
Implicit contract assertions

Timur Doumler (papers@timur.audio)
Joshua Berne (jberne4@bloomberg.net)

Document #: P3100R3
Date: 2025-07-03
Project: Programming Language C++
Audience: EWG

Abstract

In this paper, we enumerate all cases of core language undefined behaviour explicitly specified in
C++, group them into eleven categories, classify them along a number of relevant criteria, and
discuss appropriate mitigation strategies. The conditions under which such undefined behaviour
will occur can, in many cases, be identified by a runtime check. We describe how such runtime
checks can be systematically introduced via implicit contract assertions, giving users complete
control over what impact that undefined behaviour has on their programs. In addition to runtime
checking, we introduce well-defined fallback behaviour to replace undefined behaviour wherever
possible. Building on Contracts as adopted for C++26, we provide a generic framework that
can be incorporated into the ongoing core language UB white paper [P3656R1], fundamentally
changing the landscape of how undefined behaviour is approached in C++.

Contents
1 Introduction . 2
2 Analysis . 2

2.1 Methodology and scope . 2
2.2 Basic categories of UB . 3
2.3 Relevance for security . 4
2.4 Local checkability . 5
2.5 Cost of diagnosis . 6
2.6 Well-defined fallback behaviour . 8
2.7 Mitigation strategies . 9

3 Proposed design . 11
3.1 Defining implicit contract assertions . 11
3.2 Extending the library API . 12
3.3 Applying implicit contract assertions . 13
3.4 Specifying the fallback behaviour . 14
3.5 Providing an escape hatch . 15

4 Future extensions . 16
4.1 Identifying the UB category . 16
4.2 Granular control of the evaluation semantic . 17

5 Proposed wording . 17
Appendix: UB list . 19

1

mailto:papers@timur.audio
mailto:jberne4@bloomberg.net

1 Introduction

Eliminating or at least meaningfully reducing the amount of undefined behaviour (UB) is an
important objective for the future evolution of C++. WG21 has been continuously working in that
direction. For a recent status update, see [Sutter2025] and references therein; for background, see
[Sutter2024] and references therein.
At WG21’s February 2025 meeting in Hagenberg, EWG agreed on a framework for a systematic
treatment of core language undefined behaviour in C++: the pursuit of a core language UB white
paper in the C++26 timeframe, covering erroneous behaviour (EB), Profiles, and Contracts. The
current version of that white paper is [P3656R1], proposing the process and major work items.
The proposed process calls for papers to be adopted into the white paper working draft via EWG
approval. This is the first such paper.
Further, [P3656R1] proposes, as major work items, to enumerate and group all language UB in
C++, identify tools to address the groups, and take a first pass at determining which tool to use
for each UB case. The goal of this paper is to contribute to all the above major work items.
In Section 2, we identify and enumerate all core language UB explicitly specified in the C++
Standard. We group all core language UB into eleven categories. We then classify cases of UB
along several relevant criteria: whether they are locally diagnosable, how expensive that diagnosis is,
and for which cases we can define meaningful, well-defined fallback behaviour. Finally, we discuss
appropriate mitigation strategies for all identified cases of UB and find that runtime checking is an
appropriate strategy for the large majority of cases.
In Section 3, we systematically introduce such runtime checks to C++ via implicit contract assertions,
building on the basic framework of Contracts adopted for C++26 via [P2900R14]. We describe how
implicit contract assertions should be specified and how to apply them to all appropriate cases of
core language UB. For cases of UB where well-defined fallback behaviour exists, we discuss how
specifying it allows the program to continue execution past a violated implicit contract assertion
without UB. We conclude by proposing an escape hatch to mitigate the runtime cost of such fallback
behaviour and avoid performance regressions.
In Section 4, we discuss how future extensions, such as Labels [P3400R1], will enable programmat-
ically identifying the category of UB that has occurred and provide us with granular, in-source
control of the evaluation semantics for implicit contract assertions. In Section 5, we propose wording
for approval into the white paper that implements the design discussed in Section 3.
The design proposed in Section 3 of this paper has been approved by SG21, SG23, and finally by
EWG. At the WG21 meeting in Sofia (June 2025), EWG reached consensus to incorporate it into
the contracts UB white paper.

2 Analysis

2.1 Methodology and scope

For this paper, we manually inspected all occurrences of the word “undefined” in the current C++
working paper [N5008]. We then constructed a list of all cases of explicitly specified core language
UB. Our complete list, containing 82 cases of UB, can be found in Appendix A of this paper.
Each individual case of UB in our list has a stable identifier. We place those identifiers between
{curly braces} to visually distinguish them from the C++ Standard’s clause identifiers, which we
place between [square brackets].

2

There is currently an open pull request against the C++ Standard document that proposes to
add these identifiers directly to the C++ Standard document alongside a new appendix to that
document enumerating all cases of UB and providing explanation and code examples. This pull
request and the stable identifiers used therein are fully consistent with Appendix A of this paper.
Note that we consider only explicit UB, not implicit UB, that is, UB that exists by omission because
the C++ Standard document failed to specify the behaviour of a well-formed operation. We consider
all cases of implicit UB that may be discovered in the future to be wording bugs that should be
addressed via Core issues, and then subsequently become explicit UB that can be addressed via the
framework proposed here.
Note further that our list excludes cases of IFNDR because this paper focuses on runtime mitigation
strategies. While UB is fundamentally a runtime property of a particular program execution and
thus runtime mitigation is a natural approach, IFNDR typically represents link-time issues and is,
therefore, out of scope for this paper.
Note further that we exclude library undefined behaviour since the natural mitigation approach for it
is to make use of contract assertions (pre, post, and contract_assert) in library implementations
and, when possible, mandate such assertions through library hardening [P3471R4], both of which
are out of scope for this paper. We, therefore, consider only UB that is specified in the core language
part of the C++ Standard (Clauses 1–15). Further, we found one case of UB that is specified
in the core language part of [N5008] but actually represents a precondition on Standard Library
functions;1 that case is, therefore, also excluded from our list.

2.2 Basic categories of UB

We found that all identified cases of core language UB can be broadly classified into eleven categories:

I. Initialisation — 1 case. Evaluating an expression that produces an indeterminate value.

II. Bounds — 5 cases. Using a pointer in a way that fails to respect the range of the pointed-to
object or array. Examples: incrementing a pointer beyond the past-the-end position; perform-
ing single-object delete on an operand obtained from an array-new expression; dereferencing a
pointer returned from a request for zero size.

III. Type and Lifetime — 52 cases. Operations that access storage and/or use pointers or
references to storage in an inappropriate way that is not already covered by Initialisation and
Bounds. Examples: attempting to access a value of one type through a pointer of a different,
incompatible type; attempting to access the value of an object after its lifetime has ended.

IV. Arithmetic — 9 cases. Executing an arithmetic operation whose operands fail to meet certain
preconditions. Examples: division by zero; conversion of a value to a different arithmetic type
that cannot represent that value.

V. Threading — 1 case. Performing two concurrent accesses, at least one of which is modifying,
to the same memory location from different threads where neither access happens before the
other, i.e., a data race.

VI. Sequencing — 1 case. Performing two concurrent accesses, at least one of which is modifying,
to the same memory location from the same thread where neither access is sequenced before
the other.

1[basic.start.term]/6: If there is a use of a standard library object or function not permitted within signal handlers
([support.runtime]) that does not happen before ([intro.multithread]) completion of destruction of objects with static
storage duration and execution of std::atexit registered functions ([support.start.term]), the program has undefined
behavior.

3

VII. Assumptions — 1 case. Reaching an [[assume]] declaration whose operand would not
evaluate to true.

VIII. Control Flow — 6 cases. Undefined behaviour due to errors in control flow. Examples:
flowing off the end of a function; re-entering the same declaration recursively when initialising
a static variable.

IX. Replacement Functions — 3 cases. Executing a user-defined replacement function
(operator new/delete) that fails to meet the specified requirements. Examples: return-
ing null from a user-defined placement new; throwing an exception from a user-defined
delete.

X. Coroutines — 2 cases. Misusing coroutine machinery. Examples: destroying a coroutine
that is not suspended; invoking a resumption member function for a coroutine that is not
suspended.

XI. Templates — 1 case. Infinite recursion during template instantiation.

The categories of Initialisation, Bounds, and Type and Lifetime correspond to the common terms
initialisation safety, bounds safety, type safety, and lifetime safety, respectively, and collectively
represent undefined behaviour that is commonly referred to with the umbrella term memory safety.
Because unambiguously categorising a particular case of UB into either type safety or lifetime safety
is often impossible since it concerns both, we grouped them into a single combined category, Type
and Lifetime. While some cases of UB are primarily caused by type aliasing and others are primarily
caused by out-of-lifetime accesses, they form a spectrum, and many common operations in C++
(e.g., using a reference) rely on both type and lifetime constraints to be satisfied.
It is remarkable that the three categories related to memory safety account for 71% of all cases of
UB, with the Type and Lifetime category alone accounting for 63%.
The next two categories, Arithmetic and Threading, correspond to the common terms arithmetic
safety and thread safety, respectively; the latter contains only one case of UB, data races.
The following category, Sequencing, also contains just one case of UB: unsequenced operations,
such as i++ + ++i. Grouping UB due to data races and unsequenced operations into two separate
categories might seem surprising at first since they have a very similar same shape (except that one
is inter-thread and the other is intra-thread), but as we will see in Section 2.7, these two categories
actually require very different approaches to mitigation.
The next category, Assumptions, also contains just one case of UB: reaching an [[assume]]
declaration whose operand would not evaluate to true. As we will see later, this case of UB is of a
different nature than the others and warrants its own category.
The final four categories (Control Flow, Replacement Functions, Coroutines, and Templates) are
less frequently discussed in the current discourse around UB. Nevertheless, they represent UB that
needs to be mitigated.

2.3 Relevance for security

[P3656R1] asks which cases of UB are security related. The paper suggests having security experts
indicate which cases of UB have security impact and use “always”, “never”, and “sometimes”
tags. We are not security experts, so we do not attempt to do this here. However, we note that
cases of UB commonly associated with security vulnerabilities (see, for example, the CWE list at
https://cwe.mitre.org/) fall into the Initialisation, Bounds, and Type and Lifetime categories.

4

https://cwe.mitre.org/

Other cases of UB, such as those in categories Arithmetic and Threading, are a common source of
program defects, and those program defects do sizeable damage to existing software, so mitigating
them offers a lot of value. To our knowledge, however, they are not commonly exploited by malicious
attackers.
Eventually, mitigating all UB currently considered to be a critical security concern will simply
remove the easiest routes of attack from the table, and any UB not yet addressed may become
the new major candidate for attackers to leverage for nefarious purposes. Therefore, prioritising
implementation based on current trends amongst malicious actors, though helpful, should not be
used to limit the scope of our work on improving the C++ Standard (see [Sutter2024], [P3500R1],
and [P3578R0]).

