
1

Getting Allocators Out Of Our Way
Language support for scoped allocators

P3240 presented to EWGI in Tokyo
March 21, 2024

Alisdair Meredith
ameredith1@bloomberg.net

mailto:ameredith1@bloomberg.net

Presentation Goals

• Seek feedback on the scope of a proposal that would best progress work in this group

• Do we need a complete solution to all known issues?

• Should we take an MVP approach like the contract work?

• Order of presentation

• Motativate the problems to be solved

• Present our current understanding and goals for language support for the scoped
allocator model

• Present known design questions that are left open pending feedback

2

Why Allocators Matter
Motivation

• Memory is a special resource consumed by every object in the system

• Memory access patterns (locality of reference) can be a critical factor of
system performance, and control of memory allocation is our best known way
to handle that

• Long lived applications suffer from memory fragmentation and diffusion
without careful control of memory allocation

• Additional utility in the form of telemetry, support for testing, etc.

3

Why Allocators Are Not Used
Demotivation

• Library support is very intrusive

• Is not an optional part of the design

• Must be integrated from the start

• Hard to retro-fit

• Cannot support all types

• Aggregates, arrays, lambas, …

4

Simplifying the Problem
Building on experience

• Building on pmr memory resources

• Building on Bloomberg experience beyond the standard library

• Preferring std library in our examples for familiar vocabulary

• Looking to generalize in the future

• Extensions to support non-memory resource allocators

• Extensions to support non-allocator protocols

5

What is the Scoped Allocator Model

• The scoped allocator model supports enforcing the same allocator is used for
all members of the same data structure, notably for containers such as
vector and map

• i.e., all elements of the container use the same allocator as the container

• This is the model used by pmr::polymorphic_allocator

6

What is Allocator Propagation

• A container is given an allocator at construction, and that allocator never
changes

• In particular, it is not replaced by assignment or swap

• Propagate is a confusing term — we do not propagate the allocator through
assignment and swap to objects outside the container, but do push the
allocator to every element inside the container, and that sounds a lot like a
different form of propagation

7

Allocator for Construction in pmr Model

• If no allocator is explicitly supplied, use the default_memory_resource,
even for copies and temporaries

• Unless it is the specific special case of the move constructor

8

Problems to Solve for Users of pmr
Current state of the art

• Cannot reach all parts of the language

• Aggregates

• Arrays (technically an aggregate)

• Lambdas

• Objects with static storage duration require special attention

9

Problems to Solve for Library Implementers
Current state of the art

• Implementation and maintenance of the scoped semantic is expensive

• Many constructor overloads requiring an allocator argument

• Must pay careful attention to non-propagation of the allocator

• Finding the allocator an object uses needs a convention not described by
the standard allocator traits

10

Towards a Solution

11

Related Work
Papers that are assumed as they solve related problems

• P2025 Guaranteed NRVO	 	 (EWG, paper stalled)

• P2786 Trivial relocation	 	 	 (passed EWG this meeting)

• P2959 Relocation within a container	 (LEWG, not yet seen)

12

Worked Example
class Object {
 std::pmr::string d_name;

public:
 using allocator_type = std::pmr::polymorphic_allocator<>;

 explicit Object(allocator_type a = {}) : d_name("<UNKNOWN>", a) {}

 Object(const Object& rhs, allocator_type a = {}) : d_name(rhs.d_name, a) {}

 Object(Object&&) = default;
 Object(Object&& rhs, allocator_type a) : d_name(std::move(rhs.d_name), a) {}

 // Apply rule of 6
 ~Object() = default;
 Object& operator=(const Object& rhs) = default;
 Object& operator=(Object&& rhs) = default;
};

13

Worked Example
class Object {
 std::pmr2::string d_name;

public:
 // using allocator_type = std::pmr::polymorphic_allocator<>;

 Object() : d_name("<UNKNOWN>") {} // no longer explicit

 Object(const Object& rhs) = default;

 Object(Object&&) = default;
 // Object(Object&& rhs, allocator_type a);

 // Apply rule of 6
 ~Object() = default;
 Object& operator=(const Object& rhs) = default;
 Object& operator=(Object&& rhs) = default;
};

14

Worked Example
class Object {
 std::pmr2::string d_name = "<UNKNOWN>";

public:

 Object() = default;

 Object(const Object& rhs) = default;

 Object(Object&&) = default;

 // Apply rule of 6
 ~Object() = default;
 Object& operator=(const Object& rhs) = default;
 Object& operator=(Object&& rhs) = default;
};

15

Worked Example
class Object {
 std::pmr2::string d_name = "<UNKNOWN>";

public:

 // Rule of zero !!

