Changes to std::string only
	Member function insert
	Member function append and operator +=
	Member function replace
	Non-member operator+

	Null pointer is empty string
	New copy overloads (not proposed yet)
	Concepts

	Implementation Experience
	NVIDIA/Omniverse Experience
	Giuseppe D'Angelo Qt Experience

	Alternatives
	Proposed Polls
	●Whether the committee wants to see this proposal connected to the profiles, having the char* constructor to be conditionally deprecated under some security profile, or if we want to deprecate those constructors in C++29, and suggest the users to fix their code by using explicit unsafe casts (replacing cases where implicit char* -> string[_view] cast is happening, e.g. changing calls like f(x), to explicit casts to f(string_view(unsafe_length, x)).
	Conclusion
	Appendix A