2.4 Local checkability

The second question [P3656R1] asks is which cases of UB are “efficiently locally diagnosable”. Here,
we split this question into two separate questions: which cases of UB are locally diagnosable in
principle (this subsection), and the estimated cost of that diagnosis (next subsection).
Most cases of UB in the security-critical Initialisation, Bounds, and Type and Lifetime categories
are, in general, not locally diagnosable. In the Bounds category, {expr.add.out.of.bounds} and
{expr.add.sub.diff.pointers} are partially locally diagnosable (only if the array bound is stati-
cally known). In the Type and Lifetime category, {expr.static.cast.downcast.wrong.derived.type},
{expr.unary.dereference}, {conv.ptr.virtual.base}, and {expr.dynamic.cast.lifetime} are partially
locally diagnosable (for the null pointer case). {expr.mptr.oper.member.func.null} is locally di-
agnosable because this case requires only a null pointer check. {basic.align.object.alignment} is
locally diagnosable by checking the alignment of storage when creating an object at run time.
{expr.assign.overlap} is locally diagnosable by checking the overlap of the two address ranges. (The
ranges are known because the address and sizeof are known at run time for both the source and
the destination object.) {class.abstract.pure.virtual} is locally diagnosable by adding a runtime
check to the pure virtual function stub to which the base class vtable points. All other cases of
UB in the Initialisation, Bounds, and Type and Lifetime categories require, to be diagnosable,
additional instrumentation of the kind that is implemented in sanitisers, such as ASan and UBSan
(see Section 2.5 for further discussion).
All cases of UB in the Arithmetic category are locally diagnosable since they are all cases of an
arithmetic operation producing a value that is somehow inappropriate (mathematically invalid, not
representable in the target type, etc.) and that value can be inspected at run time.
UB in the Threading category ({intro.races.data}) is not locally diagnosable, but UB in the
Sequencing category ({intro.execution.unsequenced.modification}) is.
UB in the Assumption category ({dcl.attr.assume.false}) is, in principle, locally diagnosable by
evaluating the operand of the assumption and verifying that the resulting value, contextually
converted to bool, equals true. However, if that evaluation has any side effects, such a check could
alter the observable state of the program. Therefore, even if the given assumption holds and no UB
occurs, the check itself might render the program invalid by altering its state. Thus, this case of
UB is meaningfully diagnosable in any automated fashion only if the operand has no side effects
when evaluated. However, proving that the operand has no side effects is generally impossible to do
efficiently and is outright impossible in the presence of an opaque function call.
Some cases of UB in the Control Flow category are locally diagnosable. {stmt.return.flow.off} and
{stmt.return.coroutine.flow.off} can be diagnosed by inserting a check at the end of every function
body that does not end with a return or co_return statement. {dcl.attr.noreturn.eventually.returns}
can be diagnosed by inserting a check into every function declared [[noreturn]].

5

Some cases of UB in the Replacement Function category are partially or fully locally diagnos-
able. In particular, some of the constraints specified in {basic.stc.alloc.dealloc.constraint} and
{expr.new.non.allocating.null} are locally diagnosable, while others are not. In particular, we can
check locally that a deallocation function does not exit via an exception and that an allocation
function does not return null. However, checking the other constraints (locally or at all) is generally
not possible.
All cases of UB in the Coroutine category are not locally diagnosable since being so would require
tracking runtime state information that is not currently maintained within the coroutine handle in
most implementations.
Finally, UB in the Templates category temp.inst.inf.recursion}) is unique in that it does not actually
represent runtime UB, but instead is a purely compile-time issue, and therefore checking for it at
runtime makes no sense.
Overall, only 18 cases of UB (22% of all cases) are unconditionally locally diagnosable.

2.5 Cost of diagnosis

Considering locally diagnosable and not locally diagnosable cases of UB separately is useful to
estimate the cost of diagnosis. Note that in this paper, we study the theoretical, relative cost based
on the current specification of the C++ language; we do not, however, measure the actual cost of
diagnosis in real implementations, and we do not present benchmarks. This work is left for future
studies.
For locally diagnosable cases, some kind of runtime check — an assertion — could be inserted
by the implementation and then evaluated at run time. The total cost of diagnosis is, therefore,
equal to the cost of evaluating that check multiplied by the number of times the check needs to be
evaluated.
The cheapest kind of check — and the only one that has (almost) no overhead for the happy
path — is the “fail if you get here” check, equivalent to a pre/post/contract_assert(false).
This kind of check is sufficient to diagnose {class.abstract.pure.virtual}, {stmt.return.flow.off},
{stmt.return.coroutine.flow.off}, and {dcl.attr.noreturn.eventually.returns}.
A slightly more expensive but still cheap and optimiser-friendly kind of check is a null check, required
to diagnose the null pointer cases ({expr.static.cast.downcast.wrong.derived.type}, {expr.unary.deref-
erence}, {conv.ptr.virtual.base}, {expr.dynamic.cast.lifetime}, {expr.mptr.oper.member.func.null},
and {expr.new.non.allocating.null}) as well as division by zero ({expr.mul.div.by.zero}).
Integer comparisons are similarly cheap and optimiser-friendly and are required for bounds checks
with statically known array bounds ({expr.add.out.of.bounds} and {expr.add.sub.diff.pointers}) as
well as for {expr.shift.neg.and.width} and {intro.execution.unsequenced.modification}.
Beyond this, a number of UB cases can still be checked by a straightforward arithmetic expression
but with increasingly expensive expressions: {expr.assign.overlap} requires computing whether two
integer ranges overlap, and {basic.align.object.alignment} requires computing an integer modulo.
At the expensive end of the locally diagnosable UB spectrum are runtime checks for which there
is no corresponding C++ expression; instead, the compiler would have to generate more complex
“magic” checks based on knowledge unavailable in the C++ abstract machine. In particular, this
case applies to all arithmetic UB except {expr.add.out.of.bounds} and {expr.add.sub.diff.pointers}.
The compiler would have to validate the bit patterns of values of arithmetic types according to
knowledge it has about how values of such types are represented on the targeted platform. Such
checks can be done locally, but they can slow operations involving built-in types and, in particular,
floating-point types.

6

In addition to the cost of the check itself, we need to consider the frequency with which these checks
would need to be done. Checks that would need to happen once when a function is called or when
a function returns are likely to be acceptable in most scenarios. Extensive checks for arithmetic UB
will probably be acceptable in fewer scenarios because such checks have the potential to significantly
slow arithmetic operations, which are performance sensitive in many contexts. On the extreme
end, if we wanted to diagnose {intro.execution.unsequenced.modification} via a runtime check, the
check itself would be fairly inexpensive, but the compiler would have to identify all potential read
operations that are not sequenced with respect to each given write operation and then insert checks
to identify if those operations are actually going to reference the same address.
For UB that is not locally diagnosable (which is most of the UB in C++), we need to consider the
cost of the required additional instrumentation. To get an idea of that cost, we must nail down
exactly which additional properties that are not normally known from within the C++ abstract
machine would need to be tracked by such instrumentation. This tracking would need to happen at
run time throughout the entire program; checks relying on the tracked information would have to
be inserted for every runtime operation that may be affected by such UB. The full list is available
in Appendix A, and we provide an overview below.
To diagnose all cases of UB in the memory safety categories of Initialization, Bounds, and Type
and Lifetime, instrumentation would have to track all the following properties:

— Provenance of all pointers and pointers-to-member

— For all storage, whether it has been allocated or freed

— For all storage, whether it has been initialised

— For all storage, whether it has been created such that it can hold implicit lifetime objects

— For all storage, the type of the object associated with it (if any), including whether it is const
or volatile

— For all objects, whether their lifetime has been started or ended

— For all objects, whether they are currently being constructed or destroyed

— The dynamic type of all non-polymorphic objects of class type

— For all references, whether they have been initialized

— For all addresses that point to functions, the type of the function

To diagnose UB in the Threading category, instrumentation would have to track, for all memory
accesses, from which threads that memory is accessed and when these accesses synchronise with
each other. Doing this exhaustively is not practical; however, instrumentation that is capable of
diagnosing a subset of cases exists in the form of sanitisers (TSan).
The non-locally-diagnosable UB in the Control Flow category concerns operations that are not
allowed during construction and destruction of objects with static or thread-local storage duration
({basic.start.main.exit.during.destruction} and {basic.start.term.use.after.destruction}). To diagnose
these, instrumentation would have to insert guards tracking whether such objects are currently
being constructed and destroyed.
Finally, to diagnose UB in the Coroutine category, instrumentation would have to track the
suspension state associated with every coroutine handle.
As we know from existing sanitisers, such instrumentation is expensive enough that it is almost
never affordable in production. If we were to add instrumentation covering all of the above, we

7

would remove vast swathes of UB from the language, but performance would worsen by (at least) an
order of magnitude, unless special hardware-acceleration or some other radically new technology for
these checks becomes available. We discuss some of the consequences of this fundamental dilemma
in Section 2.7.
Given the substantial overhead of the instrumentation itself, i.e., involving both a runtime cost and
a cost in memory, how expensive the actual checks would be (whether a specific pointer is valid
at a specific time, etc.) is not particularly important because the performance penalty would be
dominated by the instrumentation overhead.

2.6 Well-defined fallback behaviour

If we want to turn UB into well-defined behaviour, a useful question is whether any well-defined
behaviour actually exists that the affected operation could be defined to have instead of UB in the
presence of a bug. Here, we call such well-defined behaviour fallback behaviour.
We could also use the term erroneous behaviour (EB), which is conceptually the same thing.
However, since the approval of [P2795R5] for C++26, EB has very specific semantics. Here, we are
considering the wider concept of introducing new well-defined behaviour for error cases, rather than
the exact semantics that EB has in C++26, so we use a different term for now.
Note that we are not counting program termination (even though this also well-defined behaviour)
as fallback behaviour. Rather, we only consider behaviour that would allow the program to continue
to be true fallback behaviour; termination is instead modelled via the enforce and quick-enforce
semantics).
For fallback behaviour to happen, the compiler must supply the necessary instructions. However,
in the vast majority of cases, core language UB is fundamentally not diagnosable at compile time
(see Section 2.4); i.e., whether or not the UB will occur depends on runtime parameters. Fallback
behaviour cannot, therefore, depend on knowing that an error occurred. For non-locally-diagnosable
UB, fallback behaviour also cannot depend on any additional instrumentation being present.
For this paper, we systematically identified all cases of core language UB for which such fallback
behaviour exists. This section gives an overview; the full list can be found in Appendix A. As we
will see, for most cases of UB, fallback behaviour does not exist, and if it does, it is often not cheap.
For UB in the Initialization category ({basic.indet.value}), fallback behaviour is sometimes possible
for built-in types: return an erroneous value instead. For variables with automatic storage duration,
this fallback behaviour is already part of C++26 as EB via [P2795R5] because for this case, the
fallback behaviour is particularly cheap. The same fallback behaviour could also be employed for
dynamically allocated variables but at greater cost (see [P2723R1] Section 6 for discussion).
Producing an erroneous value (instead of, for example, the value that happened to be in memory
where an object was incorrectly presumed to have been initialized) requires having a point in
time where a fallback value can be unconditionally placed in memory, such as when passing the
declaration of an automatic variable.
Further, for user-defined types, this fallback behaviour is not applicable in general. Even if we could
zero out all the underlying storage for user-defined types (or overwrite it with some other known bit
pattern), doing so does not always produce, for that type, a valid value that can be accessed without
UB. (Consider a user-defined type that relies on a member pointer always being dereferenceable.)
Therefore, {basic.indet.value} does not have fallback behaviour for the general case.
Practically none of the UB in the categories of Bounds and Type and Lifetime has fallback behaviour.
The only exception is {conv.lval.valid.representation}: if the bits in the value representation of an

