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Library API for Trivial Relocation

Minimal library interface for the core
language feature
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What is Trivial Relocation?

A solution to an old problem

* A popular “optimisation” is to move objects around by copying their representation to a new
location, e.g., through memcpy Oor memmove

 Assumes the moved objects do not have internal references
* This is well-defined for trivial types

* This is UB for non-trivial types, as there is no way to breathe life into the objects at their new
location

* Trivial relocation is a new facility to inform the compiler about the object lifetimes

« Call the magic function trivially relocate to both move the bytes, and update lifetimes

* Add syntax for the compiler to verify which types are eligible for trivial relocation



Design Principles for EWG

Concerns that guided our proposal

» Feature for users, not just the Standard Library

e A formal specification for object lifetimes

 Minimal design to enable library extension

 Predictable behavior: no freedom for Qol in core semantics
* (Guard against accidental UB

e Trust, but verity: can explicitly mark types trivially relocatable unless they have
non-trivially-relocatable member objects



Design Principles for LEWG

Concerns that guided our proposal

 Keep the APl small, to leave space for pure library extensions
 Not a general purpose relocation facility
* Build the larger API using trivial relocatabllity as a possible optimization
» Defer full library analysis until core feature accepted, as library is HUGE
» Be consistent with existing similar facilities
e [ype traits, magic functions, etc.

* Constrain and mandate to protect against UB
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Core Language Changes




Trivially Relocatable lTypes

* A trivially relocatable type is:
* A scalar type
* A trivially relocatable class type
* An array of trivially relocatable types

* Cv-qualified version of any of the above



Trivially Relocatable Classes

Introducing syntax

» A class can be marked with the contextual keyword trivially relocatable
» Optional constant predicate: trivially relocatable(is relocatable<T> () )
* A class is ineligible for trivial relocatability if it has
* A virtual base class
* Any base classes that are not trivially relocatable
* Any non-static data members of a non-reference type that are not trivially relocatable
* ltis ill-formed to mark a class as trivially relocatable if it is ineligible for trivial relocatabillity

e l.e,, trivially relocatable (bool-expression) must evaluate to false if present
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Trivially Relocatable Classes

Implicit without syntax

* Atrivially relocatable class is:
 Marked as trivially relocatable, or

» All of the following:

e Isnot marked trivially relocatable (false)

* |s not ineligible for trivial relocatability
 Does not have a user-provided or deleted move constructor

 Does not have a user-provided or deleted destructor

8



Proposed Library Changes




The Whole Library API

// Type trait
template<class T>
struct 1s trivially relocatable;

template<class T>
constexpr bool 1s trivially relocatable v = 1s trivially relocatable<T>::value;

// Magic function template with constraints clause for reference
template<class T>

requires (1s trivially relocatable v<T> && !is const v<T>)
T* trivially relocate(T* begin, T* end, T* new location) noexcept;

10



Deferred LWG Proposals

Pure library extensions built on top of trivial relocatability

* Non-trivial relocatability

e P2967 is a first draft of the larger interface

 P1144 has a longer history with a more relaxed specification
e Optimising relocation within a container (P2959)

e std::vector, std: :deque, etc., are over-specified to use assignment

e P2959 is a first draft address the larger semantic issues that go beyond just
trivial relocation

11



APl Design 1/3

Key questions we considered developing this proposal

* Type trait vs. Concept
* Choosing type trait for consistency with every other trivial trait

* Not opposed to a follow-up paper proposing trivial concepts for all trivialities, but not treating trivial
relocation in isolation

 Range interface, not single object
» [ypically used with ranges rather than single objects
* Minimises the number of magic functions

 Can form a range of a single object, so not strictly needed

* We are expecting follow-up papers in St Louis addressing higher level (hon-trivial) library relocation
facilities, e.g., P1144, P2967
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APl Design 2/3

Key questions we considered developing this proposal

 !is const constraint to protect against UB

 |f you relocate a local variable, you cannot replace it without UB if that variable is const

* |f you know you are not falling into UB, can still const cast for desired behavior — this
IS a guard rail, not a barrier

 Not a constexpr function

* |Implementation experience that this is hard

 Not needed for a constexpr vector, but...

» will need to guard use of the trivial relocate function with
if consteval {compile-time} else {runtime}

13



APl Design 3/3

Key questions we considered developing this proposal

e function is not declared as noexcept

* Preconditions on input and output ranges

14



Quick Examples



Example of trivially relocatable class

struct BaseType {
// simple base class, trivially relocatable by default

}y

struct MyRelocatableType trivially relocatable : BaseType ({

// class definition details

MyRelocatableType (MyRelocatableTypes&s&); // user supplied
// Having a user-provided move constructor "MyRelocatableType would not
// be trivially relocatable by default. The ‘trivially relocatable’
// annotation trusts the user's specification that this type can indeed
// be trivially relocated.

by

struct MyNonRelocatableType : BaseType {

// class definition details

MyNonRelocatableType (MyNonRelocatableType&&); // user supplied

// Having a user-provided move constructor "MyNonRelocatableType 1s
// not trivially relocatable.

by

static assert( i1s trivially relocatable v<MyRelocatableType> ) ;
static assert(!is trivially relocatable v<MyNonRelocatableType>);

16



Example using trivally relocate

template <class T>
vold MyVector::reserve (std::size t new capacity) {
if (new capacity <= d capacity) return;

T* new buffer = d alloc.allocate(new capacity);
1f constexpr (std::1s trivially relocatable v<T>) {
std::trivially relocate(d buffer, d buffer + size, new buffer);
std: :swap (buffer, d buffer);
}
else 1f constexpr (std::1s nothrow move constructible v<T>) {
std: :uninitialized move (d buffer, d buffer + size, new buffer);
std: :swap (buffer, d buffer);
std: :destroy (buffer, buffer + size);
}
else 1f constexpr (std::1s copy constructible v<T>) {
// exception safe copy code
}
else {
// exception safe throwing-move code

J

d alloc.deallocate (buffer, std::exchange(d capacility, new capacity);
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Time for Feedback



