
Contracts for C++: Naming the “Louis Semantic”

Timur Doumler (papers@timur.audio)

Document #: P3226R0
Date: 2024-04-12
Project: Programming Language C++
Audience: SG21

Abstract

At the March 2023 Tokyo meeting, SG21 adopted [P3191R0] for the Contracts MVP, which
introduces a fourth contract evaluation semantic, informally known as the “Louis semantic”.
However, we do not yet have a name for this semantic. In this paper, we collect all names that
have been suggested on the SG21 reflector so far, along with the different design criteria. We
present the results of an electronic poll offering insights into which of these design criteria SG21
considers most important, conduct an analysis of which suggested names best satisfy these design
criteria, and identify one name for the “Louis semantic” that best satisfies all relevant criteria.

1 Introduction
The current Contracts MVP paper [P2900R6] proposes three evaluation semantics for contract
assertions:

— ignore – do not evaluate the predicate;

— observe – evaluate the predicate; if a contract violation has been detected, invoke the contract-
violation handler; when the contract-violation handler returns, continue execution of the
program;

— enforce – evaluate the predicate; if a contract violation has been detected, invoke the contract-
violation handler; when the contract-violation handler returns, terminate the program in an
implementation-defined fashion.

At the March 2023 Tokyo meeting, SG21 adopted [P3191R0] for the Contracts MVP, which
introduces a fourth evaluation semantic:

— evaluate the predicate; if there is a contract violation has been detected, do not invoke the
contract-violation handler; instead, immediately terminate the program in an implementation-
defined fashion.

However, the adopted paper did not propose a name for the new, fourth evaluation semantic. It has
been informally called the “Louis semantic” after the first author of [P3191R0], Louis Dionne. In
order to ship the Contracts MVP, we need to agree on a proper name.

1

mailto:papers@timur.audio


While this name will not be directly exposed in the user-facing API proposed in [P2900R6], as the
enum evaluation_semantic only contains values for the evaluation semantics that can call the
contract-violation handler, the name will be reflected in the wording that specifies the behaviour
of contract assertions, and will be used to teach usage of the Contracts facility to users of C++.
Therefore, we need to choose the new name carefully.
The need for a name for the fourth evaluation semantic sparked a lively discussion on the SG21
reflector. In the course of the discussion, dozens of solutions have been proposed by various people.
These solutions can be categorised into three families:

A. Leave the names for the existing three semantics, ignore, observe, and enforce, unchanged;
add a name for the fourth semantic that fits the existing naming pattern. Many such names
have been suggested: ensure, enforce_fast, trap, etc.

B. Choose a new set of names for all four evaluation semantics that describes the behaviour of each
semantic in terms of their constituent operations (call the contract-violation handler yes/no,
terminate the program yes/no). For example, we could reassign the name enforce to mean
the new fourth semantic, and rename the old enforce semantic to observe_and_enforce to
express that it is a combination of observe (call the contract-violation handler) and enforce
(terminate the program). In addition, we could swap the verbs observe and/or enforce in
this set of names for more descriptive ones such as call_handler and terminate, respectively.

C. Do not codify names for the four evaluation semantics at all; instead, name the possible
orthogonal operations (call the contract-violation handler yes/no, terminate the program
yes/no) that constitute these evaluation semantics.

These three families of solutions have different motivating design goals and concerns. The goal
of this paper is to understand which of these design goals SG21 considers most important and
relevant for the Contracts MVP, identify the name that best satisfies these design goals and has the
best potential for achieving consensus in SG21, and then propose this name for adoption into the
Contracts MVP.

2 Methodology
We collected all design goals, requirements, or principles that have been mentioned on the SG21
reflector as motivation for choosing particular names. We then conducted an online survey, in which
we asked participants to rank each of these design goals into one of the following three priority levels:
Must Have (will vote against any solution that does not fully satisfy this requirement), Important
(not a must-have, but should be prioritised against other design goals), and Not Important.
14 members of WG21 participated in the survey, which we consider reasonably representative. In
comparison, 13 members of WG21 participated in the earlier [P2885R3] survey that was instrumental
in getting consensus on a Contracts syntax.
We deliberately chose a simplified version of the process described in [P3004R0] and previously used
in the [P2885R3] syntax survey: we used only three priority levels instead of five, and we did not
ask whether the given criterion is objective or subjective. As we will see, this is actually sufficient as
we can narrow the suggested solutions down to a sufficiently small set of candidates by considering
just the Must Have criteria, so finer-grained priority levels are not needed to achieve the goal of
this paper.
We asked participants to rank 38 different criteria (which prompted some criticism for being too
many). Some of these criteria overlap. Others are contradictory. Some are relatively vague or
generic principles, while others are very specific requests. All this is intentional as we want to fairly
represent the full breadth of opinions expressed on the SG21 reflector.