8

object of built-in type are not valid for that type, the compiler could instead coerce the value into
an erroneous value.2 For example, in the code example given in the C++ Standard,

bool f() {
bool b = true;
char c = 42;
memcpy(&b, &c, 1);
return b; // undefined behavior if 42 is not a valid value representation for bool

}

the UB could be replaced by well-defined behaviour by appropriately bit-masking every accessed
bool value (and considering the result erroneous if the bit-mask operation changed the value).
Similar mitigations could be put in place for other built-in types since the space of allowed bit
representations for values of those types, for the targeted platform, are known to the compiler. The
caveat is that such mitigations would potentially incur a significant performance overhead on many
simple operations that involve built-in types.
All UB in the Arithmetic category has the same possible fallback behaviour: if an arithmetic
operation would produce an inappropriate value, it can be coerced into an erroneous value instead,
at the cost of incurring significant performance overhead on common arithmetic operations.
Defining fallback behaviour for UB in the Threading category ({intro.races.data}) is in principle
possible: we could make all primitive memory accesses implicitly atomic, as in the Java memory
model. The overhead incurred by such a model will heavily depend on the memory model of
the underlying hardware; on weakly-ordered platforms, such as ARM, it will be larger than on
strongly-ordered platforms such as x86. Note that while such fallback behaviour is well-defined,
it still fails to prevent many real bugs that result from incorrect application of concurrency since
user-defined types with multiple members can still be easily observed with inconsistent (“torn”)
states if no proper synchronisation is performed.
The fallback behaviour for UB in the Sequencing category ({intro.execution.unsequenced.modifica-
tion}) is much more straightforward: we can simply define that the unsequenced operations happen
in some unspecified order. This fallback behaviour can still have performance overhead in the form
of losing optimisation opportunities, but such overhead will likely be manageable.
The fallback behaviour for UB in the Assumption category ({dcl.attr.assume.false}) is trivial: just
ignore the assumption, instead of optimising based on it. The performance overhead is limited to
losing any optimisation opportunities from placing the assumption there. Of course, this mitigation
makes the assumption itself completely useless. We will discuss this case in more detail in Section 3.5.
Finally, we can define partial fallback behaviour for two cases of UB in the Control Flow category
({stmt.return.flow.off} and {stmt.return.coroutine.flow.off}): when the function or coroutine would
return a value of built-in type, we can define that flowing off the end returns an erroneous value.
This case is analogous to {basic.indet.value}; again, no fallback behaviour exists for user-defined
return types in the general case.
Overall, we can define meaningful well-defined fallback behaviour for only 16 cases of UB (20% of
all cases), and for 3 out of those 16 cases, this is only possible in certain cases (when the operation
in question produces a value of built-in type).

2.7 Mitigation strategies

In this section, we attempt to systematically identify, at a very high level, candidate mitigation
strategies for all cases of core language UB.

2This property of {conv.lval.valid.representation} is a potential argument for placing this case of UB into the
Arithmetic category instead of the Type and Lifetime category as we did here.

9

Arguably, the best mitigation strategy is to make the offending construct ill-formed, but we can do
so only for cases in which we can unambiguously identify at compile time that UB will occur for
all inputs; otherwise, we would break existing correct C++ code. Only one case of UB fits this
particular situation: {temp.inst.inf.recursion}. This case should be specified as ill-formed instead of
UB.
Two more cases of UB should not actually be considered UB. The first is {class.dtor.not.class.type}.
While the wording for this case says that “if the object is not of the destructor’s class type and not
of a class derived from the destructor’s class type (including when the destructor is invoked via a
null pointer value), the program has undefined behavior”, this situation is not a new case of UB
and is already omitted from the specification of other cases of UB elsewhere. This section should,
therefore, be a non-normative note referring to those sections.
The second is {basic.stc.alloc.dealloc.throw}. There is no good reason why throwing an exception
from a deallocation function should cause UB. Instead, we should enforce that deallocation functions
have a nonthrowing exception specification. This solution is proposed in [P3424R0], and we refer to
that paper for mitigating this case of UB.
We are left with 79 cases of UB for which we need to identify candidate mitigation strategies. All
of those cases represent runtime UB that cannot be diagnosed at compile time. Therefore, one
possible mitigation strategy for all those cases of UB is to insert runtime checks.
Fundamentally, inserting runtime checks is possible for 78 out of those 79 cases, the only exception
being {dcl.attr.assume.false} where, as we saw in Section 2.4, no automated runtime checking is
possible in the general case (see also Section 3.5) because we cannot prove that the assumption
predicate is side-effect free.
However, as we saw in Section 2.4, the majority of those cases (60 out of 78) are not locally
diagnosable and require expensive sanitiser-like instrumentation to perform the checks. And even for
those 18 cases of UB that are locally diagnosable and do not require additional instrumentation to
insert runtime checks, in most cases the checks themselves will have a significant runtime overhead.
Therefore, the checks need to be optional: we need a mechanism to enable and disable each kind of
check, and we cannot require an implementation to support all checks.
For example, a compiler may choose to support enabling runtime checks for arithmetic UB (they
already do today for some cases; for example, GCC offers the -ftrapv flag, which enables checks
for signed integer overflow) while not supporting any checks that require expensive instrumentation.
On the other hand, a different compiler that comes with a suite of a sanitisers may choose to
support some subset of those more expensive checks (and again, they already do today, just not in
a standardised fashion).
Defining such optional runtime checks for all those 79 cases of UB is, therefore, useful in itself.
These checks cost nothing unless they are turned on, and no implementation is actually required to
implement them, yet specifying them in the Standard has a number of advantages: it allows us to
assign standard names and categories to them (see also Section 4); it allows for implementations
of such runtime checks (including existing compiler options and sanitisers) to leverage a shared
paradigm and shared terminology; and it brings those tools into the scope of the C++ Standard.
The natural way to introduce such optional runtime checks to C++ is to leverage the Contracts
framework. All the necessary machinery and terminology for optional runtime checks — called
contract assertions — are already present in C++26, thanks to the foundation laid by [P2900R14].
The only missing part is to introduce compiler-generated checks, i.e., implicit contract assertions, in
addition to the user-authored checks, i.e., explicit contract assertions, added via [P2900R14] and to
hook those new implicit contract assertions into the same contract-checking and violation-handling
machinery used by the explicit ones. We propose to do exactly this in Section 3. By integrating with
the same contract-violation handling facility, we vastly increase the ability to deploy, to production
systems, software that is hardened against entire categories of potential bugs.

10

In addition to introducing implicit contract assertions, which let us diagnose the UB, we can actually
remove the UB for those 17 cases of runtime UB where meaningful, well-defined fallback behaviour
exists (see Section 2.6). This removal can be accomplished by defining that the behaviour of the
operation in question is fallback behaviour; we propose to do this in Section 3.4.
However, practically all this fallback behaviour comes with non-negligible — and in some cases,
even very large — performance overhead. Therefore, to avoid unacceptable performance regressions
in existing, correct C++ code, we must offer an escape hatch that reverts to today’s “unsafe”
semantics. We propose such an escape hatch in Section 3.5.
For the 61 cases of runtime UB in which meaningful, well-defined fallback behaviour does not exist
(and therefore, continuation after an error has occurred is not possible), only two known ways can,
in principle, give all those cases defined behaviour at run time.

1. Diagnose them (and pay all the overhead for the associated runtime checks, including the
required instrumentation) and then terminate the program.

2. Make the entire construct that could potentially exhibit the given case of UB ill-formed, and
provide its functionality via a different, “safer” language feature.

The fundamental dilemma is that for many cases, neither alternative is acceptable. The instrumenta-
tion required to diagnose Bounds and Type and Lifetime UB in the general case already exists, but
its overhead is prohibitively large for most production scenarios. On the other hand, replacement
by “safer” alternative features — such as replacing pointers and references with borrow checking, as
proposed in [P3390R0] — is viable for newly written code but fundamentally incompatible with
legacy code because it would make vast swathes of existing, correct C++ ill-formed.
In this paper, we discuss runtime mitigation of UB via insertion of runtime checks and introduction
of well-defined fallback behaviour where applicable. Thus, this paper covers two out of six low-level
tools for mitigating UB in C++; see [P3756R0] for a description of the entire toolbox as well as the
role of Profiles as a higher-level feature that provides named configuration sets from these low-level
tools, tailored to specific engineering or regulatory requirements.

3 Proposed design

3.1 Defining implicit contract assertions

In this section, we propose a framework for systematically introducing runtime checks to C++ that
guard against core language UB. This framework builds upon Contracts.
For C++26, we adopted an initial subset of Contracts functionality via [P2900R14]. This initial
subset contains three kinds of contract assertions: pre, post, and contract_assert. Since these
contract assertions are specified by the user with explicit syntax, in this paper we call them explicit
contract assertions. For example, the author of a vector-like class can add a precondition assertion
to its subscript operator to guard against out-of-bounds access:

T& operator[] (size_t index)
pre (index < size());

The precondition assertion pre (index < size()) can be evaluated with a checked assertion
(observe, enforce, or quick-enforce), which allows the user to opt into defined behaviour — program
termination and/or a call to a contract-violation handler — when their vector is accessed out of
bounds. Further, the contract-violation handler can be replaced by the user, allowing them to query
information about the error and implement their own mitigation strategy. Alternatively, the user

11

can also opt out of the runtime check by choosing an unchecked evaluation semantic (ignore) if
their use case requires it.
To implement runtime checks that guard against core language UB, we propose to introduce implicit
contract assertions, which are added implicitly by the implementation, rather than explicitly by the
user. In all other aspects, they work exactly the same as explicit contract assertions.
As an example, let us consider indexing into a plain array rather than a user-defined, vector-like
class. Let us further assume for the purpose of this example that the size N of this array is statically
known:

int main() {
int a[10] = { 1, 1, 2, 3, 5 };
std::size_t i;
std::cin >> i;
return a[i];

}

In C++ today, the behaviour of this program is undefined if the value of i is not smaller than
10 ({expr.add.out.of.bounds}). However, instead of saying that out-of-bounds access into a plain
array is undefined behaviour, we can say that access into a plain array has an implicit precondition
assertion that the index is not out of bounds. Then, the program behaves as-if the compiler had
wrapped every raw array subscript operation for which it statically knows the array bound N into
an inline function with a precondition assertion:

template <typename T, std::size_t N>
T& __index_into_array(T (&a)[N], std::size_t i)
pre (i < N) {

return *(&a + i);
}

Other than being an implicit precondition assertion automatically generated by the compiler, pre
(i < N) behaves the same as an explicit precondition assertion. That is, the user has the same
choice of four evaluation semantics (ignore, observe, enforce, or quick-enforce) to specify the desired
behaviour depending on the tradeoffs that are most suitable for their application, and when an
out-of-bounds access is detected and the semantic is observe or enforce, the same contract-violation
handler is called that is used for explicit contract assertions.

