
Allocator Support for Operation States
Document #: P3433R1
Date: 2025-06-18
Project: Programming Language C++
Audience: Library Evolution Working Group (LEWG)

Library Working Group (LWG)
Reply-to: Dietmar Kühl (Bloomberg)

<dkuhl@bloomberg.net>
This document proposes allocator support for objects embedded into operation states created for asynchronous
operations. The outer-most operation state defines the location where this state is stored and it can enable using
get_allocator() on an environment to define the allocator for entities allocated by nested objects. However,
the current specification doesn’t forward this allocator when embedding user-provided sender arguments into
operation states.

1 Motivation
Senders like std::execution::just, std::execution::then, and std::execution::let_value take some
arguments which can be chosen fairly freely. Some of these arguments may be allocator-aware to offer control
over their respective allocation needs. Carefully using allocators can allow, e.g., using standard container types
without using global operator new()/operator delete().

For example, consider this code (see here for the complete example):
int values[] = { 1, 2, 3 };
auto s{

ex::just(std::span(values))
| ex::let_value(allocator_aware_fun([](auto alloc, std::span<int> v){

return ex::just(std::pmr::vector<int>(v.begin(), v.end(), alloc));
}))

| ex::then([](auto&& v) noexcept {
for (auto x: v){ std::cout << x << ", "; }
std::cout << "\n";

})
};

The helper class template allocator_aware_fun wraps a function object and deals with appropriately managing
an allocator which it also forwards as first argument to the wrapped function object. The just() with a span
of values represents some asynchronous operation producing some data, e.g., based on network input exposing
the content of some buffer. In actual code the then() would be an asynchronous operation not immediately
completing but accessing the sequence of values at some later point. It is, thus, necessary to get the data into
some controlled location. Copying the data to a vector<int> does the trick. However by default the needed
memory would be allocated from the heap. The proper location is with the corresponding operation state which
would be nested into other operation states. The outermost operation state on which the overall work gets
start()ed would provide the appropriate allocator through the environment associated with its receiver.

The different sender algorithms currently just move their respective data into the operation state (see
[exec.snd.expos] p36 or [exec.let] p7) which causes the default allocator or possibly (if objects are properly
moved) an allocator belonging to the location of the sender constrution to be used. Assuming allocators are
used neither of these allocators would match the allocator used for the operation state.

1

mailto:dkuhl@bloomberg.net
https://github.com/beman-project/execution26/blob/main/examples/allocator.cpp
https://eel.is/c++draft/exec.snd.expos#36
https://eel.is/c++draft/exec.let#7


2 Proposal
The proposal is to use std::make_obj_using_allocator if the receiver’s environment has an allocator set up
instead of moving the object. If there is no matching allocator set up the objects are moved as they currently
are. The recommendation for users would be to use a std::pmr::polymorphic_allocator<> for allocator-aware
construction and to make a corresponding allocator available from the receiver’s environment using something
akin to write-env. How the environment is made available isn’t part of this proposal: the specification already
provides the means for users to control the environment.

One small complication of using std::make_obj_using_allocator is that the current specification of sender
algorithms uses product-type in a few places which is a tuple-like class template supporting direct-initialization
of the elements. In particular, the results of just(obj...) are stored using a specialization of product-type.
This class template can’t directly support std::make_obj_using_allocator because it can’t have an allocator-
aware constructor. However, the elements within can still be created using elementwise construction using
std::make_obj_using_allocator.

3 Proposed Wording
In [exec.snd.expos] add a new paragraph at the end:

template <class T, class Context>
decltype(auto) allocator-aware-forward(T&& obj, Context&& context); // exposition only

44 allocator-aware-forward is an exposition-only function used to either create a new object of type T from
obj or forward obj depending on whether an allocator is available. If the environment associated with
context provides an allocator (i.e., the expression get_allocator(get_env(context)) is valid, let alloc
be the result of this expression and P be remove_cvref_t<T>.

45 Returns:

—(45.1) If alloc is not defined, returns std::forward<T>(obj),

—(45.2) otherwise if P is a specialization of product-type, returns an object of type P whose elements are initial-
ized using make_obj_using_allocator<decltype(e)> (std::forward_like<T>(e), alloc) where e
is the corresponding element of obj,

—(45.3) otherwise, returns make_obj_using_allocator<P>(std::forward<T>(obj), alloc).

In [exec.snd.expos] p36 change the return statement to use allocator-aware-forward:
36 The member default-impls::get-state is initialized with a callable object equivalent to the following

lambda:

[]<class Sndr, class Rcvr>(Sndr&& sndr, Rcvr& rcvr) noexcept -> decltype(auto) {
auto& [_, data, ...child] = sndr;
return allocator-aware-forward(std::forward_like<Sndr>(data), rcvr);

}

In [exec.let] p7 change the initialization of fn to use allocator-aware-forward:
7 impls-for< decayed-typeof>::get-state is initialized with a callable object equivalent to the following:

[]<class Sndr, class Rcvr>(Sndr&& sndr, Rcvr& rcvr) requires see below {
auto& [_, fn, child] = sndr;
using fn_t = decay_t<decltype(fn)>;
using env_t = decltype(let-env(child));
using args_variant_t = see below;
using ops2_variant_t = see below;

2

https://eel.is/c++draft/exec.snd.expos
https://eel.is/c++draft/exec.snd.expos#36
https://eel.is/c++draft/exec.let#7


struct state-type {
fn_t fn; // exposition only
env_t env; // exposition only
args_variant_t args; // exposition only
ops2_variant_t ops2; // exposition only

};
return state-type{allocator-aware-forward(std::forward_like<Sndr>(fn), rcvr),

let-env(child), {}, {}};
}

4 Implementation
The change is implemented by beman-project/execution26.

3

https://github.com/beman-project/execution

	Motivation
	Proposal
	Proposed Wording
	Implementation