2



The full results of the survey, including the full wording of the criteria, are summarised in the
Appendix; below, we use abbreviated descriptions for the criteria. We list the relevant criteria with
these abbreviated descriptions, their priority rank (1 — 38, with 1 being the one with the highest
priority), and the voting result (Must Have — Important — Not Important). Priority is ranked by
number of votes for Must Have; if this number is equal, by number of votes for Important.
As we will see in the following analysis, no solution exists that perfectly satisfies all criteria that
someone considers a Must Have. The goal of our analysis is to find a solution that at least partially
satisfies all such criteria, i.e. one that does not outright violate any of them. In cases where we
need to make tradeoffs between different criteria, we will prefer solutions that more fully satisfy the
higher-ranked criteria, i.e. those that more participants of the survey considered a Must Have.

3 Choosing the best family of solutions
Using just the top 10 criteria, which all have 4 or more Must Have votes, we can already exclude
two of three families of solutions A — C listed in Section 1 because they are incapable of satisfying
several of these criteria:

Rank Short description MH I NI Family
A

Family
B

Family
C

1 No semantic name should be an equally good
or better fit for a different semantic

6 5 3 yes yes yes

2 Avoid the term “safe” 6 5 3 yes yes yes
3 Easy to understand by novices 5 7 2 yes yes yes
4 Minimise risk of MVP missing C++26 5 5 4 ? ? ?
5 Allow adding assume semantic post-MVP 4 9 1 yes yes yes
6 Names should not be confused 4 7 3 yes yes yes
7 Describe what the semantic conceptually

does with a contract assertion
4 6 4 yes no no

8 Easy to use in compiler flags such as
-fcontracts=<semantic>

4 6 4 yes yes no

9 Do not change shape of P2900R6 library API 4 4 6 yes yes no
10 Do not rename ignore, observe, enforce 4 1 9 yes no no

We do not have a metric to evaluate how well any given solution satisfies criterion 4 (Minimise risk
of MVP missing C++26), so we will ignore it for now. Looking at the other nine top 10 criteria, we
see that only Family A can provide a solution that sufficiently satisfies them all.
Family B is designed to satisfy criterion 12 (describing what each semantic does when there is a
contract violation, in terms of its constituent operations: calling the contract-violation handler
and/or terminating the program) instead of the higher-ranked criterion 7 (describe what the semantic
conceptually does with a contract assertion — ignoring it, enforcing it, etc.). In addition, Family B
by design fails criterion 10 (do not rename ignore, observe, enforce).
Family C also fails the same criteria 7 and 10. In addition, Family C fails criterion 8 (easy to use
in compiler flags such as -fcontracts=<semantic>) because it does not provide explicit names
for the evaluation semantics, and criterion 8 (do not change the shape of the current library API)
because it does away with these explicit names.
We therefore will consider only solutions from Family A for the remainder of this paper.

3



4 Narrowing down the candidate solutions
We now know that we want to restrict ourselves to solutions that leave the names for the existing
three semantics, ignore, observe, and enforce, unchanged, and add a name for the fourth semantic
that fits the existing naming pattern.
The following 25 names for the fourth semantic have been proposed on the SG21 reflector at the
time of writing:
abend exit panic
abort fail quick_enforce
cease failfast quit
crash failsafe raw_enforce
die fast_enforce stop
end halt terminate
enforce_fast hard_enforce trap
enforce_immediately kill
ensure nohandler_enforce

