» -“
® o '
"™
2 & ,..°
o ~°'. ® \.. -
. o~ ;w
. g P'.. » {‘I. 'I
’ - . Y -
.- ’ * P32 B !
- B B (.
e . a) . . ® .‘ -
.’ . "'.:-. ;).‘: " A ..' ‘ .. .\5
oS, -~ ¢ - - e
~eee i LT .\.
AL TR : -
W AN N o 1. >
’ SRR~ T AL S oL ¥
Sepe, AT TR a4 SR
f. -"".. <« ® o P ey
'l oW) ! e g‘j o-_.. vz . f
. .. . l‘ '.J e ’ 4 * .
. o o » - .l - » »
" * o - . s, (f, ol
o . . 'r - e . > ..‘ - r
o . o .([N ﬁ’-"‘*’ 4,.. ?l ." 4 ‘
T % L R o v
A - . .. ¥ A . »Fm 475 \{ -
:. o x&a‘ ‘-‘;-,‘;'.5; ':f s \7‘-':”| 8 ;l":-ﬁ,r.‘\.J »
. - v - o R A o, Ay tw J ’ : .
B! W 1S5 PR | Pty 23
‘ot "\ » f g) % N \ AN \:". “".p.(. 4
. ® L
KCR o = R & S TN o - M
) -~ .I

.

'l
’
A .
I\ i
5
. ’ . .
2

* e ' 2 ~ T 'Y Yy L
2 .) . % .0\ . & Ty A
..0 . -'. v -:5... e .-. -) '\ .
. .. a ®e » N
v “ . * a ,' po
« " - .t A '
% . Y ®e °~. " - ’ P ™
L, tee « 2 e PR
4 PR v .5 . — s ®

"-'Téi:hAtBIoomberg.com L

=

Library API for Trivial Relocation

Minimal library interface for the core
language feature

»

bioquioo|g

-
(@
-
-
(D
(D
R
-
-
0

g ,f\; i . NG

Ty LY ;
erg.net
' —\" . “:] p g

b

.‘., ‘A] \‘1
\/ "
..

e Y Py %
ith1i@bloomb

.\ . ‘
-

- -

o o “
A

- v G,

. .
-

" - .

LW e :‘>e-'
hi@

. ' N
"t

> " F » ,’,.
® ’ - g - ‘e o L R \' s 9
SR AR A R T e W TIE, SR S Ly D e - '
- - -'.'. . o @ s ® .- ¢ - 'I " . ! - *J 9 %, " ".'\.f \\ - > -.‘ > . \ ;\‘ =i : o
P e, . * . . .o * ‘o 4 L ® e * Ha AT y & \.’)T"""l VS " .
LT ‘ s ® e - . ' -~ o " WL L L . " ol
> ° .. - A . ~ s ® & Vo’ % s ! - ¢
./.’ . .. N . * - A ' o » . Mo L .,.. y d o o' .
0o0" o I~ R B IR .
L . \-’.\|\ - - .
.- L :..-'\ .‘ ’ - Y .
{"r ' . * :

© 2024 Bloomberg Finance L.P. All rights reserved.

What is Trivial Relocation?

A solution to an old problem

* A popular “optimisation” is to move objects around by copying their representation to a new
location, e.g., through memcpy Oor memmove

 Assumes the moved objects do not have internal references
* This is well-defined for trivial types

* This is UB for non-trivial types, as there is no way to breathe life into the objects at their new
location

* Trivial relocation is a new facility to inform the compiler about the object lifetimes

« Call the magic function trivially relocate to both move the bytes, and update lifetimes

* Add syntax for the compiler to verify which types are eligible for trivial relocation

Design Principles for EWG

Concerns that guided our proposal

» Feature for users, not just the Standard Library

e A formal specification for object lifetimes

 Minimal design to enable library extension

 Predictable behavior: no freedom for Qol in core semantics
* (Guard against accidental UB

e Trust, but verity: can explicitly mark types trivially relocatable unless they have
non-trivially-relocatable member objects

Design Principles for LEWG

Concerns that guided our proposal

 Keep the APl small, to leave space for pure library extensions
 Not a general purpose relocation facility
* Build the larger API using trivial relocatabllity as a possible optimization
» Defer full library analysis until core feature accepted, as library is HUGE
» Be consistent with existing similar facilities
e [ype traits, magic functions, etc.