3.2 Extending the library API

To give the user a way to programmatically distinguish explicit and implicit contract assertions
in the contract-violation handler, we propose to add a new enum value, implicit, to the enum
assertion_kind. We simply append the new enumerator to the existing ones, which gives it the
numerical value 4, without attaching any particular meaning to that numerical value.
Alternatively, we could define its numerical value to be 0 since that value is not yet taken; however,
we prefer to avoid using 0 and thus to retain the ability to detect the case in which the enum has
not been explicitly initialised with a valid value.3

No other changes to the library API for contract-violation handling are necessary. In particular,
unlike the previous revision of this paper and unlike [P3081R1], which adopted its library API
from that earlier revision, we no longer propose to add new enumerators to the enumeration
detection_mode to encode the category of error (Initialization, Bounds, and so on); instead, this
encoding can be accomplished more effectively and flexibly via Labels (see Section 4.1).

3See also [P3227R0], which was adopted into [P2900R14] and made the same argument for adding new enumerators
to the enumeration evaluation_semantic.

12

Further, we propose no changes to the specification of comment() and location(). C++26 non-
normatively recommends that these functions return a textual representation of the expression that
triggered the contract violation and the source location of the contract violation, respectively. While
returning such a representation is, in principle, possible for violations of implicit contract assertions,
generating a textual representation for every expression in the program that could lead to UB
is likely to cause an unacceptable amount of code bloat. However, generating some other string
that may help us identify the problem, such as the diagnostic message already printed by existing
sanitisers, is equally conforming, as is simply returning an empty string and a default-constructed
source location if no information is available or if the information cannot be made programmatically
accessible in the contract-violation handler (for example, because it is located in a separate debug
information file).
Finally, we do not propose a separate contract-violation handler for implicit contract assertions.
Having a single, program-wide handler for all contract violations is a central aspect of the [P2900R14]
design. By standardising on a central reporting mechanism, we clearly separate the responsibility
for reporting from the responsibility of knowing all the different mechanisms within a program by
which a bug might be detected. For example, the user might want to hard-code a particular form of
termination or to use a particular logger. Forcing the user to repeat these things in multiple places
is poor design. A user who wishes to use a different handler for implicit contract assertions can
always branch on the assertion_kind in the global contract-violation handler and dispatch to a
custom handler from there.

3.3 Applying implicit contract assertions

Now that we have a framework in place for specifying what an implicit contract assertion is and
how it behaves, we can apply that specification to every case of UB that is — at least in principle —
runtime checkable, i.e., per Section 2.7, 79 cases of UB, which is the vast majority of core language
UB in C++ today.
The required transformation is to change every occurrence of “if A is not true, operation X has
undefined behaviour” to “operation X has an implicit precondition that A is true; continuing
execution past a violation of this precondition is undefined behaviour”.
Note that we specify no restrictions on the evaluation semantics of any of these 79 newly introduced
implicit contract assertions. Since the choice of evaluation semantic is implementation-defined, each
implementation can choose which evaluation semantics to offer for which one and which should be
the default semantic. One possible implementation choice is to simply make all 79 cases always
have the ignore semantic, which makes all existing implementations of C++ already conforming
with our proposal. Another possible choice is to say that ignore is the default, but other semantics
are available. Yet another possible choice is to enable certain checks by default. All those choices
are conforming with our proposal.
Since the choice of evaluation semantic is implementation-defined, implementations are further
expected to document which semantics they support for which implicit contract assertions and
which selection mechanism they offer. Once we have Labels (see Section 4) for each case of UB
guarded by an implicit contract assertion, implementations and users can refer to each case by
name, giving us a shared, portable, universally agreed upon standard framework with terminology
for reasoning about runtime UB.
Many possible choices for the evaluation semantics of implicit contract assertions map directly to
existing compiler and sanitiser options. For example, for signed integer overflow, the GCC flag
-ftrapw is a conforming implementation of the quick-enforce semantic; sanitisers like ASan and
UBSan are conforming implementations of the enforce semantic for those cases of UB that they
identify. These tools can continue to work in the way they do; however, bringing them into the

13

scope of the C++ Standard as proposed here has the benefit that they can now opt into using the
unified standard framework.
Today, the integration between such tools and user code tends to be poor. For example, all Clang
sanitisers have a callback, __sanitizer_set_death_callback, but this callback takes no arguments.
It can be used to inform us that the process is about to terminate, but it does not provide an API to
programmatically query what happened or where. ASan has a slightly more sophisticated callback,
__asan_set_error_report_callback, which takes a single argument of type const char*. This
argument provides a string that contains the generated error report. With our proposal, all these
tools can instead hook into the standard contract-violation-handling API. This API provides not
only a user callback in the form of a program-wide replaceable contract-violation handler, but
also programmatically accessible information about the defect via the contract_violation object
passed into the contract-violation handler. This more comprehensive API can serve as a uniform,
standard callback mechanism for sanitisers and other tools.
Further, coding guidelines can place restrictions on which evaluation semantics are permitted for
which kinds of implicit contract assertions; our proposal provides the necessary standard terminology
for this. For example, in a “safety”-critical context, a set of coding guidelines may prescribe that
unchecked semantics may not be used for certain kinds of implicit contract assertions, and a
matching profile could render nonconforming programs ill-formed. Thus, the usage of toolchains
and compiler options that could lead to the program exhibiting a particular kind of UB could be
prevented by construction. Of course, this option requires alternatives to exist that offer checked
semantics for the associated implicit contract assertions with acceptable performance tradeoffs.
Finally, applying implicit contract assertions throughout the language in the proposed fashion
addresses another much-discussed issue: explicit contract assertions in C++26, as specified in
[P2900R14], can themselves have UB when checked because explicit contract-assertion predicates
are boolean expressions and thus follow the usual rules for evaluating expressions in C++. This
property has been repeatedly raised as a concern (see [P2680R1], [P3173R0], [P3285R0], and
[P3362R0]).
The approach suggested in those papers is to constrain explicit contract-assertion predicates to
expressions that can be statically proven to have no UB. However, this approach does not seem to
be specifiable, implementable, or usable in practice (see [P3376R0], [P3386R0], and [P3499R1]) and
has thus been rejected by WG21. What does work is to specify a framework for mitigating UB across
the entire language, as proposed here. Once we have this framework, it will then automatically also
apply to the evaluation of explicit contract assertions.

3.4 Specifying the fallback behaviour

The next part of our proposal is to introduce defined fallback behaviour for all 17 cases of core
language UB for which such fallback behaviour exists (see Section 2.6). We accomplish this by
modifying the specification of each affected operation such that, if the condition occurs that would
have previously made the behaviour of the operation undefined, the behaviour is instead the defined
fallback behaviour.
The required transformation is to change every occurrence of “if A is not true, operation X
has undefined behaviour” to “operation X has an implicit precondition that A is true; if this
precondition is violated, the behaviour is <fallback behaviour>”.
As discussed in Section 2.6, if we make this change and do nothing further, it would introduce
significant — and in many cases, unacceptable — performance regressions to existing code. Therefore,
we must offer an escape hatch that reverts to today’s semantics for cases in which a violation of the
implicit precondition leads to undefined behaviour.

14

3.5 Providing an escape hatch

For indeterminate values, [P2795R5] introduced a specific escape hatch: the [[indeterminate]]
attribute. However, in many cases, such a specific, syntactic escape hatch is simply nonviable.
Consider, for example, arbitrary arithmetic expressions where some integer operations may overflow;
where would we place a syntactic escape hatch for a certain arithmetic operation within that
expression? Instead, we need a generic escape hatch that works for all cases and does not require
syntax.
Further, this escape hatch needs to be flexible enough that implementations can choose whether or
not it should be engaged by default. Engaging the escape hatch by default seems counterintuitive
because doing so would fail to provide a “safe default”, but in some cases, enabling the fallback
behaviour by default will be infeasible or impractical due to the associated runtime overhead.
Considering all the above reasoning reveals that such a generic, nonsyntactic escape hatch to revert
to today’s semantics — i.e., a violation of the implicit precondition leads to undefined behaviour —
is nothing other than a new, fifth evaluation semantic in addition to the four existing ones (ignore,
observe, enforce, quick-enforce) that can be applied to the evaluation of the affected implicit contract
assertions. This evaluation semantic is called the assume semantic.
Just like the ignore semantic, the assume semantic is a nonchecking semantic; i.e., its predicate is
not evaluated. Further, just like with the ignore semantic, if the predicate evaluates to true at the
point where the contract assertion is placed, the assume semantic has no effect; i.e., the program
behaves exactly as if the contract assertion were not there. However, unlike the ignore semantic, if
the predicate does not evaluate to true, the behaviour is undefined. This semantic allows compilers
to optimise on the assumption that the predicate is true, just like they do today for those cases of
core language UB.
With this definition, we can map all five evaluation semantics for implicit contract assertions that
guard against core language UB to concrete behaviours. For example, for signed integer overflow,
this mapping is as follows:

— The GCC compiler option -ftrapv, which aborts the program on signed integer overflow, is a
conforming implementation of the quick_enforce semantic.

— A sanitiser that detects signed integer overflow and prints a diagnostic is a conforming
implementation of the enforce or observe semantic (depending on whether the process is
terminated or execution continues after printing the diagnostic).

— The GCC compiler option -fwrapv, which implements wraparound for signed integer addition
using twos-complement representation, is a conforming implementation of the ignore semantic,
silently executing the “safe” fallback behaviour.

— The default behaviour in C++ today, which is to assume that signed integer addition never
overflows and to optimise based on this assumption when the appropriate optimisation flags
are selected by the user, is a conforming implementation of the assume semantic.

