
Document #: P3190R0
Date: 2024-03-20
Audience: LEWG

Slides for EWG presentation of
P2900R6: Contracts for C++

Joshua Berne
Timur Doumler
Andrzej Krzemieński

2Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• What are Contracts and what are they for?
• History and context
• Scope: what P2900 proposes and what it doesn't
• Design principles
• Language specification

• Syntax
• Semantic rules and restrictions
• Evaluation and contract-violation handling
• Noteworthy design consequences

• Library API specification

Overview

3Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• What are Contracts and what are they for?
• History and context
• Scope: what P2900 proposes and what it doesn't
• Design principles
• Language specification

• Syntax
• Semantic rules and restrictions
• Evaluation and contract-violation handling
• Noteworthy design consequences

• Library API specification

Overview

4Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Design by contract (DbC) is an approach for designing software.

It prescribes that software designers should define formal, precise and
verifiable interface specifications for software components, which
extend the ordinary definition of software components with
preconditions, postconditions, and invariants.

These specifications are referred to as Contracts, in accordance with
a conceptual metaphor with the conditions and obligations of business
contracts.

Design by Contract

5Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• A contract is a set of conditions that expresses expectations on a correct program.
• A function contract is a contract that is part of the specification of a function.

• A precondition is a part of a function contract where the responsibility for
satisfying it is on the caller of the function. Generally, these are requirements
placed on the arguments passed to a function and/or the global state of the
program upon entry into the function.

• A postcondition is a part of a function contract where the responsibility for
satisfying the condition is on the callee, i.e. the implementer of the function itself.
These are generally conditions that will hold true regarding the return value of the
function or the state of objects modified by the function when it completes
execution normally.

Terminology

6Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• A contract is a set of conditions that expresses expectations on a correct program.
• A class invariant is a condition that will hold true throughout the lifetime of an

instance of that class (except during modification).
• A loop invariant is a condition that will hold true at the beginning and end of every

loop iteration.

Terminology

7Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• A function with no preconditions has a wide contract.
• A function with preconditions has a narrow contract.

• Calling a function with all preconditions satisfied: call in-
contract.

• Calling a function while failing to satisfy any precondition:
call out of-contract.

• Failure to satisfy a contract is also called a contract violation.

Terminology

8Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• A contract violation is not an error.
• A contract violation is a bug in the program.
• Who is responsible for the contract violation?

• Precondition: the caller of the function
• Postcondition: the callee, i.e. the implementation of the function
• Invariant: the implementation of the class

• What happens when there is a contract violation?
• It depends...
• ...but in general, undefined behaviour

Contract violations

9Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

10Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

// narrow contract:
std::vector::operator[]
std::vector::front

// wide contract:
std::vector::at
std::vector::size
std::vector::empty

// narrow or wide contract (depending on type):
std::vector::swap

11Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• In the documentation: plain language contract

How do we specify a contract?

12Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• In the documentation: plain language contract
• In source code comments

 // The behaviour is undefined unless pos < size().
 T& operator[] (size_t pos) const;

How do we specify a contract?

13Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• In the documentation: plain language contract
• In source code comments
• In a separate specification document (e.g. the C++ Standard)

How do we specify a contract?

14Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• In the documentation: plain language contract
• In source code comments
• In a separate specification document (e.g. the C++ Standard)
• Implicit (e.g. via an agreed-upon coding convention)

How do we specify a contract?

15Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• In the documentation: plain language contract
• In source code comments
• In a separate specification document (e.g. the C++ Standard)
• Implicit (e.g. via an agreed-upon coding convention)

• In code: contract assertion

How do we specify a contract?

16Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• In the documentation: plain language contract
• In source code comments
• In a separate specification document (e.g. the C++ Standard)
• Implicit (e.g. via an agreed-upon coding convention)

• In code: contract assertions
• A language feature that provides support for contract assertions is a

Contracts facility
• Can be a core language feature (D, Eiffel, Ada...) or a library feature
• P2900R6 proposes a Contracts facility for C++ as a core language feature

How do we specify a contract?

17Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

C++ has a Contracts facility!

18Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

C++ has a Contracts facility!
#include <cassert>
void f(int i) {
 // The argument needs to be a positive number!
 assert(i > 0);
}

19Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

C++ has a Contracts facility!
#include <cassert>
void f(int i) {
 // The argument needs to be a positive number!
 assert(i > 0);
}

• Cannot go on function declarations, only in function bodies
• Behaviour not customisable (token-ignore or std::abort)
• Information about contract violation not programmatically accessible
• It's a macro (token-ignored if not evaluated, ODR violations, ...)

20Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Why do we need a Contracts facility in C++
as a language feature

21Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Precondition and postcondition assertions on declarations
• Portably usable across different libraries and codebases
• Fully customisable behaviour without ODR violations
• Predicate expressions parsed even if not evaluated
• Information about the contract violation programmatically available
• Accessible for tooling

Why do we need a Contracts facility in C++
as a language feature

22Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

 T& operator[] (size_t pos) const
 pre (pos < size());

Contract assertions

23Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

 T& operator[] (size_t pos) const
 pre (pos < size());

Contract assertions

• A contract assertion typically expresses a particular provision of a
contract rather than the entire contract

• A contract assertion specifies a C++ algorithm that allows to either:
• Verify compliance with the provision, or
• Identify violations of the provision.

• In P2900R6, this algorithm is a C++ expression contextually
convertible to bool called a contract predicate.

24Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Sometimes straightforward

 T& operator[] (size_t pos) const
 pre (pos < size());

Checking contracts with contact assertions

25Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Sometimes straightforward

• Sometimes expensive, or even violates guarantees

 void binary_search(Iter begin, Iter end) // O(log N)
 pre (is_sorted(begin, end)); // O(N)

Checking contracts with contact assertions

26Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Sometimes straightforward

• Sometimes expensive, or even violates guarantees

• Sometimes impractical/impossible without additional instrumentation
("ptr points to an object that is within its lifetime")

Checking contracts with contact assertions

27Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Sometimes straightforward

• Sometimes expensive, or even violates guarantees

• Sometimes impractical/impossible without additional instrumentation
("ptr points to an object that is within its lifetime")

• Or outright impossible ("passed-in function f returns a value")

Checking contracts with contact assertions

28Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Sometimes straightforward

• Sometimes expensive, or even violates guarantees

• Sometimes impractical/impossible without additional instrumentation
("ptr points to an object that is within its lifetime")

• Or outright impossible ("passed-in function f returns a value")
• Or even entirely outside of the scope of the C++ program

("you paid your bill for this library this week")

Checking contracts with contact assertions

29Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Sometimes straightforward

• Sometimes expensive, or even violates guarantees

• Sometimes impractical/impossible without additional instrumentation
("ptr points to an object that is within its lifetime")

• Or outright impossible ("passed-in function f returns a value")
• Or even entirely outside of the scope of the C++ program

("you paid your bill for this library this week")
• Contract assertions in general specify only a subset of the plain-

language contract of the function rather than the entire contract

Checking contracts with contact assertions

30Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• What are Contracts and what are they for?
• History and context
• Scope: what P2900 proposes and what it doesn't
• Design principles
• Language specification

• Syntax
• Semantic rules and restrictions
• Evaluation and contract-violation handling
• Noteworthy design consequences

• Library API specification

Overview

31Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• 2004–2006: D-like Contracts – N1962
(Thorsten Ottosen, Lawrence Crowl, et al)

Contract annotations in Standard C++:
A Drama in Four Acts

32Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• 2004–2006: D-like Contracts – N1962
(Thorsten Ottosen, Lawrence Crowl, et al)

 double sqrt(double x)
 precondition
 {
 x > 0.0;
 }
 postcondition(r)
 {
 approx_equal(r * r, x);
 }

Contract annotations in Standard C++:
A Drama in Four Acts

33Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• 2004–2006: D-like Contracts – N1962
(Thorsten Ottosen, Lawrence Crowl, et al)

• 2013-2014: BDE-like Macro Contracts – N4378
(John Lakos et al)

Contract annotations in Standard C++:
A Drama in Four Acts

34Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• 2004–2006: D-like Contracts – N1962
(Thorsten Ottosen, Lawrence Crowl, et al)

• 2013-2014: BDE-like Macro Contracts – N4378
(John Lakos et al)

 double sqrt(double x)
 {
 contract_assert(x > 0.0);
 }

Contract annotations in Standard C++:
A Drama in Four Acts

35Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• 2004–2006: D-like Contracts – N1962
(Thorsten Ottosen, Lawrence Crowl, et al)

• 2013-2014: BDE-like Macro Contracts – N4378
(John Lakos et al)

• 2014-2019: C++20 Contracts – P0542
(Gabriel Dos Reis, J. Daniel Garcia, John Lakos, Alisdair Meredith, Nathan Myers, Bjarne Stroustrup)

Contract annotations in Standard C++:
A Drama in Four Acts

36Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• 2004–2006: D-like Contracts – N1962
(Thorsten Ottosen, Lawrence Crowl, et al)

• 2013-2014: BDE-like Macro Contracts – N4378
(John Lakos et al)

• 2014-2019: C++20 Contracts – P0542
(Gabriel Dos Reis, J. Daniel Garcia, John Lakos, Alisdair Meredith, Nathan Myers, Bjarne Stroustrup)

 double sqrt(double x)
 [[expects: x > 0.0]]
 [[ensures r: approx_equal(r * r, x)]]
 { [[assert: i != x]]; }

Contract annotations in Standard C++:
A Drama in Four Acts

37Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• 2004–2006: D-like Contracts – N1962
(Thorsten Ottosen, Lawrence Crowl, et al)

• 2013-2014: BDE-like Macro Contracts – N4378
(John Lakos et al)

• 2014-2019: C++20 Contracts – P0542
(Gabriel Dos Reis, J. Daniel Garcia, John Lakos, Alisdair Meredith, Nathan Myers, Bjarne Stroustrup)

• 2019-today: Contracts MVP – P2900
(Joshua Berne, Timur Doumler, Andrzej Krzemieński, Gašper Ažman, Tom Honermann,
Lisa Lippincott, Jens Maurer, Jason Merrill, Ville Voutilainen)

Contract annotations in Standard C++:
A Drama in Four Acts

38Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Minimal viable product
• Does not yet support all use cases!

• However, explicitly designed for extensibility
• Provides immediate value for a significant fraction of C++ users

The Contracts MVP

39Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

40Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Documenting contracts in code
(consumable by both human readers and tooling)

• Runtime checking of contract assertions
• Static analysis
• Formal verification
• Guiding optimization to improve performance

Contracts – Use Cases

41Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Documenting contracts in code
(consumable by both human readers and tooling)

• Runtime checking of contract assertions
• Static analysis
• Formal verification
• Guiding optimization to improve performance

Contracts – Use Cases
✅

42Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Documenting contracts in code
(consumable by both human readers and tooling)

• Runtime checking of contract assertions
• Static analysis
• Formal verification
• Guiding optimization to improve performance

Contracts – Use Cases
✅

✅

43Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Runtime checking of contract assertions
in P2900R6

• replacement for <cassert>
• replacement for custom assertion macros
• can be placed on function declarations
• customisable behaviour
• information about the contract violation is available programmatically
• no macros :)

44Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Documenting contracts in code
(consumable by both human readers and tooling)

• Runtime checking of contract assertions
• Static analysis
• Formal verification
• Guiding optimization to improve performance

Contracts – Use Cases
✅

✅

45Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Documenting contracts in code
(consumable by both human readers and tooling)

• Runtime checking of contract assertions
• Static analysis
• Formal verification
• Guiding optimization to improve performance

Contracts – Use Cases
✅

✅

🤷

🤷

🤷

46Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• What are Contracts and what are they for?
• History and context
• Scope: what P2900 proposes and what it doesn't
• Design principles
• Language specification