We can narrow down this list by going through all criteria that have multiple Must Have votes,
starting with the highest-ranked one, and exclude any names that fail the criterion.
ensure fails criterion 1 (no semantic name should be an equally good or better fit for a different
semantic) because it is not sufficiently differentiable from enforce.
failsafe fails criterion 2 (avoid the term “safe”).
abend arguably fails criterion 3 (easy to understand by novices) as it is a technical term (an
abbreviation of “abnormal end”) that is not an English word and is not very common nowadays.
Similarly, raw_enforce and hard_enforce arguably fail this criterion because it is not obvious at
all what “raw” or “hard” means in this context.
The next criterion that is not satisfied by some of the names is criterion 7 (describe what the
semantic conceptually does with a contract assertion — ignoring it, enforcing it, etc.). This criterion
is not satisfied by any of the names that merely express that the program is terminating (abort,
cease, crash, etc.). Most of these names also fail criterions 14 and 16 (with 3 and 2 Must Have
votes, respectively) which say that the name should avoid the names of specific termination functions
that exists in the C++ standard library today (terminate, abort, exit) as well as the names of
functions on existing popular C++ platforms (POSIX, Windows, etc.) and CPU instructions on
popular architectures that terminate the program in a specific way (halt, quit, trap, kill) as the
MVP does not prescribe any particular way in which the program should be terminated.
The following 5 names are thus the only ones that satisfy all top 10 criteria (criteria with 4 or more
Must Have votes) at least to some degree:
enforce_fast
enforce_immediately
fast_enforce
nohandler_enforce
quick_enforce

All of these describe that the semantic is conceptually enforced (thereby satisfying criterion 7) by
terminating the program, and add a qualifier to the word enforce.
Criterion 8 (easy to use in compiler flags) is satisfied better by the shorter names, as they are easier
to type, but all names are in principle usable in compiler flags.
If we go further down the list of criteria and consider criteria that have fewer than 4 Must Have
votes, we find a few more criteria that not all names satisfy equally well.

4



Criterion 11 (easy to use in post-MVP labels; 3 Must Have votes) is better satisfied by shorter
names, similarly to criterion 8.
Criterion 12 (describing what each semantic does when there is a contract violation, in terms of its
constituent operations: calling the contract-violation handler and/or terminating the program; 3
Must Have votes) is well-satisfied by nohandler_enforce, but only partially satisfied by the other
remaining names, as they do not spell out that the contract-violation handler is being called (but
they at least hint at this property by using the word enforce with an additional qualifier).
Criteria 15 (2 Must Have votes), 17 (2 Must Have votes), and 22 (1 Must Have vote) are all very
similar to criterion 12.
Criterion 29 (all four names should have a similar length, 1 Must Have vote) is less well satisfied by
the longer names.
Criteria 30 and 31 (being able to consistently apply the names of all semantics as a part of
speech to the same subject and object) are satisfied by enforce_fast, enforce_immediately,
and fast_enforce, because these consist of a verb plus an adverb and are usable in the same
position in the sentence as the plain verb enforce. These criteria are satisfied somewhat less well
by quick_enforce: quickly_enforce would be more grammatically correct here, but that was not
on the list of proposed names. However, the grammar still works if we consider “quick-enforce” a
compound verb similar to many other such verbs in technical language: “double-click”, “force-quit”,
“compare-exchange” etc. These criteria are not satisfied by nohandler_enforce, as this does not
make a grammatically acceptable English sentence no matter how much you squint.
Finally, Criterion 33 (each name should start with a different letter; 1 Must Have vote) is only
satisfied by the names that add a prefix before enforce: fast_enforce, nohandler_enforce, and
quick_enforce, and not by those who add a suffix.
There are a handful of remaining criteria at the end which none of the survey participants considers
a Must Have, so we do not consider them particularly relevant for our choice of names.
If we consolidate the overlapping relevant criteria into common properties of the five remaining
candidate names, we get the following table (ordered by priority in descending order):

Property enforce_ enforce_ fast_ nohandler_ quick_
fast immediately enforce enforce enforce

Name length in characters
(existing semantics have 6−8)

12 19 12 17 13

Describing behaviour partially partially partially yes partially
Consistent as part of speech yes yes yes no partially
Different letter for each name no no yes yes yes

We therefore conclude that the only candidate names that do not outright violate any of the criteria
categorised as Must Have by at least one survey participant are fast_enforce and quick_enforce.
On the one hand, fast_enforce is one character shorter than quick_enforce, therefore it satisfies
the criteria that concern the length of the name slightly better, and is more grammatically correct
when used as a verb in an English sentence.
On the other hand, quick_enforce has a significant advantage over fast_enforce that is not
captured in the online survey criteria: better consistency with existing practice. The C++ standard
library already contains a facility that terminates the program and comes in two flavours, one
that calls a user-defined callback and one that does not: std::exit and std::quick_exit. The
difference between the two is that the former calls functions registered with std::atexit before
the program is terminated, while the latter does not.