Just like with all other evaluation semantics, the mechanism by which the assume semantic is selected
is implementation-defined and will, in practice, be accomplished by vendor-provided compiler flags.
In addition, Labels (see Section 4.2) will provide the ability to choose and constrain the evaluation
semantic in code with arbitrary granularity.
Importantly, in light of the sustained opposition in WG21 to allowing the assume semantic for
explicit contract assertions,4 we propose that the assume semantic is allowed for only implicit

4Due to this opposition, no such semantic was included in [P2900R14]. The presence of the assume semantic in
the C++2a Contracts proposal [P0542R5] contributed to that proposal being removed from the C++20 Working
Draft.

15

contract assertions. Explicit contract assertions (pre, post, and contract_assert) may not be
evaluated with the assume semantic.
This restriction is important because, for explicit contract assertions, the assume semantic has the
potential to introduce undefined behaviour to an otherwise correct program if we wrote a buggy
contract predicate. On the other hand, this risk does not exist for implicit contract assertions since
they are generated by the compiler; for error cases that cause UB, the assume semantic is merely a
tool to achieve the same semantics those error cases already have in C++ today.
Once we get Labels, as proposed in [P3400R1], we can introduce an explicit label that would allow
the assume semantic to apply to an explicit contract assertion as well. For example, the limiter
example from the [[assume]] paper, [P1774R8], could be written as follows:

void limiter(float* data, size_t size)
pre<may_be_assumed> (size > 0);
pre<may_be_assumed> (size % 32 == 0);

To ensure language safety, the assume semantic would be allowed only when the may_be_assumed
label is present; further, a “safe C++” profile would make such a label ill-formed. Thus, contract
assertions without the label would be no less “safe” than they are in C++26. Such a label would be
a vast improvement over [[assume]] since it would allow for checkable assumptions (see [P2064R0]
for context). At that stage, we will have achieved the integration between assertions and assumptions
that we failed to achieve in the C++20 cycle, and the [[assume]] attribute — a temporary solution
that was introduced as a reaction to that failure — can be deprecated.

4 Future extensions

We already briefly touched upon Labels in the previous section. In this section, we explore
other extensions that rely on Labels as proposed in [P3400R1] and provide important additional
functionality for implicit contract assertions that is not proposed in this paper.

4.1 Identifying the UB category

[P3400R1] proposes the addition of identification labels to contract assertions. These identification
labels can be used to identify groups of contract assertions by name. For explicit contract assertions,
we must introduce these identification labels manually; however, for implicit contract assertions,
we can define and assign such identification labels directly in the C++ Standard (see [P3400R1]
Section 2.2.8). Such implicitly defined identification labels would make possible programmatically
identifying, in the contract-violation handler, whether the violated implicit contract assertion is
related to an out-of-bounds issue, an arithmetic issue, and so forth; for example:

void handle_contract_violation(const std::contracts::contract_violation& violation)
{

if (auto* bounds_label =
violation.getLabel<std::contracts::labels::bounds_label>()) {
// handle violation of assertion labelled with the bounds label

}
}

Notably, the [P3400R1] approach has an important advantage over using the detection_mode enum,
as proposed in [P3081R1] and in earlier versions of this paper: a single implicit contract assertion can
belong to multiple groups. We identified cases of UB, such as {expr.dynamic.cast.glvalue.lifetime},
that are simultaneously type and lifetime issues.
In addition, users (and, more importantly, libraries) can use such labels to annotate their own
explicit contract assertions, enabling the same policies to guide handling of core language bounds

16

violations and violations of higher-level functions. For example, the indexing operator of a user-
defined container (such as the one shown in Section 3.1) can have an explicit precondition labelled
to belong to the same Bounds category as bounds checks defined by the C++ Standard itself. The
same identification labels can be defined for hardened preconditions in the C++ Standard Library.

4.2 Granular control of the evaluation semantic

Another important feature enabled by Labels is the possibility to control and constrain the evaluation
semantic in code. This possibility also extends to implicit contract assertions (see [P3400R1] Section
2.2.8). Any possible label, such as “always enforce”, “never enforce”, and so on, can be applied to
any group of implicit contract assertions at any granularity — per file, per namespace, per function,
per block, and so on:

int f(int a, int b) {
contract_assert implicit arithmetic |= always_enforce;
return a + b;

}

In addition to labels that specify or constrain the evaluation semantics directly, there are labels
that give the user higher-level control of the evaluation semantics based on meaningful decisions,
for example an “audit” label to identify expensive checks.
Labels used in this way provide granular control when needed, allow the Standard to specify useful
groupings of different sources of program defects, and give developers the freedom they need to
control mitigations for those defects based on exactly the criteria needed for their environments.

5 Proposed wording

The proposed wording is relative to the current C++ working paper, [N5008].
Modify [basic.contract.general] as follows:

Contract assertions allow the programmer to specify properties of the state of the program
that are expected to hold at certain points during execution. Explicit cContract asser-
tions are introduced by precondition-specifiers, postcondition-specifiers ([dcl.contract.func]),
and assertion-statements ([stmt.contract.assert]). Implicit contract assertions are applied to
operations by the implementation.
Each contract assertion has a predicate, which is an expression of type bool. [Note: The
value of the predicate is used to identify program states that are expected. If it is determined
during program execution that the predicate has a value other than true, a contract violation
occurs. A contract violation is always the consequence of incorrect program code. — end
note]

Modify [basic.contract.eval] as follows:

An evaluation of a contract assertion uses one of the following fivefour evaluation semantics:
assume, ignore, observe, enforce, or quick-enforce. Observe, enforce, and quick-enforce are
checking semantics; enforce and quick-enforce are terminating semantics.
It is implementation-defined which evaluation semantic is used for any given evaluation of a
contract assertion. Explicit contract assertions are never evaluated with the assume semantic.
[...]

17

The evaluation of a contract assertion using the ignore or assume semantic has no effect. If the
semantic is assume and the predicate would not evaluate to true, evaluation of the contract
assertion has runtime undefined behaviour.

Add a new section, [basic.contract.implicit] after [basic.contract.eval]:

A built-in operation O may have an implicit precondition assertion C applied to it. If so,
the evaluation of C is sequenced before the evaluation of O and after the evaluation of all
operands of O.
A built-in operation O may have an implicit postcondition assertion C applied to it. If so,
the evaluation of C is sequenced after the evaluation of O.

Modify [contracts.syn] as follows:
enum class assertion_kind : unspecified {

pre = 1,
post = 2,
assert = 3,
implicit = 4

};

Modify [support.contract.enum] as follows:

Name Meaning
pre A precondition assertion
post A postcondition assertion
assert An assertion-statement
implicit An implicit contract assertion

Modify all cases of runtime-checkable UB with fallback behaviour, as listed in Appendix A, according
to the following pattern.

— Example [expr.expr.eval]:

If during the evaluation of an expression, the result is not mathematically defined or not
in the range of representable values for its type, the behavior is undefined.Evaluation of an
expression has an implicit postcondition assertion that the result is mathematically defined
and in the range of representable values for its type; if this precondition assertion is violated,
the result is an erroneous value.

— Example [conv.rank]:

The value computations of the operands of an operator are sequenced before the value
computation of the result of the operator. The behavior is undefined ifThere is an implicit
contract assertion that ano side effect on a memory location ([intro.memory]) or starting or
ending the lifetime of an object in a memory location is unsequenced relative to another side
effect on the same memory location, starting or ending the lifetime of an object occupying
storage that overlaps with the memory location, or a value computation using the value of any
object in the same memory location, and the two evaluations are not potentially concurrent
([intro.multithread]); if this precondition assertion is violated, the value computations are
sequenced in an unspecified order.

Modify all cases of runtime-checkable UB without fallback behaviour, as listed in Appendix A,
according to the following pattern.

— Example [basic.stc.dynamic.allocation]:

18

The effect of iIndirecting through a pointer has an implicit precondition assertion that the
pointer was not returned from a request for zero size; continuing execution past a violation
of this precondition assertion is undefined.

— Example [class.cdtor]:

For an object with a non-trivial destructor, referring to any non-static member or base class of
the object has an implicit precondition assertion that the destructor has not yet finishedafter
the destructor finishes execution; continuing execution past a violation of this precondition
assertion results in undefined behavior.

Written-out wording for all 79 cases of runtime-checkable UB listed in Appendix A can be provided
in a future revision of this paper.

Appendix A: List of language UB

All wording is taken from the current C++ working paper [N5008]. Each row corresponds to one
case of explicit core language UB. Rows are arranged by category, as defined in Section 2.2; within
each category, rows are ordered in the same order in which the corresponding wording appears in
[N5008].

19

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

I. Initialization

{basic.indet.
value}

[basic.indet]/2: Except in the following
cases, if an indeterminate value is
produced by an evaluation, the
behavior is undefined, [...]

Yes No Track whether storage has been
initialized

Only for
built-in types:
initialise
default-
initialised
variables with
erroneous
value

II. Bounds

{basic.stc.
alloc.zero.
dereference}

[basic.stc.dynamic.allocation]/2: The
effect of indirecting through a pointer
returned from a request for zero size is
undefined.

Yes No Track pointer provenance, insert bounds
check

None

{expr.delete.
mismatch}

[expr.delete]/2: In a single-object
delete expression, the value of the
operand of delete may be a null pointer
value, a pointer value that resulted
from a previous non-array
new-expression, or a pointer to a base
class subobject of an object created by
such a new-expression. If not, the
behavior is undefined.

Yes No Track pointer provenance, insert bounds
check

None

20

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{expr.
delete.array.
mismatch}

[expr.delete]/2: In an array delete
expression, the value of the operand of
delete may be a null pointer value or a
pointer value that resulted from a
previous array new-expression whose
allocation function was not a
non-allocating form
([new.delete.placement]). If not, the
behavior is undefined.

Yes No Track pointer provenance, insert bounds
check

None

{expr.add.out.
of.bounds}

[expr.add]/4: When an expression J
that has integral type is added to or
subtracted from an expression P of
pointer type, the result has the type of
P. If P evaluates to a null pointer value
and J evaluates to 0, the result is a null
pointer value. Otherwise, if P points to
a (possibly-hypothetical) array element
i of an array object x with n elements
([dcl.array]), the expressions P + J and
J + P (where J has the value j) point
to the (possibly-hypothetical) array
element i + j of x if 0 ≤ i + j ≤ n and
the expression P - J points to the
(possibly-hypothetical) array element
i − j of x if 0 ≤ i − j ≤ n. Otherwise,
the behavior is undefined.

Yes Only if the
array
bound is
statically
known

Track pointer provenance, insert bounds
check

None

21

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{expr.add.sub.
diff.pointers}

[expr.add]/4: When an expression J
that has integral type is added to or
subtracted from an expression P of
pointer type, the result has the type of
P. If P evaluates to a null pointer value
and J evaluates to 0, the result is a null
pointer value. Otherwise, if P points to
a (possibly-hypothetical) array element
i of an array object x with n elements
([dcl.array]), the expressions P + J and
J + P (where J has the value j) point
to the (possibly-hypothetical) array
element i + j of x if 0 ≤ i + j ≤ n and
the expression P - J points to the
(possibly-hypothetical) array element
i − j of x if 0 ≤ i − j ≤ n. Otherwise,
the behavior is undefined.

