
Document #: P3189R0
Date: 2024-03-18
Audience: LEWG

Slides for LEWG presentation of
P2900R6: Contracts for C++

Joshua Berne
Timur Doumler
Andrzej Krzemieński

2Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• What are Contracts and what are they for?
• History and context
• Proposal summary
• Design principles
• Language specification

• Syntax
• Semantic rules and restrictions
• Evaluation and contract-violation handling
• Noteworthy design consequences

• Library API specification

Overview

3Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• What are Contracts and what are they for?
• History and context
• Proposal summary
• Design principles
• Language specification

• Syntax
• Semantic rules and restrictions
• Evaluation and contract-violation handling
• Noteworthy design consequences

• Library API specification

Overview

4Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

What are contracts
and what are they for?

5Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Design by contract (DbC) is an approach for designing software.

It prescribes that software designers should define formal, precise and
verifiable interface specifications for software components, which
extend the ordinary definition of software components with
preconditions, postconditions, and invariants.

These specifications are referred to as Contracts, in accordance with
a conceptual metaphor with the conditions and obligations of business
contracts.

Design by Contract

6Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• A contract is a set of conditions that expresses expectations on a correct program.
• A function contract is a contract that is part of the specification of a function.

• A precondition is a part of a function contract where the responsibility for
satisfying it is on the caller of the function. Generally, these are requirements
placed on the arguments passed to a function and/or the global state of the
program upon entry into the function.

• A postcondition is a part of a function contract where the responsibility for
satisfying the condition is on the callee, i.e. the implementer of the function itself.
These are generally conditions that will hold true regarding the return value of the
function or the state of objects modified by the function when it completes
execution normally.

Terminology

7Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• A contract is a set of conditions that expresses expectations on a correct program.
• A class invariant is a condition that will hold true throughout the lifetime of an

instance of that class (except during modification).
• A loop invariant is a condition that will hold true at the beginning and end of every

loop iteration.

Terminology

8Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• A function with no preconditions has a wide contract.
• A function with preconditions has a narrow contract.

• Calling a function with all preconditions satisfied: call in-
contract.

• Calling a function while failing to satisfy any precondition:
call out of-contract.

• Failure to satisfy a contract is also called a contract violation.

Terminology

9Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• A contract violation is not an error.
• A contract violation is a bug in the program.
• Who is responsible for the contract violation?

• Precondition: the caller of the function
• Postcondition: the callee, i.e. the implementation of the function
• Invariant: the implementation of the class

• What happens when there is a contract violation?
• It depends...
• ...but in general, undefined behaviour

Contract violations

10Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

11Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

// narrow contract:
std::vector::operator[]
std::vector::front

// wide contract:
std::vector::at
std::vector::size
std::vector::empty

// narrow or wide contract (depending on type):
std::vector::swap

12Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• In the documentation: plain language contract

How do we specify a contract?

13Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• In the documentation: plain language contract
• In source code comments

 // The behaviour is undefined unless pos < size().
 T& operator[] (size_t pos) const;

How do we specify a contract?

14Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• In the documentation: plain language contract
• In source code comments
• In a separate specification document (e.g. the C++ Standard)

How do we specify a contract?

15Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• In the documentation: plain language contract
• In source code comments
• In a separate specification document (e.g. the C++ Standard)
• Implicit (e.g. via an agreed-upon coding convention)

How do we specify a contract?

16Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• In the documentation: plain language contract
• In source code comments
• In a separate specification document (e.g. the C++ Standard)
• Implicit (e.g. via an agreed-upon coding convention)

• In code: contract assertion

How do we specify a contract?

17Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• In the documentation: plain language contract
• In source code comments
• In a separate specification document (e.g. the C++ Standard)
• Implicit (e.g. via an agreed-upon coding convention)

• In code: contract assertions
• A language feature that provides support for contract assertions is a

Contracts facility
• Can be a core language feature (D, Eiffel, Ada...) or a library feature
• P2900R6 proposes a Contracts facility for C++ as a core language feature

How do we specify a contract?

18Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

C++ has a Contracts facility!

19Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

C++ has a Contracts facility!
#include <cassert>
void f(int i) {
 // The argument needs to be a positive number!
 assert(i > 0);
}

20Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

C++ has a Contracts facility!
#include <cassert>
void f(int i) {
 // The argument needs to be a positive number!
 assert(i > 0);
}

• Cannot go on function declarations, only in function bodies
• Behaviour not customisable (token-ignore or std::abort)
• Information about contract violation not programmatically accessible
• It's a macro (token-ignored if not evaluated, ODR violations, ...)

21Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Why do we need a Contracts facility in C++
as a language feature

22Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Precondition and postcondition assertions on declarations
• Portably usable across different libraries and codebases
• Fully customisable behaviour without ODR violations
• Predicate expressions parsed even if not evaluated
• Information about the contract violation programmatically available
• Accessible for tooling

Why do we need a Contracts facility in C++
as a language feature

23Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

 T& operator[] (size_t pos) const
 pre (pos < size());

Contract assertions

24Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

 T& operator[] (size_t pos) const
 pre (pos < size());

Contract assertions

• A contract assertion typically expresses a particular provision of a
contract rather than the entire contract

• A contract assertion specifies a C++ algorithm that allows to either:
• Verify compliance with the provision, or
• Identify violations of the provision.

• In P2900R6, this algorithm is a C++ expression contextually
convertible to bool called a contract predicate.

25Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Sometimes straightforward

 T& operator[] (size_t pos) const
 pre (pos < size());

Checking contracts with contact assertions

26Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Sometimes straightforward

• Sometimes expensive, or even violates guarantees

 void binary_search(Iter begin, Iter end) // O(log N)
 pre (is_sorted(begin, end)); // O(N)

Checking contracts with contact assertions

27Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Sometimes straightforward

• Sometimes expensive, or even violates guarantees

• Sometimes impractical/impossible without additional instrumentation
("ptr points to an object that is within its lifetime")

Checking contracts with contact assertions

28Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Sometimes straightforward

• Sometimes expensive, or even violates guarantees

• Sometimes impractical/impossible without additional instrumentation
("ptr points to an object that is within its lifetime")

• Or outright impossible ("passed-in function f returns a value")

Checking contracts with contact assertions

29Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Sometimes straightforward

• Sometimes expensive, or even violates guarantees

• Sometimes impractical/impossible without additional instrumentation
("ptr points to an object that is within its lifetime")

• Or outright impossible ("passed-in function f returns a value")
• Or even entirely outside of the scope of the C++ program

("you paid your bill for this library this week")

Checking contracts with contact assertions

30Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Sometimes straightforward

• Sometimes expensive, or even violates guarantees

• Sometimes impractical/impossible without additional instrumentation
("ptr points to an object that is within its lifetime")

• Or outright impossible ("passed-in function f returns a value")
• Or even entirely outside of the scope of the C++ program

("you paid your bill for this library this week")
• Contract assertions in general specify only a subset of the plain-

language contract of the function rather than the entire contract

Checking contracts with contact assertions

31Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

32Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Documenting contracts in code
(consumable by both human readers and tooling)

• Runtime checking of contract assertions
• Static analysis
• Formal verification
• Guiding optimization to improve performance

Contracts – Use Cases

33Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Documenting contracts in code
(consumable by both human readers and tooling)

• Runtime checking of contract assertions
• Static analysis
• Formal verification
• Guiding optimization to improve performance

Contracts – Use Cases
✅

34Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Documenting contracts in code
(consumable by both human readers and tooling)

• Runtime checking of contract assertions
• Static analysis
• Formal verification
• Guiding optimization to improve performance

Contracts – Use Cases
✅

✅

35Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Runtime checking of contract assertions
in P2900R6

• replacement for <cassert>
• replacement for custom assertion macros
• can be placed on function declarations
• customisable behaviour
• information about the contract violation is available programmatically
• no macros :)

36Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Documenting contracts in code
(consumable by both human readers and tooling)

• Runtime checking of contract assertions
• Static analysis
• Formal verification
• Guiding optimization to improve performance

Contracts – Use Cases
✅

✅

37Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Documenting contracts in code
(consumable by both human readers and tooling)

• Runtime checking of contract assertions
• Static analysis
• Formal verification
• Guiding optimization to improve performance

Contracts – Use Cases
✅

✅

🤷

🤷

🤷

38Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

P2900R6 language proposal summary

39Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1); // precondition assertion

40Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1) // precondition assertion
 post (r: r != 2); // postcondition assertion; `r` names return value

41Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1) // precondition assertion
 post (r: r != 2); // postcondition assertion; `r` names return value

// return value name is optional
// `pre` and `post` are contextual keywords
// pre(...) and post(...) appear at the end of the declaration

42Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1) // precondition assertion
 post (r: r != 2) // postcondition assertion; `r` names return value
{
 contract_assert (x != 3); // assertion statement
 return x;
}

// `contract_assert` is full keyword
// we did not use `assert` because of clash with assert macro

43Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1) // precondition assertion
 post (r: r != 2) // postcondition assertion; `r` names return value
{
 contract_assert (x != 3); // assertion statement
 return x;
}

void g() {
 f(0); // no contract violation
 f(1); // violates precondition assertion of f
 f(2); // violates postcondition assertion of f
 f(3); // violates assertion statement within f
 f(4); // no contract violation
}

 pre(expr) post(expr) contract_assert(expr)

function-contract
assertion

contract assertion

precondition
assertion

44Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

postcondition
assertion

assertion statement

45Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• Precondition assertions:
after the initialisation of function parameters,
before the evaluation of the function body

• Postcondition assertions:
after the result object value has been initialised and local
automatic variables have been destroyed, but prior to the
destruction of function parameters

• Assertion statements:
when the statement is executed

Point of evaluation

46Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Function-contract assertions
• A precondition is usually, but not always, expressed by a precondition assertion.
• Preconditions and postconditions are categorised by who is responsible for

ensuring that they are true (caller vs. callee)
• Precondition assertions, postcondition assertions, and assertion statements

are categorised by the time when they are evaluated.
• Example: using a postcondition assertion to check a precondition:

T& select(vector<T> & elems)
 // Precondition: for every e in elems, pred(e) is true
 post (r : pred(r));

47Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

int f(int x)
 pre (x != 1) // precondition assertion
 post (r: r != 2) // postcondition assertion; `r` names return value
{
 contract_assert (x != 3); // assertion statement
 return x;
}

void g() {
 f(0); // no contract violation
 f(1); // violates precondition assertion of f
 f(2); // violates postcondition assertion of f
 f(3); // violates assertion statement within f
 f(4); // no contract violation
}

48Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• check the contract predicate (evaluate the boolean expression), or

• do not check the contract predicate (just parse and odr-use the
expression)

Evaluating a contract assertion:

49Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Checking the contract predicate
• The predicate evaluates to true → no contract violation, execution continues
• The predicate evaluates to false → contract violation
• Evaluation of the predicate does not finish, but control remains in the purview

of the contract-checking process → contract violation
• Evaluation exits via an exception
• Evaluation occurs during constant evaluation, and predicate is not a core

constant expression
• Evaluation of the predicate does not finish, control never returns to the

purview of the contract-checking process → "you get what you get"
• longjmp, terminate, infinite loop, suspend current thread forever, etc.

50Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• When a contract violation has been identified:
• An object of type std::contracts::contract_violation will be produced

through implementation-defined means,
• the contract-violation handler will be called,
• the std::contracts::contract_violation object will be passed to the

contract-violation handler (by const&)
• If the contract violation occurred because evaluation of the predicate exited via

an exception, the contract-violation handler acts as a handler for that
exception (i..e the exception can be acccessed from within the contract-
violation handler via std::current_exception()).

Checking the contract predicate

51Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

The contract-violation handler
• Function named ::handle_contract_violation

• Attached to the global module
• Takes a single argument const std::contracts::contract_violation&

• Returns void

• May be noexcept(true) or noexcept(false)
• No declaration provided in any standard library header
• Implementation provides a default definition: default contract-violation handler

• semantics implementation-defined, recommendation: print info about contract violation
• Implementation-defined whether it is replaceable (like operator new/delete)

• You can provide your own user-defined contract-violation handler by implementing a
function with a matching name and signature, and linking it in

52Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

void ::handle_contract_violation
(const std::contracts::contract_violation& violation)
{
 LOG(std::format("Contract violated at: {}\n", violation.location()));
}

User-defined contract-violation handler

53Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

void ::handle_contract_violation
(const std::contracts::contract_violation& violation)
{
 phone_home(violation);
 std::contracts::invoke_default_contract_violation_handler(violation);
}

User-defined contract-violation handler

54Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

void ::handle_contract_violation
(const std::contracts::contract_violation& violation)
{
 std::breakpoint();
}

User-defined contract-violation handler

55Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

void ::handle_contract_violation
(const std::contracts::contract_violation& violation)
{
 throw my::contract_violation_exception(violation);
}

User-defined contract-violation handler

56Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Throwing contract-violation handlers
• Use cases:

• Portably handle contract violations without terminating the program
and without continuing into buggy code

• Write unit tests for contract assertions ("negative testing")

57Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Throwing contract-violation handlers
• Use cases:

• Portably handle contract violations without terminating the program
and without continuing into buggy code

• Write unit tests for contract assertions ("negative testing")
• Requires following the Lakos Rule:

• A function with a narrow contract shall not be noexcept
• Even if it never throws an exception when called in-contract!
→ policy discussion on Tuesday

58Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• When is a contract assertion checked or unchecked?

• What happens after the contract-violation handler returns?