5



It seems very compelling to call the two terminating contract evaluation semantics enforce
and quick_enforce, where the former calls the contract-violation handler before the program
is terminated, while the latter does not, thus following the same naming scheme as std::exit
and std::quick_exit. We believe that this neat property of the name quick_enforce outweighs
the minor disadvantages that this name has over fast_enforce. We therefore conclude that
quick_enforce is the best name for the “Louis semantic” out of the 25 names that were suggested
on the SG21 reflector.

5 Proposal
Adopt quick_enforce as the name for the new, fourth evaluation semantic adopted into the
Contracts MVP via [P3191R0], until now informally known as the “Louis semantic”.

Acknowledgements
We would like to thank all WG21 members who suggested names for the “Louis semantic”, suggested
design criteria for these names, and participated in the online survey.

References

[P2885R3] Timur Doumler, Gašper Ažman, Joshua Berne, Andrzej Krzemieński, Ville Voutilainen,
and Tom Honermann. Requirements for a Contracts syntax. https://wg21.link/
p2885r3, 2023-10-02.

[P2900R6] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r6, 2024-02-29.

[P3004R0] John Lakos, Harold Bott, Mungo Gill, Lori Hughes, Alisdair Meredith, Bill Chapman,
Mike Giroux, and Oleg Subbotin. Principled Design for WG21. https://wg21.link/
p3004r0, 2024-02-13.

[P3191R0] Louis Dionne, Yeoul Na, and Konstantin Varlamov. Feedback on the scalability of
contract violation handlers in P2900. https://wg21.link/p3191r0, 2023-03-19.

6

https://wg21.link/p2885r3
https://wg21.link/p2885r3
https://wg21.link/p2900r6
https://wg21.link/p2900r6
https://wg21.link/p3004r0
https://wg21.link/p3004r0
https://wg21.link/p3191r0


Appendix: Electronic poll results

Rank Full description MH I NI
1 No evaluation semantic should have a name that could be an equally

good or better fit for a different semantic.
6 5 3

2 The names for all four evaluation semantics, including the new Louis
semantic, should avoid the term “safe” because that term means too
many different things to different people.

6 5 3

3 The names for all four evaluation semantics, including the new Louis
semantic, should be easy to understand by novices.

5 7 2

4 We should not make changes to P2900R6 that could increase the
probability of the Contracts MVP missing C++26.

5 5 4

5 The names for all four evaluation semantics, including the new Louis
semantic, should be chosen in a way that post-MVP, we can add an
assume semantic without compromising consistency.

4 9 1

6 The names for all four evaluation semantics, including the new Louis
semantic, should be sufficiently descriptive so that they are never
confused.

4 7 3

7 All four evaluation semantics, including the new Louis semantic,
should have a name descriptive of what the semantic conceptually
chooses to do with a contract assertion when evaluating it (ignoring
it, enforcing it, etc.)

4 6 4

8 All four evaluation semantics, including the new Louis semantic,
should have a name that is easy to use in compiler flags such as
-fcontracts=<semantic>.

4 6 4

9 Irrespective of names, we should not change the design of the contract-
violation handling API in P2900R6: a contract violation type with
five member functions having the currently specified behaviour, three
enums having the currently specified meaning, and a free function to
invoke the functionality of the default contract-violation handler.

4 4 6

10 We should not rename the three pre-existing evaluation semantics in
P2900R6: ignore, observe, enforce.

4 1 9

11 All four evaluation semantics, including the new Louis semantic,
should have a name that is easy to use in post-MVP labels on contract
assertions.

3 9 2

12 All four evaluation semantics, including the new Louis semantic, should
have a name descriptive of what the semantic does (its observable be-
haviour) when there is a contract violation (call the contract-violation
handler yes/no, terminate the program yes/no).

3 7 4

13 The names for the four evaluation semantics should be descriptive of
the fact that the P2900 ignore semantic is not allowed to evaluate the
predicate, whereas the other three semantics are.

3 4 7

14 The names for the two semantics that are specified to terminate the
program in an implementation-defined fashion (the P2900R6 enforce
semantic and the new Louis semantic) should avoid the names of
specific termination functions that exists in the C++ standard library
today, such as terminate, abort, exit.

3 4 7

15 The name for the new Louis semantic should be descriptive of the
fact that on contract violation, the program is terminated directly,
without calling the contract-violation handler.