Yes Only if the
array
bound is
statically
known

Track pointer provenance, insert bounds
check

None

III. Type and Lifetime

{intro.object.
implicit.
create}

[intro.object]/11: For each operation
that is specified as implicitly creating
objects, that operation implicitly
creates and starts the lifetime of zero
or more objects of implicit-lifetime
types ([basic.types.general]) in its
specified region of storage if doing so
would result in the program having
defined behavior. If no such set of
objects would give the program defined
behavior, the behavior of the program
is undefined.

Yes No Track whether storage can hold implicit
lifetime objects

None

22

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{intro.object.
implicit.
pointer}

[intro.object]/11: Further, after
implicitly creating objects within a
specified region of storage, some
operations are described as producing
a pointer to a suitable created object.
These operations select one of the
implicitly-created objects whose
address is the address of the start of
the region of storage, and produce a
pointer value that points to that
object, if that value would result in the
program having defined behavior. If no
such pointer value would give the
program defined behavior, the behavior
of the program is undefined.

Yes No Track whether storage can hold implicit
lifetime objects

None

{basic.
align.object.
alignment}

[basic.align]/1: Attempting to create
an object ([intro.object]) in storage
that does not meet the alignment
requirements of the object’s type is
undefined behavior.

Yes Yes Insert alignment check None

23

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{lifetime.
outside.
pointer.
delete}

[basic.life]/7: Before the lifetime of an
object has started but after the storage
which the object will occupy has been
allocated or, after the lifetime of an
object has ended and before the
storage which the object occupied is
reused or released, any pointer that
represents the address of the storage
location where the object will be or
was located may be used but only in
limited ways. [...] The program has
undefined behavior if the pointer is
used as the operand of a
delete-expression [...]

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{lifetime.
outside.
pointer.
member}

[basic.life]/7: [...] The program has
undefined behavior if [...] the pointer is
used to access a non-static data
member or call a non-static member
function of the object, [...]

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{lifetime.
outside.
pointer.
virtual}

[basic.life]/7: [...] The program has
undefined behavior if [...] the pointer is
implicitly converted ([conv.ptr]) to a
pointer to a virtual base class [...]

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

24

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{lifetime.
outside.
pointer.static.
cast}

[basic.life]/7: [...] The program has
undefined behavior if [...] the pointer is
used as the operand of a static_cast
([expr.static.cast]), except when the
conversion is to pointer to cv void, or
to pointer to cv void and subsequently
to pointer to cv char, cv unsigned
char, or cv std::byte ([cstddef.syn])
[...]

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{lifetime.
outside.
pointer.
dynamic.cast}

[basic.life]/7: [...] The program has
undefined behavior if [...] the pointer is
used as the operand of a
dynamic_cast ([expr.dynamic.cast]).

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{lifetime.
outside.
glvalue.
access}

[basic.life]/8: Similarly, before the
lifetime of an object has started but
after the storage which the object will
occupy has been allocated or, after the
lifetime of an object has ended and
before the storage which the object
occupied is reused or released, any
glvalue that refers to the original
object may be used but only in limited
ways. [...] The program has undefined
behavior if the glvalue is used to access
the object [...]

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{lifetime.
outside.
glvalue.
member}

[basic.life]/8: [...] The program has
undefined behavior if [...] the glvalue is
used to call a non-static member
function of the object [...]

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

25

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{lifetime.
outside.
glvalue.ref.
virtual}

[basic.life]/8: [...] The program has
undefined behavior if [...] the glvalue is
bound to a reference to a virtual base
class ([dcl.init.ref]) [...]

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{lifetime.
outside.
glvalue.
dynamic.
cast}

[basic.life]/8: [...] The program has
undefined behavior if [...] the glvalue is
used as the operand of a
dynamic_cast ([expr.dynamic.cast]) or
as the operand of typeid.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{original.
type.implicit.
destructor}

[basic.life]/11: If a program ends the
lifetime of an object of type T with
static ([basic.stc.static]), thread
([basic.stc.thread]), or automatic
([basic.stc.auto]) storage duration and
if T has a non-trivial destructor, and
another object of the original type
does not occupy that same storage
location when the implicit destructor
call takes place, the behavior of the
program is undefined.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{creating.
within.const.
complete.obj}

[basic.life]/12: Creating a new object
within the storage that a const,
complete object with static, thread, or
automatic storage duration occupies,
or within the storage that such a const
object used to occupy before its
lifetime ended, results in undefined
behavior.

Yes No Track whether storage is associated with
a const object

None

26

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{basic.
compound.
invalid.
pointer}

[basic.compound]/4: If a pointer value
P is used in an evaluation E and P is
not valid in the context of E, then the
behavior is undefined if E is an
indirection ([expr.unary.op]) or an
invocation of a deallocation function
([basic.stc.dynamic.deallocation]) [...]

Yes No Track whether storage has been
allocated/freed

None

{expr.basic.
lvalue.strict.
aliasing.
violation}

[basic.lval]/11.3: If a program attempts
to access ([defns.access]) the stored
value of an object through a glvalue
through which it is not type-accessible,
the behavior is undefined.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{expr.basic.
lvalue.union.
initialization}

[basic.lval]/11.3: If a program invokes
a defaulted copy/move constructor or
copy/move assignment operator for a
union of type U with a glvalue
argument that does not denote an
object of type cv U within its lifetime,
the behavior is undefined.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{expr.type.
reference.
lifetime}

[expr.type]/1: If a pointer to X would
be valid in the context of the
evaluation of the expression
([basic.fundamental]), the result
designates X; otherwise, the behavior
is undefined.

Yes No Track whether storage has been
allocated/freed

None

27

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{conv.
lval.valid.
representation}

[conv.lval]/3.4: Otherwise, if the bits
in the value representation of the
object to which the glvalue refers are
not valid for the object’s type, the
behavior is undefined.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

Coerce invalid
value represen-
tations into
erroneous
values

{conv.ptr.
virtual.base}

[conv.ptr]/3: Otherwise, if B is a
virtual base class of D and v does not
point to an object whose type is
similar ([conv.qual]) to D and that is
within its lifetime or within its period
of construction or destruction
([class.cdtor]), the behavior is
undefined.

Yes Only for
the null
pointer
case

Track whether storage is associated with
an object of correct type within its
lifetime or an object currently being
constructed/destroyed; insert null
pointer check

None

{conv.
member.
missing.
member}

[conv.mem]/2: If class D does not
contain the original member and is not
a base class of the class containing the
original member, the behavior is
undefined.

Yes No Track which type the pointer to member
originated from

None

{expr.call.
different.
type}

[expr.call]/5: Calling a function
through an expression whose function
type is not call-compatible with the
type of the called function’s definition
results in undefined behavior.

Yes No Track type information of function
based on address

None

{expr.ref.
member.not.
similar}

[expr.ref]/9: If E2 is a non-static
member and the result of E1 is an
object whose type is not similar
([conv.qual]) to the type of E1, the
behavior is undefined.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

28

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{expr.
dynamic.
cast.pointer.
lifetime}

[expr.dynamic.cast]/7: If v has type
“pointer to cv U” and v does not point
to an object whose type is similar
([conv.qual]) to U and that is within its
lifetime or within its period of
construction or destruction
([class.cdtor]), the behavior is
undefined.

Yes Only for
the null
pointer
case

Track whether storage is associated with
an object of correct type within its
lifetime or an object currently being
constructed/destroyed; insert null
pointer check

None

{expr.
dynamic.
cast.glvalue.
lifetime}

[expr.dynamic.cast]/7: If v is a glvalue
of type U and v does not refer to an
object whose type is similar to U and
that is within its lifetime or within its
period of construction or destruction,
the behavior is undefined.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime or an object currently being
constructed/destroyed

None

{expr.static.
cast.base.
class}

[expr.static.cast]/2: An xvalue of type
“cv1 B” can be cast to type “rvalue
reference to cv2 D” with the same
constraints as for an lvalue of type
“cv1 B”. If the object of type “cv1 B” is
actually a base class subobject of an
object of type D, the result refers to
the enclosing object of type D.
Otherwise, the behavior is undefined.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

29

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{expr.static.
cast.downcast.
wrong.derived.
type}

[expr.static.cast]/11: If the prvalue of
type “pointer to cv1 B” points to a B
that is actually a base class subobject
of an object of type D, the resulting
pointer points to the enclosing object
of type D. Otherwise, the behavior is
undefined.

Yes Only for
the null
pointer
case

Track whether storage is associated with
an object of correct type within its
lifetime or an object currently being
constructed/destroyed; insert a null
pointer check

None

{expr.static.
cast.does.not.
contain.
orignal.
member}

[expr.static.cast]/12: If class B contains
the original member, or is a base class
of the class containing the original
member, the resulting pointer to
member points to the original member.
Otherwise, the behavior is undefined.

Yes No Track which type the pointer to member
originated from

None

{expr.unary.
dereference}

[expr.unary.op]/1: If the operand
points to an object or function, the
result denotes that object or function;
otherwise, the behavior is undefined
except as specified in [expr.typeid].

Yes Only for
the null
pointer
case

Track whether storage is associated with
an object of correct type within its
lifetime; track whether the address is
associated with a function; insert a null
pointer check

None

{expr.delete.
dynamic.type.
differ}

[expr.delete]/3: In a single-object
delete expression, if the static type of
the object to be deleted is not similar
([conv.qual]) to its dynamic type and
the selected deallocation function (see
below) is not a destroying operator
delete, the static type shall be a base
class of the dynamic type of the object
to be deleted and the static type shall
have a virtual destructor or the
behavior is undefined.

Yes No Track dynamic type of non-polymorphic
objects

None

30

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{expr.delete.
dynamic.
array.
dynamic.
type.differ}

[expr.delete]/3: In an array delete
expression, if the dynamic type of the
object to be deleted is not similar to its
static type, the behavior is undefined.

Yes No Track dynamic type of non-polymorphic
objects

None

{expr.mptr.
oper.not.
contain.
member}

[expr.mptr.oper]/4: Abbreviating
pm-expression.*cast-expression as
E1.*E2, E1 is called the object
expression. If the result of E1 is an
object whose type is not similar to the
type of E1, or whose most derived
object does not contain the member to
which E2 refers, the behavior is
undefined.

Yes No Track which type the pointer to member
originated from and the dynamic type of
non-polymorphic objects

None

{expr.mptr.
oper.member.
func.null}

[expr.mptr.oper]/6: The result of a .*
expression whose second operand is a
pointer to a member function is a
prvalue. If the second operand is the
null member pointer value, the
behavior is undefined.

Yes Yes Insert null pointer check None

{expr.add.not.
similar}

[expr.add]/6: For addition or
subtraction, if the expressions P or Q
have type “pointer to cv T”, where T
and the array element type are not
similar, the behavior is undefined.