• Syntax
• Semantic rules and restrictions
• Evaluation and contract-violation handling
• Noteworthy design consequences

• Library API specification

Overview

47Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1); // precondition assertion

48Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1) // precondition assertion
 post (r: r != 2); // postcondition assertion; `r` names return value

49Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1) // precondition assertion
 post (r: r != 2) // postcondition assertion; `r` names return value
{
 contract_assert (x != 3); // assertion statement
 return x;
}

50Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1) // precondition assertion
 post (r: r != 2) // postcondition assertion; `r` names return value
{
 contract_assert (x != 3); // assertion statement
 return x;
}

void g() {
 f(0); // no contract violation
 f(1); // violates precondition assertion of f
 f(2); // violates postcondition assertion of f
 f(3); // violates assertion statement within f
 f(4); // no contract violation
}

 pre(expr) post(expr) contract_assert(expr)

function-contract
assertion

contract assertion

precondition
assertion

51Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

postcondition
assertion

assertion statement

52Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Function-contract assertions
• A precondition is usually, but not always, expressed by a precondition assertion.
• Preconditions and postconditions are categorised by who is responsible for

ensuring that they are true (caller vs. callee)
• Precondition assertions, postcondition assertions, and assertion statements

are categorised by the time when they are evaluated.
• Example: using a postcondition assertion to check a precondition:

T& select(vector<T> & elems)
 // Precondition: for every e in elems, pred(e) is true
 post (r : pred(r));

53Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1) // precondition assertion
 post (r: r != 2) // postcondition assertion; `r` names return value
{
 contract_assert (x != 3); // assertion statement
 return x;
}

void g() {
 f(0); // no contract violation
 f(1); // violates precondition assertion of f
 f(2); // violates postcondition assertion of f
 f(3); // violates assertion statement within f
 f(4); // no contract violation
}

54Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• ignore: do not check the predicate

• enforce: check the predicate, if the check fails call the contract-
violation handler, then std::abort

• observe: check the predicate, if the check fails call the contract-
violation handler, then continue

A contract assertion can be evaluated with one
of the following three contract semantics:

55Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

The contract-violation handler
• Function named ::handle_contract_violation

• Attached to the global module
• Takes a single argument const std::contracts::contract_violation&

• Returns void

• May be noexcept(true) or noexcept(false)
• Implementation provides a default definition: default contract-violation handler

• semantics implementation-defined, recommendation: print info about contract violation
• Implementation-defined whether it is replaceable (like operator new/delete)

• You can provide your own user-defined contract-violation handler by implementing a
function with a matching name and signature, and linking it in

56Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

void ::handle_contract_violation
(const std::contracts::contract_violation& violation)
{
 LOG(std::format("Contract violated at: {}\n", violation.location()));
}

User-defined contract-violation handler

57Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Precondition and postcondition assertions on virtual functions
• Precondition and postcondition assertions on coroutines
• Ability to refer to "old" values (at the time of call) inside a postcondition predicate
• Optimise based on assumption that predicate evaluates to true; otherwise, the

behaviour is undefined (assume semantic)
• Contract levels ("audit", etc), explicit contract semantics, or other labels or meta-

annotations that control the meaning of a contract assertion
• Expressing postconditions expected to hold when a function exits via an exception
• Contract assertions that cannot be expressed by boolean predicates

(procedural interfaces)
• Predicates that cannot be evaluated at runtime
• Class invariants

What is not included in the Contracts MVP

58Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Precondition and postcondition assertions on virtual functions
• Precondition and postcondition assertions on coroutines
• Ability to refer to "old" values (at the time of call) inside a postcondition predicate
• Optimise based on assumption that predicate evaluates to true; otherwise, the

behaviour is undefined (assume semantic)
• Contract levels ("audit", etc), explicit contract semantics, or other labels or meta-

annotations that control the meaning of a contract assertion
• Expressing postconditions expected to hold when a function exits via an exception
• Contract assertions that cannot be expressed by boolean predicates

(procedural interfaces)
• Predicates that cannot be evaluated at runtime
• Class invariants

What is not included in the Contracts MVP

59Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• What are Contracts and what are they for?
• History and context
• Scope: what P2900 proposes and what it doesn't
• Design principles
• Language specification

• Syntax
• Semantic rules and restrictions
• Evaluation and contract-violation handling
• Noteworthy design consequences

• Library API specification

Overview

60Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Contract assertions help identify
bugs in existing programs

• Adding a contract annotation to an existing program, or changing the contract
semantics of an existing annotation, should not change the compile-time
semantics of that program.
• Concepts do not see Contracts: Contract annotations should not be seen by

Concepts, affect overload resolution, type traits the result of the noexcept operator,
which branch of an if constexpr is taken, should not be SFINAEable on, etc.

• Zero Overhead: An ignored contract annotation should not cause additional copies
or destructions of objects

• Semantic Independence: Which contract semantic will be used for any given
evaluation of a contract assertion, and whether it is a checked semantic, must not
be detectable at compile time.

61Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Relationship between contract annotations
and plain-language contracts

• The function contract specifiers on a function declaration should specify a sub-
set of the plain-language contract of that function and not some other function.

• Function contract assertions serve both caller and callee and are therefore both
part of the interface and part of the implementation:
• Callers promise to satisfy a function’s preconditions, resulting in callees being able to

rely upon those preconditions being true.
• Callees (i.e., function implementers) promise to satisfy a function’s postconditions

when invoked properly, resulting in a caller’s ability to rely upon those postconditions.
• Contract assertions are not flow control

• Contract assertions are not error handling

62Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Addressing open design questions

• The Contracts MVP is a starting point designed for extensibility.
• The Contracts MVP does not intentionally introduce new undefined

behaviour to the C++ language.
• Whenever there is no consensus on what the correct design choice for a given

problem is, and/or how the other design principles can be satisfied, we leave
the relevant construct ill-formed rather than giving it unspecified or undefined
behaviour.

63Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• What are Contracts and what are they for?
• History and context
• Scope: what P2900 proposes and what it doesn't
• Design principles
• Language specification

• Syntax
• Semantic rules and restrictions
• Evaluation and contract-violation handling
• Noteworthy design consequences

• Library API specification

Overview

64Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1); // precondition specifier –
 // introducing a precondition assertion

65Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1); // precondition specifier –
 // introducing a precondition assertion

// pre/postcondition specifier ~ noexcept-specifier (syntactic construct)
// pre/postcondition assertion ~ exception specification (semantic property)

66Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1) // precondition specifier
 post (r: r != 2); // postcondition specifier; `r` names return value

// return value name is optional
// `pre` and `post` are contextual keywords
// pre(...) and post(...) appear at the end of the declaration

67Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1) // precondition specifier
 post (r: r != 2) // postcondition specifier; `r` names return value
{
 contract_assert (x != 3); // assertion statement
 return x;
}

// `contract_assert` is full keyword
// we did not use `assert` because of clash with assert macro

68Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1) // precondition specifier
 post (r: r != 2) // postcondition specifier; `r` names return value
{
 contract_assert (x != 3); // assertion statement
 return x;
}

// `contract_assert` is full keyword
// we did not use `assert` because of clash with assert macro

// unlike assert macro, assertion statement is not an expression:
const int j = (contract_assert(i > 0), i); // syntax error

69Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

70Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

71Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

bool binary_search(Range r, const T& value)
 pre [[vendor::message("Nonsorted range provided")]] (is_sorted(r));

void f() {
 int i = get_i();
 contract_assert [[analyzer::prove_this]] (i > 0);
 // ...
}

72Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

void g(int x) {
 if (x >= 0) {
 [[likely]] contract_assert(x <= 100);
 // ...
 }
 else {
 [[unlikely]] contract_assert(x >= -100);
 // ...
 }
}

73Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int g()
 post (r [[maybe_unused]]: r > 0);

74Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• pre, post:
• on declarations of functions and function templates

• obligatory on first declarations*, optional on redeclarations
• if deduced (auto) return type, first declaration has to be a definition

• on lambda expressions
• contract_assert:

• Anywhere you can place a statement

*first declaration = declaration from which no other declaration is reachable

Where you can place a contract annotation

75Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• pre, post:
• not on =deleted functions
• not on functions =defaulted on their first declaration
• not on virtual functions (coming soon → P3097R0, P3165R0, D3169R0)
• not on function pointers

(pre, post are still evaluated when calling through a function pointer!)
• not on coroutines (contract_assert is allowed inside a coroutine)

Where you cannot place a contract annotation

76Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

No co_yield or co_await inside a contract_assert
std::generator<int> f() {
 contract_assert(((co_yield 1), true)); // error
}

stdex::task<void> g() {
 contract_assert((co_await query_database()) > 0); // error
}

77Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

No co_yield or co_await inside a contract_assert
std::generator<int> f() {
 contract_assert(((co_yield 1), true)); // error
}

stdex::task<void> g() {
 contract_assert((co_await query_database()) > 0); // error
}

auto h() {
 contract_assert(([]() -> std::generator<int> {
 co_yield 1; // OK: not suspending the function h()
 }(), true));
}

78Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• What are Contracts and what are they for?
• History and context
• Scope: what P2900 proposes and what it doesn't
• Design principles
• Language specification

• Syntax
• Semantic rules and restrictions
• Evaluation and contract-violation handling
• Noteworthy design consequences

• Library API specification

Overview

79Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Name lookup and access control
struct X {
 void f(int j)
 pre (j != i); // name lookup & access as-if first statement in body
private:
 int i = 0;
};

80Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Local variables are implicitly const
int global = 0;

void f(int x, int y, char *p, int& ref)
 pre((x = 0) == 0) // error: assignment to const lvalue
 pre((*p = 5)) // OK
 pre((ref = 5)) // error: assignment to const lvalue
 pre((global = 2)) // OK
{
 contract_assert((x = 0)); // error: assignment to const lvalue
 int var = 42;
 contract_assert((var = 42)); // error: assignment to const lvalue

 static int svar = 1;
 contract_assert((svar = 1)); // OK
}

81Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Local variables are implicitly const
void f() {
 int var = 42;
 contract_assert(++const_cast<int&>(var), true); // OK (but evil)
}

82Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f()
 post(r: r > 0);

// r is an lvalue of type `const T` referring to result object

Referring to result value in post

83Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f()
 post(r: r > 0);

// r is an lvalue of type `const T` referring to result object

Referring to result value in post

int f2()
 post(r: ++r); // error

int f3()
 post(r: ++const_cast<int&>(r)); // OK (but evil)

84Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f()
 post(r: r > 0);

// r is an lvalue of type `const T` referring to result object
// `decltype(r)` is `T` (not `const T`!)
// `decltype((r))` is `const T&`

Referring to result value in post

85Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

struct S {
 S();
 S(const S&) = delete; // non-copyable, non-movable
 int i = 0;
 bool foo() const;
};

const S f()
 post(r: (const_cast<S&>(r).i = 1)) // OK (but evil)
{
 return S{};
}

const S y = f(); // well-defined behavior
bool b = f().foo(); // well-defined behavior

Referring to result value in post

86Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

X f(X* ptr)
 post(r: &r == ptr) // guaranteed to pass (for the call from `main` below)
{ // if `X` is not trivially copyable
 return X{};
}

int main() {
 X x = f(&x);
}

Referring to result value in post

87Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

auto f1() post (r : r > 0); // error, type of `r` is not readily available.

auto f2() post (r : r > 0) // OK, type of `r` is deduced below.
{ return 5; }

template <typename T>
auto f3() post (r : r > 0); // OK, postcondition instantiated with template

auto f4() post (true); // OK, return value not named

Referring to result value in post

88Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int clamp(int v, int min, int max)
 post (r: val < min ? r == min : r == val)
 post (r: val > max ? r == max : r == val);