* Constrain and mandate to protect against UB

4

Core Language Changes

Trivially Relocatable lTypes

* A trivially relocatable type is:
* A scalar type
* A trivially relocatable class type
* An array of trivially relocatable types

* Cv-qualified version of any of the above

Trivially Relocatable Classes

Introducing syntax

» A class can be marked with the contextual keyword trivially relocatable
» Optional constant predicate: trivially relocatable(is relocatable<T> ())
* A class is ineligible for trivial relocatability if it has
* A virtual base class
* Any base classes that are not trivially relocatable
* Any non-static data members of a non-reference type that are not trivially relocatable
* ltis ill-formed to mark a class as trivially relocatable if it is ineligible for trivial relocatabillity

e l.e,, trivially relocatable (bool-expression) must evaluate to false if present

14

Trivially Relocatable Classes

Implicit without syntax

* Atrivially relocatable class is:
 Marked as trivially relocatable, or

» All of the following:

e Isnot marked trivially relocatable (false)

* |s not ineligible for trivial relocatability
 Does not have a user-provided or deleted move constructor

 Does not have a user-provided or deleted destructor

8

Proposed Library Changes

The Whole Library API

// Type trait
template<class T>
struct 1s trivially relocatable;

template<class T>
constexpr bool 1s trivially relocatable v = 1s trivially relocatable<T>::value;

// Magic function template with constraints clause for reference
template<class T>

requires (1s trivially relocatable v<T> && !is const v<T>)
T* trivially relocate(T* begin, T* end, T* new location) noexcept;

10

Deferred LWG Proposals

Pure library extensions built on top of trivial relocatability

* Non-trivial relocatability

e P2967 is a first draft of the larger interface

 P1144 has a longer history with a more relaxed specification
e Optimising relocation within a container (P2959)

e std::vector, std: :deque, etc., are over-specified to use assignment

e P2959 is a first draft address the larger semantic issues that go beyond just
trivial relocation

11

APl Design 1/3

Key questions we considered developing this proposal

* Type trait vs. Concept
* Choosing type trait for consistency with every other trivial trait

* Not opposed to a follow-up paper proposing trivial concepts for all trivialities, but not treating trivial
relocation in isolation

 Range interface, not single object
» [ypically used with ranges rather than single objects
* Minimises the number of magic functions

 Can form a range of a single object, so not strictly needed

* We are expecting follow-up papers in St Louis addressing higher level (hon-trivial) library relocation
facilities, e.g., P1144, P2967

12

APl Design 2/3

Key questions we considered developing this proposal

 !is const constraint to protect against UB

 |f you relocate a local variable, you cannot replace it without UB if that variable is const

* |f you know you are not falling into UB, can still const cast for desired behavior — this
IS a guard rail, not a barrier

 Not a constexpr function

* |Implementation experience that this is hard

 Not needed for a constexpr vector, but...

» will need to guard use of the trivial relocate function with
if consteval {compile-time} else {runtime}

13

APl Design 3/3

Key questions we considered developing this proposal

e function is not declared as noexcept

* Preconditions on input and output ranges

14

Quick Examples

Example of trivially relocatable class

struct BaseType {
// simple base class, trivially relocatable by default

}y

struct MyRelocatableType trivially relocatable : BaseType ({

// class definition details

MyRelocatableType (MyRelocatableTypes&s&); // user supplied
// Having a user-provided move constructor "MyRelocatableType would not
// be trivially relocatable by default. The ‘trivially relocatable’
// annotation trusts the user's specification that this type can indeed
// be trivially relocated.

by

struct MyNonRelocatableType : BaseType {

// class definition details

MyNonRelocatableType (MyNonRelocatableType&&); // user supplied

// Having a user-provided move constructor "MyNonRelocatableType 1s
// not trivially relocatable.

by

static assert(i1s trivially relocatable v<MyRelocatableType>) ;
static assert(!is trivially relocatable v<MyNonRelocatableType>);

16

Example using trivally relocate

template <class T>
vold MyVector::reserve (std::size t new capacity) {
if (new capacity <= d capacity) return;

T* new buffer = d alloc.allocate(new capacity);
1f constexpr (std::1s trivially relocatable v<T>) {
std::trivially relocate(d buffer, d buffer + size, new buffer);
std: :swap (buffer, d buffer);
}
else 1f constexpr (std::1s nothrow move constructible v<T>) {
std: :uninitialized move (d buffer, d buffer + size, new buffer);
std: :swap (buffer, d buffer);
std: :destroy (buffer, buffer + size);
}
else 1f constexpr (std::1s copy constructible v<T>) {
// exception safe copy code
}
else {
// exception safe throwing-move code

J

d alloc.deallocate (buffer, std::exchange(d capacility, new capacity);

17

Time for Feedback