Yes No Track whether storage is associated with
an object of correct type

None

31

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{expr.assign.
overlap}

[expr.assign]/7: If the value being
stored in an object is read via another
object that overlaps in any way the
storage of the first object, then the
overlap shall be exact and the two
objects shall have the same type,
otherwise the behavior is undefined.

Yes Yes Check overlap of the two address ranges None

{dcl.type.cv.
modify.const.
obj}

[dcl.type.cv]/4: Any attempt to modify
([expr.assign], [expr.post.incr],
[expr.pre.incr]) a const object
([basic.type.qualifier]) during its
lifetime ([basic.life]) results in
undefined behavior.

Yes No Track whether storage is associated with
a const object

None

{dcl.type.
cv.access.
volatile}

[dcl.type.cv]/5: If an attempt is made
to access an object defined with a
volatile-qualified type through the use
of a non-volatile glvalue, the behavior
is undefined.

Yes No Track whether storage is associated with
a volatile object

None

{dcl.ref.
incompatible.
function}

[dcl.ref]/6: Attempting to bind a
reference to a function where the
converted initializer is a glvalue whose
type is not call-compatible ([expr.call])
with the type of the function’s
definition results in undefined
behavior.

Yes No Track the types of all functions based on
their addresses

None

32

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{dcl.ref.
incompatible.
type}

[dcl.ref]/6: Attempting to bind a
reference to an object where the
converted initializer is a glvalue
through which the object is not
type-accessible ([basic.lval]) results in
undefined behavior.

Yes No Track whether storage is associated with
an object of correct type

None

{dcl.ref.
uninitialized.
reference}

[dcl.ref]/6: The behavior of an
evaluation of a reference
([expr.prim.id], [expr.ref]) that does
not happen after ([intro.races]) the
initialization of the reference is
undefined.

Yes No Track whether references have been
initialised

None

{class.dtor.
not.class.
type}

[class.dtor]/16: The invocation of a
destructor is subject to the usual rules
for member functions ([class.mfct]);
that is, if the object is not of the
destructor’s class type and not of a
class derived from the destructor’s
class type (including when the
destructor is invoked via a null pointer
value), the program has undefined
behavior.

This
should be a
non-
normative
note

— — —

{class.dtor.no.
longer.exists}

[class.dtor]/18: Once a destructor is
invoked for an object, the object’s
lifetime ends; the behavior is undefined
if the destructor is invoked for an
object whose lifetime has ended
([basic.life]).

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

33

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{class.
abstract.
pure.virtual}

[class.abstract]/6: Member functions
can be called from a constructor (or
destructor) of an abstract class; the
effect of making a virtual call
([class.virtual]) to a pure virtual
function directly or indirectly for the
object being created (or destroyed)
from such a constructor (or destructor)
is undefined.

Yes Yes Insert a pre(false) into the pure
virtual stub pointed to from the
base-class vtable

None

{class.base.
init.mem.fun}

[class.base.init]/16: Member functions
(including virtual member functions,
[class.virtual]) can be called for an
object under construction or
destruction. Similarly, an object under
construction or destruction can be the
operand of the typeid operator
([expr.typeid]) or of a dynamic_cast
([expr.dynamic.cast]). However, if
these operations are performed during
evaluation of a ctor-initializer (or in a
function called directly or indirectly
from a ctor-initializer) before all the
mem-initializers for base classes have
completed, a precondition assertion of
a constructor, or a postcondition
assertion of a destructor
([dcl.contract.func]), the program has
undefined behavior.

Yes No Track whether objects are currently
being constructed/destroyed

None

34

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{class.cdtor.
before.ctor.
after.dtor}

[class.cdtor]/1: For an object with a
non-trivial constructor, referring to any
non-static member or base class of the
object before the constructor begins
execution results in undefined
behavior.

Yes No Track whether objects are currently
being constructed/destroyed

None

{class.cdtor.
before.ctor.
after.dtor}

[class.cdtor]/1: For an object with a
non-trivial destructor, referring to any
non-static member or base class of the
object after the destructor finishes
execution results in undefined
behavior.

Yes No Track whether objects are currently
being constructed/destroyed

None

{class.cdtor.
convert.or.
form.pointer}

[class.cdtor]/3: To explicitly or
implicitly convert a pointer (a glvalue)
referring to an object of class X to a
pointer (reference) to a direct or
indirect base class B of X, the
construction of X and the construction
of all of its direct or indirect bases that
directly or indirectly derive from B
shall have started and the destruction
of these classes shall not have
completed, otherwise the conversion
results in undefined behavior.

Yes No Track whether objects are currently
being constructed/destroyed

None35

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{class.cdtor.
convert.or.
form.pointer}

[class.cdtor]/3: To form a pointer to
(or access the value of) a direct
non-static member of an object obj,
the construction of obj shall have
started and its destruction shall not
have completed, otherwise the
computation of the pointer value (or
accessing the member value) results in
undefined behavior.

Yes No Track whether objects are currently
being constructed/destroyed

None

{class.cdtor.
virtual.not.x}

[class.cdtor]/4: If the virtual function
call uses an explicit class member
access ([expr.ref]) and the object
expression refers to the complete
object of x or one of that object’s base
class subobjects but not x or one of its
base class subobjects, the behavior is
undefined.

Yes No Track whether objects are currently
being constructed/destroyed

None

{class.cdtor.
typeid}

[class.cdtor]/5: If the operand of
typeid refers to the object under
construction or destruction and the
static type of the operand is neither
the constructor or destructor’s class
nor one of its bases, the behavior is
undefined.

Yes No Track whether objects are currently
being constructed/destroyed

None

36

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{class.cdtor.
dynamic.cast}

[class.cdtor]/6: If the operand of the
dynamic_cast refers to the object
under construction or destruction and
the static type of the operand is not a
pointer to or object of the constructor
or destructor’s own class or one of its
bases, the dynamic_cast results in
undefined behavior.

Yes No Track whether objects are currently
being constructed/destroyed

None

{except.
handle.
handler.
ctor.dtor}

[except.handle]/11: Referring to any
non-static member or base class of an
object in the handler for a
function-try-block of a constructor or
destructor for that object results in
undefined behavior.

Yes No Track whether objects are currently
being constructed/destroyed

None

IV. Arithmetic

{expr.expr.
eval}

[expr.pre]/4: If during the evaluation
of an expression, the result is not
mathematically defined or not in the
range of representable values for its
type, the behavior is undefined.

Yes Yes Insert a check of whether the value is
valid

Coerce into
erroneous
value

37

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{conv.double.
out.of.range}

[conv.double]/2: A prvalue of
floating-point type can be converted to
a prvalue of another floating-point
type with a greater or equal conversion
rank ([conv.rank]). [...] If the source
value can be exactly represented in the
destination type, the result of the
conversion is that exact representation.
If the source value is between two
adjacent destination values, the result
of the conversion is an
implementation-defined choice of either
of those values. Otherwise, the
behavior is undefined.

Yes Yes Insert a check of whether the value is
valid

Coerce into
erroneous
value

{conv.fpint.
float.not.
represented}

[conv.fpint]/1: A prvalue of a
floating-point type can be converted to
a prvalue of an integer type. The
conversion truncates; that is, the
fractional part is discarded. The
behavior is undefined if the truncated
value cannot be represented in the
destination type.

Yes Yes Insert a check of whether the value is
valid

Coerce into
erroneous
value

{conv.fpint.
int.not.
represented}

[conv.fpint]/2: A prvalue of an integer
type or of an unscoped enumeration
type can be converted to a prvalue of a
floating-point type. [...] If the value
being converted is outside the range of
values that can be represented, the
behavior is undefined.

Yes Yes Insert a check of whether the value is
valid

Coerce into
erroneous
value

38

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{expr.static.
cast.enum.
outside.
range}

[expr.static.cast]/9: If the enumeration
type does not have a fixed underlying
type, the value is unchanged if the
original value is within the range of the
enumeration values ([dcl.enum]), and
otherwise, the behavior is undefined.

Yes Yes Insert a check of whether the value is
valid

Coerce into
erroneous
value

{expr.static.
cast.fp.
outside.
range}

[expr.static.cast]/10: A prvalue of
floating-point type can be explicitly
converted to any other floating-point
type. If the source value can be exactly
represented in the destination type, the
result of the conversion has that exact
representation. If the source value is
between two adjacent destination
values, the result of the conversion is
an implementation-defined choice of
either of those values. Otherwise, the
behavior is undefined.

Yes Yes Insert a check of whether the value is
valid

Coerce into
erroneous
value

{expr.mul.div.
by.zero}

[expr.mul]/4: The binary / operator
yields the quotient, and the binary %
operator yields the remainder from the
division of the first expression by the
second. If the second operand of / or %
is zero, the behavior is undefined.

Yes Yes Insert a check of whether the second
operand is zero

Coerce into
erroneous
value

39

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{expr.mul.
representable.
type.result}

[expr.mul]/4: For integral operands,
the / operator yields the algebraic
quotient with any fractional part
discarded; if the quotient a/b is
representable in the type of the result,
(a/b)*b + a%b is equal to a;
otherwise, the behavior of both a/b
and a%b is undefined.

Yes Yes Insert a check of whether the value is
valid

Coerce into
erroneous
value

{expr.shift.
neg.and.
width}

[expr.shift]/1: The behavior is
undefined if the right operand is
negative, or greater than or equal to
the width of the promoted left
operand.

Yes Yes Insert check whether right operand is
valid

Coerce into
erroneous
value

V. Threading

{intro.races.
data}

[intro.races]/17: Any such data race
results in undefined behavior.

Yes No Track from which threads memory is
accessed and when accesses synchronise
with each other; only practical for a
subset of cases (see TSan)

Make all
primitive
memory
accesses
implicitly
atomic

40

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

VI. Sequencing

{intro.
execution.
unsequenced.
modification}

[conv.rank]/10: The behavior is
undefined if a side effect on a memory
location ([intro.memory]) or starting or
ending the lifetime of an object in a
memory location is unsequenced
relative to another side effect on the
same memory location, starting or
ending the lifetime of an object
occupying storage that overlaps with
the memory location, or a value
computation using the value of any
object in the same memory location,
and the two evaluations are not
potentially concurrent
([intro.multithread]).

Yes Yes Identify all potential read operations
that are not sequenced with respect to
each given write operation; insert checks
to identify if those operations are
referencing the same address

Sequence
operations in
some
unspecified
order

VII. Assumptions

{dcl.attr.
assume.false}

[dcl.attr.assume]/1: If the converted
expression would evaluate to true at
the point where the assumption
appears, the assumption has no effect.
Otherwise, evaluation of the
assumption has runtime undefined
behavior.