Contract semantics

59Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Evaluate the predicate  
("check the assertion")

After contract-violation
handler returns:

ignore no –

enforce yes call std::abort

observe yes continue execution

Contract semantics proposed in P2900R6

60Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

• P2900R6 proposes three standard contract semantics:
ignore, enforce, observe
• ignore is an unchecked semantic (predicate is only parsed & odr-used)
• enforce and observe are checked semantics (predicate is evaluated)

• The mechanism of choosing a contract semantic is
implementation-defined
• Contract semantic can be different for each contract annotation,

or even for each evaluation of the same contract annotation
• Contract semantic can be chosen at compile time, link time, or runtime

Contract semantics

61Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

It is recommended that:
1. an implementation provide a mode where all contract assertions have

the ignore semantic;
2. an implementation provide a mode where all contract assertions have

the enforce semantic;
3. when nothing else has been specified by the user, the default is 2.

Recommended practice

62Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Proposed Standard Library API
in P2900R6

63Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Standard Library API
• Only needed to implement a user-defined violation handler,

not needed to add contract assertions to your code!
• Everything is in header <contracts>
• Everything is in namespace std::contracts
• One class contract_violation (passed into the contract-violation handler)
• Three enums to express the return values of some of its member functions
• One free function
• That's it!

64Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 class contract_violation {
 // No user-accessible constructor, not copyable/movable/assignable
 public:
 std::source_location location() const noexcept;
 const char* comment() const noexcept;
 detection_mode detection_mode() const noexcept;
 contract_semantic semantic() const noexcept;
 contract_kind kind() const noexcept;
 };
 void invoke_default_contract_violation_handler(const contract_violation&);
}

Standard Library API

65Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 class contract_violation {
 // No user-accessible constructor, not copyable/movable/assignable
public:
 std::source_location location() const noexcept;
 const char* comment() const noexcept;
 detection_mode detection_mode() const noexcept;
 contract_semantic semantic() const noexcept;
 contract_kind kind() const noexcept;
 };
 void invoke_default_contract_violation_handler(const contract_violation&);
}

Standard Library API

66Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 class contract_violation {
 // No user-accessible constructor, not copyable/movable/assignable
public:
 std::source_location location() const noexcept;
 const char* comment() const noexcept;
 detection_mode detection_mode() const noexcept;
 contract_semantic semantic() const noexcept;
 contract_kind kind() const noexcept;
 };
 void invoke_default_contract_violation_handler(const contract_violation&);
}

Standard Library API

67Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 class contract_violation {
 // No user-accessible constructor, not copyable/movable/assignable
public:
 std::source_location location() const noexcept;
 const char* comment() const noexcept;
 detection_mode detection_mode() const noexcept;
 contract_semantic semantic() const noexcept;
 contract_kind kind() const noexcept;
 };
 void invoke_default_contract_violation_handler(const contract_violation&);
}

Standard Library API

68Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 enum class detection_mode : int {
 predicate_false = 1,
 evaluation_exception = 2,
 // implementation-defined additional values allowed, must be >= 1000
 };
}

69Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 class contract_violation {
 // No user-accessible constructor, not copyable/movable/assignable
public:
 std::source_location location() const noexcept;
 const char* comment() const noexcept;
 detection_mode detection_mode() const noexcept;
 contract_semantic semantic() const noexcept;
 contract_kind kind() const noexcept;
 };
 void invoke_default_contract_violation_handler(const contract_violation&);
}

Standard Library API

70Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 enum class contract_semantic : int {
 enforce = 1,
 observe = 2,
 // implementation-defined additional values allowed, must be >= 1000
 };
}

71Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 class contract_violation {
 No user-accessible constructor, not copyable/movable/assignable
public:
 std::source_location location() const noexcept;
 const char* comment() const noexcept;
 detection_mode detection_mode() const noexcept;
 contract_semantic semantic() const noexcept;
 contract_kind kind() const noexcept;
 };
 void invoke_default_contract_violation_handler(const contract_violation&);
}

Standard Library API

72Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 enum class contract_kind : int {
 pre = 1,
 post = 2,
 assert = 3,
 // implementation-defined additional values allowed, must be >= 1000
 };
}

73Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

namespace std::contracts {
 class contract_violation {
 No user-accessible constructor, not copyable/movable/assignable
public:
 std::source_location location() const noexcept;
 const char* comment() const noexcept;
 detection_mode detection_mode() const noexcept;
 contract_semantic semantic() const noexcept;
 contract_kind kind() const noexcept;
 };
 void invoke_default_contract_violation_handler(const contract_violation&);
}

Standard Library API

74Copyright (c) Timur Doumler | @timur_audio | https://timur.audio

Impact on existing library facilities
Unless specified otherwise, an implementation is allowed but not required
to check a subset of the preconditions and postconditions specified in the
C++ standard library using contract assertions.