Referring to non-reference parameters in post

89Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int clamp(const int v, const int min, const int max) // on all declarations
 post (r: val < min ? r == min : r == val)
 post (r: val > max ? r == max : r == val);

Referring to non-reference parameters in post

90Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int clamp(int v, int min, int max)
 post (r: val < min ? r == min : r == val)
 post (r: val > max ? r == max : r == val)
{
 min = max = value = 0;
 return 0;
}

Referring to non-reference parameters in post

91Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int clamp(const int v, const int min, const int max) // on all declarations
 post (r: val < min ? r == min : r == val)
 post (r: val > max ? r == max : r == val);

Referring to non-reference parameters in post

92Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

template <std::regular T>
void f(T v, T u)
 pre (v < u); // not part of `std::regular`

template <typename T>
constexpr bool has_f = std::regular<T> && requires(T v, T u) { f(v, u); };

static_assert(has_f<std::string>); // OK, `has_f` returns `true`.
static_assert(!has_f<std::complex<float>>); // error, `has_f` causes hard
 // instantiation error.

Not part of the immediate context

93Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

bool a = true;
bool b = false;

template <typename T>
void f() pre(a) {} // primary template with precondition assertion

template<>
void f<int>() pre(b) {} // OK, precondition assertion different from that of
 // primary template

template<>
void f<bool>() {} // OK, no precondition assertion

Function template specialisations are
independent from the primary template

94Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int main() {
 int i = 1;
 auto f = [=] pre(i > 0) // error: cannot implicitly capture `i` here
 {};
}

No implicit lambda captures in predicates

95Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int main() {
 int i = 1;
 auto f = [=] {
 contract_assert(i > 0); // error: cannot implicitly capture `i` here
 };
}

No implicit lambda captures in predicates

96Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int main() {
 int i = 1;
 auto f = [=] {
 contract_assert(i > 0); // OK (`i` captured below)
 (void)i; // `i` captured here
 };
}

No implicit lambda captures in predicates

97Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int main() {
 int i = 1;
 auto f = [i] {
 contract_assert(i > 0); // OK (`i` captured explicitly above)
 };
}

No implicit lambda captures in predicates

98Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

static int i = 1;

int main() {
 auto f = [=] {
 contract_assert(i > 0); // OK (`i` does not need to be captured)
 };
}

No implicit lambda captures in predicates

99Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• What are Contracts and what are they for?
• History and context
• Scope: what P2900 proposes and what it doesn't
• Design principles
• Language specification

• Syntax
• Semantic rules and restrictions
• Evaluation and contract-violation handling
• Noteworthy design consequences

• Library API specification

Overview

100Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Precondition assertions:
after the initialisation of function parameters,
before the evaluation of the function body

• Postcondition assertions:
after the result object value has been initialised and local
automatic variables have been destroyed, but prior to the
destruction of function parameters

• Assertion statements:
when the statement is executed

Point of evaluation

101Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• When is a contract assertion checked or unchecked?

• When it is checked and the check fails, what happens after the
contract-violation handler returns?

Contract semantics

102Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Possible contract semantics (P1429R3)
Evaluate the predicate  
("check the assertion")

After contract-violation
handler returns:

Compiler is allowed to
assume (otherwise UB):

ignore no – –

assume no – that the predicate would
always evaluate to true

check_never_continue yes std::abort that the predicate
evaluated to true

check_maybe_continue yes continue execution –

check_always_continue yes continue execution that the contract-violation
handler always returns

103Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Evaluate the predicate  
("check the assertion")

After contract-violation
handler returns:

Compiler is allowed to
assume (otherwise UB):

ignore no – –

assume no – that the predicate would
always evaluate to true

check_never_continue yes std::abort that the predicate
evaluated to true

check_maybe_continue yes continue execution –

check_always_continue yes continue execution that the contract-violation
handler always returns

Possible contract semantics (P1429R3)

104Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Evaluate the predicate  
("check the assertion")

After contract-violation
handler returns:

Compiler is allowed to
assume (otherwise UB):

ignore no – –

assume no – that the predicate would
always evaluate to true

enforce yes std::abort that the predicate
evaluated to true

observe yes continue execution –

check_never_continue yes continue execution that the contract-violation
handler always returns

Possible contract semantics (P1429R3)

105Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Evaluate the predicate
("check the assertion")

After contract-violation
handler returns:

Compiler is allowed to
assume (otherwise UB):

ignore no – –

assume no – that the predicate would
always evaluate to true

enforce yes std::abort that the predicate
evaluated to true

observe yes continue execution –

check_never_continue yes continue execution that the contract-violation
handler always returns

Possible contract semantics (P1429R3)

106Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Evaluate the predicate  
("check the assertion")

After contract-violation
handler returns:

Compiler is allowed to
assume (otherwise UB):

ignore no – –

enforce yes std::abort that the predicate
evaluated to true

observe yes continue execution –

observe yes continue execution nothing

check_never_continue yes continue execution that the contract-violation
handler always returns

Contract semantics proposed in P2900R6

107Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• P2900R6 proposes three standard contract semantics:
ignore, enforce, observe
• ignore is an unchecked semantic
• enforce and observe are checked semantics

• The mechanism of choosing a contract semantic is
implementation-defined
• Contract semantic can be different for each contract annotation,

or even for each evaluation of the same contract annotation
• Contract semantic can be chosen at compile time, link time, or runtime

Contract semantics

108Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• It is recommended that an implementation provide a mode where all
contract assertions have the ignore semantic;

• It is recommended that an implementation provide a mode where all
contract assertions have the enforce semantic;

• When nothing else has been specified by the user, it is recommended that
a contract assertion have the enforce semantic.