No — No automatic checking strategy is
possible because the predicate cannot
be, in general, proven to be free of side
effects; instead,
the user has to change [[assume(x)]] to
contract_assert<may_be_assumed>(x)
and select an appropriate evaluation
semantic

Ignore the
assumption

41

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

VIII. Control Flow

{basic.start.
main.exit.
during.
destruction}

[basic.start.main]/4: If std::exit is
invoked during the destruction of an
object with static or thread storage
duration, the program has undefined
behavior.

Yes No Track whether static or thread-local
objects are currently being destroyed

None

{basic.start.
term.use.after.
destruction}

[basic.start.term]/4: If a function
contains a block variable of static or
thread storage duration that has been
destroyed and the function is called
during the destruction of an object
with static or thread storage duration,
the program has undefined behavior if
the flow of control passes through the
definition of the previously destroyed
block variable.

Yes No Track the lifetime of static objects None

{stmt.return.
flow.off}

[stmt.return]/4: Otherwise, flowing off
the end of a function that is neither
main ([basic.start.main]) nor a
coroutine ([dcl.fct.def.coroutine])
results in undefined behavior.

Yes Yes Insert contract_assert(false) at end
of function-body

Only for
built-in return
types: return
erroneous
value

42

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

{stmt.return.
coroutine.flow.
off}

[stmt.return.coroutine]/3: If a search
for the name return_void in the
scope of the promise type finds any
declarations, flowing off the end of a
coroutine’s function-body is equivalent
to a co_return with no operand;
otherwise flowing off the end of a
coroutine’s function-body results in
undefined behavior.

Yes Yes Insert contract_assert(false) at end
of function-body

Only for
built-in return
types: return
erroneous
value

{stmt.dcl.
local.static.
init.recursive}

[stmt.dcl]/3: If control re-enters the
declaration recursively while the
variable is being initialized, the
behavior is undefined.

Yes No Insert a recursion counter into a guard
for static and thread-local object
construction

None

{dcl.attr.
noreturn.
eventually.
returns}

[dcl.attr.noreturn]/2: If a function f is
invoked where f was previously
declared with the noreturn attribute
and that invocation eventually returns,
the behavior is runtime-undefined.

Yes Yes Insert post(false) None

43

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

IX. Replacement Functions

{basic.stc.
alloc.dealloc.
constraint}

[basic.stc.dynamic.general]/3: If the
behavior of an allocation or
deallocation function does not satisfy
the semantic constraints specified in
[basic.stc.dynamic.allocation] and
[basic.stc.dynamic.deallocation], the
behavior is undefined.

Partially:
some
constraints
can be
checked
locally
(e.g.,
allocation
function
does not
return
null);
others
cannot be
checked at
all.

Partially Insert checks where possible None

{basic.stc.
alloc.dealloc.
throw}

[basic.stc.dynamic.deallocation]/4: If a
deallocation function terminates by
throwing an exception, the behavior is
undefined.

Address
this via
[P3424R0]
instead

— — —

{expr.new.
non.allocating.
null}

[expr.new]/22: If the allocation
function is a non-allocating form
([new.delete.placement]) that returns
null, the behavior is undefined.

Yes Yes Insert post(r: r) None

44

Identifier Wording Runtime
checkable

Locally
checkable

Checking strategy Fallback
behaviour

X. Coroutines

{dcl.fct.def.
coroutine.
resume.not.
suspended}

[dcl.fct.def.coroutine]/9: Invoking a
resumption member function for a
coroutine that is not suspended results
in undefined behavior.

Yes No Track the suspension state associated
with every coroutine handle

None

{dcl.fct.def.
coroutine.
destroy.not.
suspended}

[dcl.fct.def.coroutine/12: If destroy is
called for a coroutine that is not
suspended, the program has undefined
behavior.

Yes No Track the suspension state associated
with every coroutine handle

None

XI. Templates

{temp.inst.inf.
recursion}

[temp.inst]/16: There is an
implementation-defined quantity that
specifies the limit on the total depth of
recursive instantiations ([implimits]),
which could involve more than one
template. The result of an infinite
recursion in instantiation is undefined.

No, make
the
behaviour
ill-formed
instead

— — —

45

Document history

— R3, 2025-06-28: Removed preprocessor UB due to adoption of [P2843R3] into C++26.

— R2, 2025-05-19: Complete rewrite after the WG21 meeting in Hagenberg.

— R1, 2024-10-16: Complete rewrite after the WG21 meeting in St. Louis.

— R0, 2023-03-08: Initial version.

Acknowledgements

Thanks to Herb Sutter, Oliver Rosten, Andrzej Krzemieński, and Roger Orr for their helpful
feedback on a previous revision of this paper.
Thanks to Lori Hughes for reviewing this paper and providing editorial feedback.

Bibliography

[N5008] Thomas Köppe. Working Draft, Standard for Programming Language C++. https:
//wg21.link/n5008, 2025-03-15.

[P0542R5] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, and B. Stroustrup. Support
for contract based programming in C++. https://wg21.link/p0542r5, 2018-06-08.

[P1774R8] Timur Doumler. Portable assumptions. https://wg21.link/p1774r8, 2022-06-14.

[P2064R0] Herb Sutter. Assumptions. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2020/p2064r0.pdf, 2020-01-13.

[P2680R1] Gabriel Dos Reis. Contracts for C++: Prioritizing Safety. https://wg21.link/p2680r1,
2022-12-15.

[P2723R1] JF Bastien. Zero-initialize objects of automatic storage duration. https://wg21.link/
p2723r1, 2023-01-15.

[P2795R5] Thomas Köppe. Erroneous behaviour for uninitialized reads. https://wg21.link/
p2795r5, 2024-03-22.

[P2843R3] Alisdair Meredith. Preprocessing is never undefined. https://wg21.link/p2843r3,
2025-06-20.

[P2900R14] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r14, 2025-02-13.

[P3081R1] Herb Sutter. Core safety profiles for C++26. https://wg21.link/p3081r1, 2025-01-06.

[P3173R0] Gabriel Dos Reis. P2900R6 May Be Minimal, but It Is Not Viable. https://wg21.
link/p3173r0, 2024-02-15.

[P3227R0] Gašper Ažman and Timur Doumler. Fixing the library API for contract violation
handling. https://wg21.link/p3227r0, 2024-10-15.

[P3285R0] Gabriel Dos Reis. Contracts: Protecting The Protector. https://wg21.link/p3285r0,
2024-05-15.

46

https://wg21.link/n5008
https://wg21.link/n5008
https://wg21.link/p0542r5
https://wg21.link/p1774r8
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf
https://wg21.link/p2680r1
https://wg21.link/p2723r1
https://wg21.link/p2723r1
https://wg21.link/p2795r5
https://wg21.link/p2795r5
https://wg21.link/p2843r3
https://wg21.link/p2900r14
https://wg21.link/p2900r14
https://wg21.link/p3081r1
https://wg21.link/p3173r0
https://wg21.link/p3173r0
https://wg21.link/p3227r0
https://wg21.link/p3285r0

[P3362R0] Ville Voutilainen and Richard Corden. Static analysis and ‘safety’ of Contracts, P2900
vs. P2680/P3285. https://wg21.link/p3362r0, 2024-08-11.

[P3376R0] Andrzej Krzemieński. Contract assertions versus static analysis and ‘safety’. https:
//wg21.link/p3376r0, 2024-10-14.

[P3386R0] Joshua Berne. Static Analysis of Contracts with P2900. https://wg21.link/p3386r0,
2024-10-15.

[P3390R0] Sean Baxter and Christian Mazakas. Safe C++. https://wg21.link/p3390r0, 2024-
09-11.

[P3400R1] Joshua Berne. Controlling Contract-Assertion Properties. https://wg21.link/p3400r1,
2025-02-28.

[P3424R0] Alisdair Meredith. Define Delete With Throwing Exception Specification. https:
//wg21.link/p3424r0, 2024-12-17.

[P3471R4] Konstantin Varlamov and Louis Dionne. Standard library hardening. https://wg21.
link/p3471r4, 2025-02-14.

[P3499R1] Timur Doumler, Lisa Lippincott, and Joshua Berne. Exploring strict contract predicates.
https://wg21.link/p3499r1, 2025-02-09.

[P3500R1] Timur Doumler, Gašper Ažman, Joshua Berne, and Ryan McDougall. Are Contracts
“safe”? https://wg21.link/p3500r1, 2025-02-09.

[P3578R0] Ryan McDougall. What is Safety? https://wg21.link/p3578r0, 2024-12-12.

[P3656R1] Herb Sutter and Gašper Ažman. Initial draft proposal for core language UB white paper:
Process and major work items. https://wg21.link/p3656r1, 2025-03-23.

[P3756R0] Timur Doumler, Joshua Berne, Gabriel Dos Reis, Herb Sutter, Gašper Ažman, and
Peter Bindels. Strategy for addressing undefined behaviour in C++. https://wg21.
link/p3756r0, 2025-07-15.

[Sutter2024] Herb Sutter. C++ safety, in context. https://herbsutter.com/2024/03/11/
safety-in-context/, 2024-03-11.

[Sutter2025] Herb Sutter. Crate-training Tiamat, un-calling Cthulhu: Tam-
ing the UB monsters in C++. https://herbsutter.com/2025/03/30/
crate-training-tiamat-un-calling-cthulhutaming-the-ub-monsters-in-c/,
2025-03-30.

47

https://wg21.link/p3362r0
https://wg21.link/p3376r0
https://wg21.link/p3376r0
https://wg21.link/p3386r0
https://wg21.link/p3390r0
https://wg21.link/p3400r1
https://wg21.link/p3424r0
https://wg21.link/p3424r0
https://wg21.link/p3471r4
https://wg21.link/p3471r4
https://wg21.link/p3499r1
https://wg21.link/p3500r1
https://wg21.link/p3578r0
https://wg21.link/p3656r1
https://wg21.link/p3756r0
https://wg21.link/p3756r0
https://herbsutter.com/2024/03/11/safety-in-context/
https://herbsutter.com/2024/03/11/safety-in-context/
https://herbsutter.com/2025/03/30/crate-training-tiamat-un-calling-cthulhutaming-the-ub-monsters-in-c/
https://herbsutter.com/2025/03/30/crate-training-tiamat-un-calling-cthulhutaming-the-ub-monsters-in-c/

	1 Introduction
	2 Analysis
	2.1 Methodology and scope
	2.2 Basic categories of UB
	2.3 Relevance for security
	2.4 Local checkability
	2.5 Cost of diagnosis
	2.6 Well-defined fallback behaviour
	2.7 Mitigation strategies

	3 Proposed design
	3.1 Defining implicit contract assertions
	3.2 Extending the library API
	3.3 Applying implicit contract assertions
	3.4 Specifying the fallback behaviour
	3.5 Providing an escape hatch

	4 Future extensions
	4.1 Identifying the UB category
	4.2 Granular control of the evaluation semantic

	5 Proposed wording
	Appendix: UB list