};

16

Worked Example
class Object {
 std::pmr2::string d_name = "<UNKNOWN>";

public:

 // Rule of zero !!

};

pmr::multipool_resource res;
Object x{"Hello world”} using res;

17

Supporting Language Constrained Types

• Type is allocator enabled if it has any allocator-enabled bases or non-static
data members

• New fundamental type provides basic hook to be allocator enabled

• New type acts like pmr::memory_resource&

• Allocator propagation cannot depend on user provided functions

• Propagation rules must be implicit and implemented by the compiler

• Natural behavior when the new type behaves like a reference — does not
rebind

18

Supplying an Allocator

• Allocators must be supplied my a mechanism that is not a constructor argument

• Addresses getting allocators into aggregates, arrays, and lambdas

• Suggested syntax: using after variable initializers

• Using-initialization supported only for allocator-enabled types

• Not usable with member initializers, as class must have consistent allocator

• Uses the default memory resource if not supplied by user, but…

• See later for initializing objects with static storage duration

19

Aggregates do not support pmr
Correct-looking usage does not propagate allocator to strings

20

struct Aggregate { // No support for uses-allocator construction
 std::pmr::string data1;
 std::pmr::string data2;
 std::pmr::string data3;
};

std::pmr::test_resource tr;
std::pmr::polymorphic_allocator ta(&tr);
Aggregate ag = {{"Hello", ta}, {"World", ta}, {"!", ta}};

std::pmr::vector<Aggregate> va(ta);
va.emplace_back(std::move(ag)); // Correct allocator is retained by moves
va.emplace_back(ag); // Error, copied lvalue uses default resource
va.resize(5); // Error, new elements use default resource
va.resize(1); // OK, remove all objects with bad allocators

Aggregate Support becomes Implicit
Simpler syntax, and behaves correctly

21

struct Aggregate {
 std2::string data1;
 std2::string data2;
 std2::string data3;
};

std::pmr::test_resource tr;

Aggregate ag using tr = {"Hello", "World", "!"};

std2::vector<Aggregate> va using tr;
va.emplace_back(std::move(ag)); // Correct allocator is retained by moves
va.emplace_back(ag); // Scoped allocator is applied to copied element
va.resize(5); // All elements use scoped allocator
va.resize(1); // OK

Exposing the Allocator

• All allocator enabled objects have a “hidden friend” allocator_of function

• Returns a reference to the memory resource used by the object

• Allows testing for whether two objects have the same allocator

• Call allocator_of(*this) to find your own allocator

• Implicit implementation looks for first allocator-enabled member (including
base member objects) and forwards the call

• This implicit implementation will resolve support for native arrays

22

allocator_of is Beyond Reach of C++23 Library

23

int main() {
 using namespace std;
 pmr::monotonic_buffer_resource tr;

 pair<pmr::string, pmr::string> p2 = { piecewise_construct
 , tuple{pmr::string("Hello", &tr)}
 , tuple{pmr::string("world", &tr)}
 };
 tuple t4 = { allocator_arg, pmr::polymorphic_allocator<>{&tr}
 , pmr::string("Bonjour")
 , pmr::string("tout")
 , pmr::string("le")
 , pmr::string("mond")
 };

// assert(p2.get_allocator() == &tr); // No equivalent
// assert(t4.get_allocator() == &tr); // No equivalent

 assert(get<0>(p2).get_allocator() == &tr);
 assert(get<1>(p2).get_allocator() == &tr);

 assert(get<0>(t4).get_allocator() == &tr);
 assert(get<1>(t4).get_allocator() == &tr);
 assert(get<2>(t4).get_allocator() == &tr);
 assert(get<3>(t4).get_allocator() == &tr);
}

Easy to Extract Allocator, Even From Existing Templates

24

int main() {
 using namespace std2::string_literals;
 std2::test_resource tr;

 std::pair p2 using tr = { "Hello"s, "world"s };
 std::tuple t4 using tr = { "Bonjour"s, "tout"s, "le"s, "mond"s };

 assert(allocator_of(p2) == tr);
 assert(allocator_of(t4) == tr);

 assert(allocator_of(get<0>(p2)) == tr);
 assert(allocator_of(get<1>(p2)) == tr);

 assert(allocator_of(get<0>(t4)) == tr);
 assert(allocator_of(get<1>(t4)) == tr);
 assert(allocator_of(get<2>(t4)) == tr);
 assert(allocator_of(get<3>(t4)) == tr);
}