Recommended practice

109Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Checking the contract predicate
• The predicate evaluates to true → no contract violation, execution continues
• The predicate evaluates to false → contract violation
• Evaluation of the predicate does not finish, but control remains in the purview

of the contract-checking process → contract violation
• Evaluation exits via an exception
• Evaluation occurs during constant evaluation, and predicate is not a core

constant expression
• Evaluation of the predicate does not finish, control never returns to the

purview of the contract-checking process → "you get what you get"
• longjmp, terminate, infinite loop, suspend current thread forever, etc.

110Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• When a contract violation has been identified:
• An object of type std::contracts::contract_violation will be produced

through implementation-defined means,
• the contract-violation handler will be called,
• the std::contracts::contract_violation object will be passed to the

contract-violation handler (by const&)
• If the contract violation occurred because evaluation of the predicate exited via

an exception, the contract-violation handler acts as a handler for that
exception (i..e the exception can be acccessed from within the contract-
violation handler via std::current_exception()).

Checking the contract predicate

111Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

The contract-violation handler
• Function named ::handle_contract_violation

• Attached to the global module
• Takes a single argument const std::contracts::contract_violation&

• Returns void

• May be noexcept(true) or noexcept(false)

• No declaration of ::handle_contract_violation provided in any standard library header
• Implementation provides a default definition: default contract-violation handler

• semantics implementation-defined, recommendation: print info about contract violation
• Implementation-defined whether it is replaceable (at link time, like operator new/delete)

• You can provide your own user-defined contract-violation handler by implementing a
function with a matching name and signature, and linking it into your program

112Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

void ::handle_contract_violation
(const std::contracts::contract_violation& violation)
{
 LOG(std::format("Contract violated at: {}\n", violation.location()));
}

User-defined contract-violation handler

113Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

void ::handle_contract_violation
(const std::contracts::contract_violation& violation)
{
 LOG(std::format("Contract violated at: {}\n", violation.location()));
 std::contracts::invoke_default_contract_violation_handler(violation);
}

User-defined contract-violation handler

114Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

void ::handle_contract_violation
(const std::contracts::contract_violation& violation)
{
 std::breakpoint();
}

User-defined contract-violation handler

115Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

void ::handle_contract_violation
(const std::contracts::contract_violation& violation)
{
 throw my::contract_violation_exception(violation);
}

User-defined contract-violation handler

116Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Throwing contract-violation handlers
• Use cases:

• Portably handle contract violation without terminating the program
and without continuing into buggy code

• Write unit tests for contract assertions ("negative testing")

117Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Throwing contract-violation handlers
• Use cases:

• Portably handle contract violation without terminating the program
and without continuing into buggy code

• Write unit tests for contract assertions ("negative testing")
• Requires following the Lakos Rule:

• A function with a narrow contract shall not be noexcept
• Even if it never throws an exception when called in-contract!

118Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

The Lakos Rule is foundational for Contracts

int f(int i) noexcept
 pre(i > 0); // `pre` and `post` cannot throw through noexcept!
 // instead, you get std::terminate

119Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Consecutive and repeated evaluations

void f(int *p)
 pre(p != nullptr) // precondition #1
 pre(*p > 0); // precondition #2

// typical sequence: 1-2 or 1-2-1-2
// also allowed: 1-2-1, 1-2-2, 1-2-2-1, etc.
// *not* allowed: 1, 1-1, 2-1, 2-2, etc.

120Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Predicate side effects
• Predicates with side effects allowed (use cases: alloc, lock/unlock mutex...)
• Side effects can occur multiple times (see rules on previous slide)
• Side effects can be elided if the compiler can prove that the predicate would

evaluate to true or false (and never throw, longjmp, terminate, spin/sleep
indefinitely...)
• thrown exception must be available in contract-violation handler

via std::current_exception
• longjmp, terminate, etc. are guaranteed to occur

("you get what you get")
• Side effect-free boolean expression behaves as-if evaluated once

121Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int i = 0;
void f()
 pre ((++i, true));

void g() {
 f(); // `i` may be 0, 1, 17, etc.
}

Predicate side effects

122Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int i = 0;
void f()
 pre ((++i, false));

void g() {
 f(); // `i` may be any value; the contract−violation handler
} // will be invoked at most that number of times

Predicate side effects

123Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int i = 0;
void f()
 pre ((++i, throw 666));

void g() {
 f(); // `i` may be 1, 2, 17, etc. but not 0
}

Predicate side effects

124Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Contract assertions during constant evaluation

constexpr int f(int i)
 pre(i > 0) // it's a bug to call this function with nonpositive arg!
{
 return i * i;
}

int main() {
 std::cout << f(0); // contract violation at runtime
 std::array<int, f(0)> a; // contract violation at compile time
}

125Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Contract assertions during constant evaluation
• When checking a contract predicate during constant evaluation, only

three things can happen:

• Evaluates to true

• Evaluates to false

• Not a core constant expression

126Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Contract assertions during constant evaluation
• When checking a contract predicate during constant evaluation, only

three things can happen:

• Evaluates to true → no contract violation, constant evaluation continues

• Evaluates to false → contract violation

• Not a core constant expression → contract violation
(contract assertion is always a core constant expression,
even if predicate is not → Concepts do not see Contracts principle)

127Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Contract assertions during constant evaluation
• In a manifestly constant evaluated context, a contract assertion can be

evaluated with one of the three semantics: ignore, observe, enforce

• choice of semantic is implementation-defined (for every evaluation)

128Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Contract assertions during constant evaluation
• In a manifestly constant evaluated context, a contract assertion can be

evaluated with one of the three semantics: ignore, observe, enforce

• choice of semantic is implementation-defined (for every evaluation)

• ignore does nothing (except parsing and odr-using)

• observe and enforce perform constant evaluation of the predicate

• true → no effect

• false or not a core constant expression → contract violation

• observe → diagnostic (compiler warning)

• enforce → program is ill-formed (hard compiler error)

129Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Trial constant evaluation

130Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Trial constant evaluation

int compute_at_runtime(int n); // not `constexpr`

constexpr int compute(int n) {
 return n == 0 ? 42: compute_at_runtime(n);
}

void f() {
 const int i = compute(0); // constant initialization
 const int j = compute(1); // dynamic initialization
}

131Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Trial constant evaluation

• The addition of pre, post, or contract_assert should:

• not silently change static initialisation to dynamic initialisation
• not trigger a compile-time contract violation if we would

otherwise get well-formed dynamic initialisation

132Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Trial constant evaluation - case 1

constexpr int f()
{
 return 42;
}

static int i = f(); // static initialisation

133Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Trial constant evaluation - case 1

bool whatever(); // not constexpr

constexpr int f() pre(whatever()) // pre not checkable at compile time
{
 return 42;
}

static int i = f();

134Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Trial constant evaluation - case 1

bool whatever(); // not constexpr

constexpr int f() pre(whatever()) // pre not checkable at compile time
{
 return 42;
}

static int i = f(); // must not be dynamic initialisation!

135Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Trial constant evaluation - case 1

bool whatever(); // not constexpr

constexpr int f() pre(whatever()) // -> compile-time contract violation
{
 return 42;
}

static int i = f(); // must not be dynamic initialisation!

136Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Trial constant evaluation - case 2

constexpr int f()
{
 if (i == 0)
 return runtime_thingy::get_value(); // not constexpr

 return i;
}

static int i = f(0); // dynamic initialisation

137Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Trial constant evaluation - case 2

bool whatever(); // not constexpr

constexpr int f() pre(whatever()) // not constexpr
{
 if (i == 0)
 return runtime_thingy::get_value(); // not constexpr

 return i;
}

static int i = f(0); // dynamic initialisation

138Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Trial constant evaluation - case 2

bool whatever(); // not constexpr

constexpr int f() pre(whatever()) // don't try evaluate at compile time!
{
 if (i == 0)
 return runtime_thingy::get_value(); // not constexpr

 return i;
}

static int i = f(0); // must still be dynamic initialisation!

139Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Trial constant evaluation - case 2

bool whatever(); // not constexpr

constexpr int f() pre(whatever()) // -> evaluate at runtime
{
 if (i == 0)
 return runtime_thingy::get_value(); // not constexpr

 return i;
}

static int i = f(0); // must still be dynamic initialisation!

140Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• When determining whether an expression E is a core constant expression ("trial
evaluation"), ignore all contract annotations

• If E is a core constant expression, or if E is not a core constant expression but it
is in a manifestly constant-evaluated context, re-evaluate E with every contract
annotation having one of three semantics (ignore, observe, enforce) chosen in
a implementation-defined manner

• Semantic is not ignore and predicate evaluates to false or is not a core
constant expression → a compile-time contract violation occurs
• observe: diagnostic
• enforce: diagnostic, program is ill-formed

Contract assertions during constant evaluation
(part II)

141Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• What are Contracts and what are they for?
• History and context
• Scope: what P2900 proposes and what it doesn't
• Design principles
• Language specification

• Syntax
• Semantic rules and restrictions
• Evaluation and contract-violation handling
• Noteworthy design consequences

• Library API specification

Overview

142Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Constructors and destructors

• pre and post on constructors and destructors follow same rules as for regular
function declarations

143Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Constructors and destructors

• pre and post on constructors and destructors follow same rules as for regular
function declarations:
• pre on a constructor are evaluated before the complete function body

(which includes the function-try block and member initializer list)
• post on a destructor are evaluated before returning to the caller

(and therefore after the destruction of all members and base classes)

144Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Constructors and destructors

• pre and post on constructors and destructors follow same rules as for regular
function declarations:
• pre on a constructor are evaluated before the complete function body

(which includes the function-try block and member initializer list)
• post on a destructor are evaluated before returning to the caller

(and therefore after the destruction of all members and base classes)
• Accessing members, base classes, invoking virtual functions, etc. in the

predicate of a pre or post in the above situations is undefined behaviour.

145Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Constructors and destructors

• pre and post on constructors and destructors follow same rules as for regular
function declarations:
• pre on a constructor are evaluated before the complete function body

(which includes the function-try block and member initializer list)
• post on a destructor are evaluated before returning to the caller

(and therefore after the destruction of all members and base classes)
• Accessing members, base classes, invoking virtual functions, etc. in the

predicate of a pre or post in the above situations is undefined behaviour.
• post on a constructor and pre on a destructor do not know the dynamic type

of this.

146Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Constructors and destructors
struct B { virtual ~B(); } // polymorphic base

template <typename Base>
struct D : public Base {}; // generic derived class

struct C : public B {
 C()
 post(typeid(*this) == typeid(C)) // Type is always `C` for now.
 post(dynamic_cast<C* >(this) == this) // `dynamic_cast` works.
 post(dynamic_cast<D<C>*>(this) == nullptr); // never derived class yet.

 ~C()
 pre(typeid(*this) == typeid(C)) //
 pre(dynamic_cast<C* >(this) == this)
 pre(dynamic_cast<D<C>*>(this) == nullptr);
};

147Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Friend declarations inside templates

• pre and post are required on any first declaration
(declaration from which no other declaration is reachable)

• but optional on redeclaration
• Each TU has a first declaration
• All first declarations must have same sequence of pre and post (IFNDR)
• It is not always obvious which declaration is a first declaration:

• a friend declaration of a function inside a template is only reachable
from the point when that template is instantiated

148Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Friend declarations inside templates
// x.h
template <typename T>
struct X {
 friend void f() pre (x); // #1
};

// y.h
template <typename T>
struct Y {
 friend void f() pre (x); // #2
};

// f.h
void f() pre (x); // #3

149Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Friend declarations inside templates
// x.h
template <typename T>
struct X {
 friend void f() pre (x); // #1
};

// y.h
template <typename T>
struct Y {
 friend void f() pre (x); // #2
};

// f.h
void f() pre (x); // #3

// g.cpp
#include <x.h>
#include <y.h>
int g() {
 Y<int> y1; // #4
 Y<long> y2; // #5
 X<int> x; // #6
}
#include <f.h>

• When using a friend declaration of a function with function contract
assertions inside a template, we recommend to always do one of the
following:
• Befriend functions that have reachable declarations, such that the

friend declaration will always be a redeclaration.
• Duplicate the function contract specifiers on each friend declaration.
• Make the function a hidden friend; i.e., the friend declaration is the

only declaration of the function and is also a definition.

150Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Friend declarations inside templates

151Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Recursive contract violations

152Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Recursive contract violations
• "you get what you get"

153Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Undefined behaviour

int f(int a) {
 return a + 100;
}

int g(int a)
 pre (f(a) < a);

154Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Undefined behaviour

int f(int a) {
 return a + 100; // compiler can assume this never overflows
}

int g(int a)
 pre (f(a) < a); // compiler can replace this with `pre (false)`

155Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Undefined behaviour

int f(int* p)
 pre (p != nullptr) {
 std::cout << *p; // undefined behaviour!
}

int main() {
 f(nullptr);
}

156Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Undefined behaviour

int f(int* p)
 pre (p != nullptr) { // ignore: precondition not checked
 std::cout << *p; // undefined behaviour!
}

int main() {
 f(nullptr);
}

157Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Undefined behaviour

int f(int* p)
 pre (p != nullptr) { // enforce: terminate here
 std::cout << *p; // cannot get here!
}

int main() {
 f(nullptr);
}

158Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Undefined behaviour

int f(int* p)
 pre (p != nullptr) { // observe: compiler can elide check
 std::cout << *p; // undefined behaviour!
}

int main() {
 f(nullptr);
}

159Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• What are Contracts and what are they for?
• History and context
• Scope: what P2900 proposes and what it doesn't
• Design principles
• Language specification

• Syntax
• Semantic rules and restrictions
• Evaluation and contract-violation handling
• Noteworthy design consequences

• Library API specification

Overview

160Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Standard Library API
• Only needed to implement a user-defined violation handler,

not needed to add contract assertions to your code!
• Everything is in header <contracts>
• Everything is in namespace std::contracts
• One class contract_violation (passed into the contract-violation handler)
• Three enums to express the return values of some of its member functions
• One free function
• That's it!

161Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 class contract_violation {
 // No user-accessible constructor, not copyable/movable/assignable
 public:
 std::source_location location() const noexcept;
 const char* comment() const noexcept;
 detection_mode detection_mode() const noexcept;
 contract_semantic semantic() const noexcept;
 contract_kind kind() const noexcept;
 };
 void invoke_default_contract_violation_handler(const contract_violation&);
}

Standard Library API

162Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 class contract_violation {
 // No user-accessible constructor, not copyable/movable/assignable
public:
 std::source_location location() const noexcept;
 const char* comment() const noexcept;
 detection_mode detection_mode() const noexcept;
 contract_semantic semantic() const noexcept;
 contract_kind kind() const noexcept;
 };
 void invoke_default_contract_violation_handler(const contract_violation&);
}

Standard Library API

163Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 class contract_violation {
 // No user-accessible constructor, not copyable/movable/assignable
public:
 std::source_location location() const noexcept;
 const char* comment() const noexcept;
 detection_mode detection_mode() const noexcept;
 contract_semantic semantic() const noexcept;
 contract_kind kind() const noexcept;
 };
 void invoke_default_contract_violation_handler(const contract_violation&);
}

Standard Library API

164Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 class contract_violation {
 // No user-accessible constructor, not copyable/movable/assignable
public:
 std::source_location location() const noexcept;
 const char* comment() const noexcept;
 detection_mode detection_mode() const noexcept;
 contract_semantic semantic() const noexcept;
 contract_kind kind() const noexcept;
 };
 void invoke_default_contract_violation_handler(const contract_violation&);
}

Standard Library API

165Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 enum class detection_mode : int {
 predicate_false = 1,
 evaluation_exception = 2,
 // implementation-defined additional values allowed, must be >= 1000
 };
}

166Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 class contract_violation {
 // No user-accessible constructor, not copyable/movable/assignable
public:
 std::source_location location() const noexcept;
 const char* comment() const noexcept;
 detection_mode detection_mode() const noexcept;
 contract_semantic semantic() const noexcept;
 contract_kind kind() const noexcept;
 };
 void invoke_default_contract_violation_handler(const contract_violation&);
}

Standard Library API

167Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 enum class contract_semantic : int {
 enforce = 1,
 observe = 2,
 // implementation-defined additional values allowed, must be >= 1000
 };
}

168Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 class contract_violation {
 No user-accessible constructor, not copyable/movable/assignable
public:
 std::source_location location() const noexcept;
 const char* comment() const noexcept;
 detection_mode detection_mode() const noexcept;
 contract_semantic semantic() const noexcept;
 contract_kind kind() const noexcept;
 };
 void invoke_default_contract_violation_handler(const contract_violation&);
}

Standard Library API

169Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 enum class contract_kind : int {
 pre = 1,
 post = 2,
 assert = 3,
 // implementation-defined additional values allowed, must be >= 1000
 };
}

170Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 class contract_violation {
 No user-accessible constructor, not copyable/movable/assignable
public:
 std::source_location location() const noexcept;
 const char* comment() const noexcept;
 detection_mode detection_mode() const noexcept;
 contract_semantic semantic() const noexcept;
 contract_kind kind() const noexcept;
 };
 void invoke_default_contract_violation_handler(const contract_violation&);
}

Standard Library API

171Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Impact on existing library facilities
Unless specified otherwise, an implementation is allowed but not required
to check a subset of the preconditions and postconditions specified in the
C++ standard library using contract assertions.

Document #: P3190R0
Date: 2024-03-20
Audience: LEWG

Slides for EWG presentation of
P2900R6: Contracts for C++

Joshua Berne
Timur Doumler
Andrzej Krzemieński