2 9 3

7



16 The names for the two semantics that are specified to terminate the
program in an implementation-defined fashion (the P2900R6 enforce
semantic and the new Louis semantic) should avoid the names of
concrete functions or CPU instructions used on existing popular C++
platforms (POSIX, Windows, etc.) to terminate the program in a
specific way, such as halt, quit, trap, kill.

2 7 5

17 Given that the four evaluation semantics constitute the four possible
combinations of two orthogonal operations (call the contract-violation
handler yes/no, terminate the program yes/no), each semantic should
have a name that makes it obvious to the user which of the four
possible combinations it represents.

2 5 7

18 The name for the P2900R6 enforce semantic should be descriptive
of the fact that on contract violation, it calls the contract-violation
handler (whereas the new Louis semantic does not).

2 5 7

19 The design should allow for vendor-specific extensions that specify
evaluation semantics different from the four proposed ones, and allow
the user to identify these additional semantics inside the contract-
violation handler.

2 4 8

20 All four evaluation semantics, including the new Louis semantic,
should have a name that is suggestive of the primary intended use
case of the given evaluation semantic.

2 4 8

21 The name for the P2900R6 enforce semantic should not contradict the
fact that on contract violation, it may be possible to avoid program
termination by throwing an exception from the contract-violation
handler (whereas with the new Louis semantic, this is not possible).

2 3 9

22 The name for the new Louis semantic should reflect that it does
nothing else beyond terminating the program on contract violation.

1 9 4

23 All four evaluation semantics, including the new Louis semantic,
should have a name that does not use any rare, uncommon English
words that many non-native speakers will be unfamiliar with.

1 7 6

24 Whether the chosen evaluation semantic will terminate the program
should be queryable directly in the contract-violation handler via a
named boolean function rather than indirectly through the names of
the possible evaluation semantics.

1 4 9

25 Each of the four evaluation semantics, including the new Louis seman-
tic, should have a name descriptive of that semantic, without having
to know the names of the other semantics for understanding.

1 4 9

26 All four evaluation semantics, including the new Louis semantic,
should have a name that is a verb.

1 4 9

27 The name for the P2900R6 enforce semantic should be descriptive of
the fact that it combines the behaviour of the observe semantic (that
the contract-violation handler is called) with that of the new Louis
semantic (that the program will be terminated).

1 3 10

28 All four evaluation semantics, including the new Louis semantic,
should have a name consisting of a single word.

1 3 10

29 The names for all four evaluation semantics, including the new Louis
semantic, should have a similar length (amount of characters).

1 3 10

8



30 All four evaluation semantics, including the new Louis semantic,
should have a name x that consistently applies as a part of speech to
the same subject and object as follows: “this evaluation semantic xs
the contract assertion”.

1 3 10

31 All four evaluation semantics, including the new Louis semantic,
should have a name x that consistently applies as a part of speech to
the same subject and object as follows: “this evaluation semantic xs
the truth of the contract predicate”.

1 3 10

32 The name for the new Louis semantic should not imply that no infor-
mation about the contract violation is available (while this semantic
does not call the contract-violation handler at runtime, such informa-
tion may still be made available through other means, for example
via a symbolicated crash log).

1 2 11

33 Each of the four evaluation semantics, including the new Louis seman-
tic, should have a name that starts with a different letter.

1 1 12

34 The names for all four evaluation semantics, including the new Louis
semantic, should consist of English words that can be found in a
standard dictionary such as the Oxford or Merriam-Webster English
Dictionary.

0 6 8

35 Rather than naming each possible evaluation semantic, we should
name the possible orthogonal behaviours (call the contract-violation
handler yes/no, terminate the program yes/no), so that if we introduce
more such orthogonal behaviours in the future, we can more easily
integrate them into the design.

0 5 9

36 The name for the new Louis semantic should reflect that it is useful
for achieving a smaller binary size compared to the P2900R6 enforce
semantic.

0 4 10

37 The name for the new Louis semantic should reflect that it is useful
for hardening a binary against security vulnerabilities.

0 1 13

38 Each of the four evaluation semantics, including the new Louis seman-
tic, should have a name that starts with a vowel.

0 1 13

9


	1 Introduction
	2 Methodology
	3 Choosing the best family of solutions
	4 Narrowing down the candidate solutions
	5 Proposal
	References