Factory Functions
Passing allocators for the return value

• A factory function is any function that returns an allocator-enabled object by
value

• Factory functions support a using argument to supply an allocator

• Return expressions implicitly use the allocator supplied to the function

• Local variables that are guaranteed to RVO implicitly use the supplied
allocator

• Hence desire for the proposal for some NRVO guarantees

25

Factory Functions Use Supplied Allocator For return Value

26

std2::string make(char const * s) { return s; }

std2::string join(char const * s1, char const *s2) {
 using std2::string;
 return string{s1} + string{" "} + string{s2};
}

std2::string join2(std2::string s1, std2::string s2) {
 return s1 + " " + s2;
}

int main() {
 std::pmr::test_resrouce ta;
 auto hw = make("Hello world!") using ta;
 hw = join("Hello", "world!") using ta;

 std2::string hello using ta = "Hello";
 std2::string world using ta = "world";

 hw = join2(hello, world) using allocator_of(hw); // temporaries use pa
}

A Generic Factory Function

27

// make_from_tuple is 1/2 page of C++23 specification
// uses_allocator_construction is 2 1/2 pages of C++23 specification

template<class T, class Alloc, class... Args>
constexpr
T make_obj_using_allocator(const Alloc& alloc, Args&&... args) {
 return make_from_tuple<T>(uses_allocator_construction_args<T>(
 alloc, std::forward<Args>(args)...));
}

Missing standardese is at least another 10 slides to show…

Simplified Generic Factory Function

28

// make_from_tuple is 1/2 page of C++23 specification
// uses_allocator_construction is 2 1/2 pages of C++23 specification

template<class T, class Alloc, class... Args>
constexpr
T make_obj_using_allocator(const Alloc& alloc, Args&&... args) {
 return {std::forward<Args>(args)...)};

}

Move Semantics

• Allocators do not propagate on move-assignment, as we do not rebind/replace an
existing allocators

• Allocators do propagate on move-construction or else moves would become
allocating copies

• For construction, an object does not yet have an allocator installed, so choose the
same one as the object that is moving

• Move-constuctuct using allocator uses the supplied allocator by delegating to

• if the using allocator matches allocator_of(rvalue), the move constructor

• Otherwise the copy constructor, so class invariants are managed in one place

29

Accessing Memory Resources outside their Lifetime

• Basic pmr usage is addressed by C++ object lifetime

• (local) memory resource must be declared before (local) object that uses it

• Static initialization cannot use the default memory resource specified by main

• Support for a static duration global resource

• Global resource given by a replaceable function

30

Allocating Memory
Leaving the least interesting case until last

• Allocate and release memory directly with a memory resource

• Retrieve memory resources from objects using allocator_of

• Provide an allocator type within the standard library

• Analogous to std::pmr::polymorphic_allocator<>

• Call a.new_object<TYPE>(args…) to allocate and construct

• Call a.delete_object(ptr) to destroy and deallocate

• Provides the initial allocator

• The new fundamental type is never exposed to the user

31

Open Design Questions

32

Unresolved Design Concerns
Each of the topics below needs to be explored in detail

• Explicit factory functions (providing an allocator/object for function use only)

• Providing allocator/objects to initialize function arguments

• Providing allocator/objects to whole expressions, or subexpressions

• Providing explicit (and different) allocator/objects to different member initializers

• Accessing using argument to constructor/factory function

• Customising the move constructor (pair<string, unique_ptr> problem)

• Customisation API to optimize storage, e.g., for any/optional

33

Next Steps…

34

Future Work
Currently planned next steps

• Progress the “related papers” on trivial relocation

• Pick up the paper on guaranteed NRVO

• Rewrite paper P2685 using P3004 Principled Design

• Reconsider how much can be simplified with reflection, P2996

• Establish how much of the design space must be solved for a minimal feature open
to future extensions (the Contracts MVP approach)

• Expect the focus to be on Viable, rather than Minimal

• Semi-related: P1160 Test Resource becomes much more useful

35

