
Library API for Trivial Relocation
Minimal library interface for the core
language feature

1

P3241R0 presented to LEWG
April 9, 2024

Alisdair Meredith
ameredith1@bloomberg.net

What is Trivial Relocation?
A solution to an old problem

• A popular “optimisation” is to move objects around by copying their representation to a new
location, e.g., through memcpy or memmove

• Assumes the moved objects do not have internal references

• This is well-defined for trivial types

• This is UB for non-trivial types, as there is no way to breathe life into the objects at their new
location

• Trivial relocation is a new facility to inform the compiler about the object lifetimes

• Call the magic function trivially_relocate to both move the bytes, and update lifetimes

• Add syntax for the compiler to verify which types are eligible for trivial relocation

2

Design Principles for EWG
Concerns that guided our proposal

• Feature for users, not just the Standard Library

• A formal specification for object lifetimes

• Minimal design to enable library extension

• Predictable behavior; no freedom for QoI in core semantics

• Guard against accidental UB

• Trust, but verify: can explicitly mark types trivially relocatable unless they have
non-trivially-relocatable member objects

3

Design Principles for LEWG
Concerns that guided our proposal

• Keep the API small, to leave space for pure library extensions

• Not a general purpose relocation facility

• Build the larger API using trivial relocatability as a possible optimization

• Defer full library analysis until core feature accepted, as library is HUGE

• Be consistent with existing similar facilities

• Type traits, magic functions, etc.

• Constrain and mandate to protect against UB

4

Core Language Changes

5

Trivially Relocatable Types

• A trivially relocatable type is:

• A scalar type

• A trivially relocatable class type

• An array of trivially relocatable types

• Cv-qualified version of any of the above

6

Trivially Relocatable Classes
Introducing syntax

• A class can be marked with the contextual keyword trivially_relocatable

• Optional constant predicate: trivially_relocatable(is_relocatable<T>())

• A class is ineligible for trivial relocatability if it has

• A virtual base class

• Any base classes that are not trivially relocatable

• Any non-static data members of a non-reference type that are not trivially relocatable

• It is ill-formed to mark a class as trivially relocatable if it is ineligible for trivial relocatability

• i.e., trivially_relocatable(bool-expression) must evaluate to false if present

7

Trivially Relocatable Classes
Implicit without syntax

• A trivially relocatable class is:

• Marked as trivially relocatable, or

• All of the following:

• Is not marked trivially_relocatable(false)

• Is not ineligible for trivial relocatability

• Does not have a user-provided or deleted move constructor

• Does not have a user-provided or deleted destructor
8

Proposed Library Changes

9

The Whole Library API

// Type trait
template<class T>
struct is_trivially_relocatable;

template<class T>
constexpr bool is_trivially_relocatable_v = is_trivially_relocatable<T>::value;

// Magic function template with constraints clause for reference
template<class T>
 requires (is_trivially_relocatable_v<T> && !is_const_v<T>)
T* trivially_relocate(T* begin, T* end, T* new_location) noexcept;

10

Deferred LWG Proposals
Pure library extensions built on top of trivial relocatability

• Non-trivial relocatability

• P2967 is a first draft of the larger interface

• P1144 has a longer history with a more relaxed specification

• Optimising relocation within a container (P2959)

• std::vector, std::deque, etc., are over-specified to use assignment

• P2959 is a first draft address the larger semantic issues that go beyond just
trivial relocation

11

API Design 1/3
Key questions we considered developing this proposal

• Type trait vs. Concept

• Choosing type trait for consistency with every other trivial trait

• Not opposed to a follow-up paper proposing trivial concepts for all trivialities, but not treating trivial
relocation in isolation

• Range interface, not single object

• Typically used with ranges rather than single objects

• Minimises the number of magic functions

• Can form a range of a single object, so not strictly needed

• We are expecting follow-up papers in St Louis addressing higher level (non-trivial) library relocation
facilities, e.g., P1144, P2967

12

API Design 2/3
Key questions we considered developing this proposal

• !is_const constraint to protect against UB

• If you relocate a local variable, you cannot replace it without UB if that variable is const

• If you know you are not falling into UB, can still const_cast for desired behavior — this
is a guard rail, not a barrier

• Not a constexpr function

• Implementation experience that this is hard

• Not needed for a constexpr vector, but…

• will need to guard use of the trivial_relocate function with	 	 	
if consteval {compile-time} else {runtime}

13

API Design 3/3
Key questions we considered developing this proposal

• function is not declared as noexcept

• Preconditions on input and output ranges

14

Quick Examples

15

Example of trivially_relocatable class

16

struct BaseType {
 // simple base class, trivially relocatable by default
};

struct MyRelocatableType trivially_relocatable : BaseType {
 // class definition details
 MyRelocatableType(MyRelocatableType&&); // user supplied
 // Having a user-provided move constructor `MyRelocatableType` would not
 // be trivially relocatable by default. The `trivially_relocatable`
 // annotation trusts the user's specification that this type can indeed
 // be trivially relocated.
};

struct MyNonRelocatableType : BaseType {
 // class definition details
 MyNonRelocatableType(MyNonRelocatableType&&); // user supplied
 // Having a user-provided move constructor `MyNonRelocatableType` is
 // not trivially relocatable.
};

static_assert(is_trivially_relocatable_v<MyRelocatableType>);
static_assert(!is_trivially_relocatable_v<MyNonRelocatableType>);

Example using trivally_relocate

17

template <class T>
void MyVector::reserve(std::size_t new_capacity) {
 if (new_capacity <= d_capacity) return;

 T* new_buffer = d_alloc.allocate(new_capacity);
 if constexpr (std::is_trivially_relocatable_v<T>) {
 std::trivially_relocate(d_buffer, d_buffer + size, new_buffer);
 std::swap(buffer, d_buffer);
 }
 else if constexpr (std::is_nothrow_move_constructible_v<T>) {
 std::uninitialized_move(d_buffer, d_buffer + size, new_buffer);
 std::swap(buffer, d_buffer);
 std::destroy(buffer, buffer + size);
 }
 else if constexpr (std::is_copy_constructible_v<T>) {
 // exception safe copy code
 }
 else {
 // exception safe throwing-move code
 }
 d_alloc.deallocate(buffer, std::exchange(d_capacity, new_capacity);
}

Time for Feedback

18

