
noexcept policy for SD-9 (The Lakos Rule)

Timur Doumler (papers@timur.audio)
John Lakos (jlakos@bloomberg.net)

Document #: P3155R0
Date: 2024-02-15
Project: Programming Language C++
Audience: LEWG

0 Motivation and context
A long-standing design principle in the C++ Standard Library has been that a function having a
narrow contract — that is, a function specified to have preconditions — should not be declared
noexcept, even if it is known to never throw an exception when called in-contract (without violating
the preconditions). When we are convinced that a function having a narrow contract cannot throw
when called in-contract, it should instead be specified as Throws: nothing. This design principle is
also known as the Lakos Rule.
The Lakos Rule was first proposed in [N3248] and adopted with [N3279]. An updated version of
the rule was codified into policy in [P0884R0]. See [O’Dwyer2018] for a more detailed summary.
More recently, [P1656R2] argued that the Lakos Rule should be abandoned as a design principle.
According to this paper, functions that are known to never throw an exception for a valid combination
of input values and accessible state should always be declared noexcept, regardless of whether they
have a wide or a narrow contract. Further, [P2148R0] proposed adopting a set of design policies for
the evolution of the C++ Standard Library that moves away from the Lakos Rule. While such a
policy has not been formally adopted, LEWG recently moved away from adhering to the Lakos
Rule, and instead considers whether a function having a narrow contract should be noexcept on a
case-by-case basis.
We believe that we should consider retaining the Lakos Rule as a design policy for the C++ Standard
Library. There are a number of important engineering reasons why the Lakos Rule is still useful
and important today; abandoning it would inflict avoidable damage to the C++ language. To argue
this case, we published two papers, [P2831R0] and [P2861R0], in the May 2023 committee mailing,
to be presented at the Varna meeting in June 2023. However, neither paper was scheduled for
discussion in LEWG at the Varna meeting, nor at the following meeting in Kona in November 2023.
Instead of considering our papers, LEWG has decided that we should first generally agree on a
process for adopting design policies for the C++ Standard Library. Most recently, LEWG has agreed
on a new framework to adopt such design policies (see [P2267R1]) and to publish them in a new
standing document, SD-9. This framework allows us to finally decide on actual design policies, which
are meant to be adopted via policy papers. [P2267R1] sets out a number of requirements that such
policy papers must satisfy in order to be considered by LEWG. [P2831R0] and [P2861R0] have not
been written with those requirements in mind, because they have been published before [P2267R1]
was adopted. The purpose of the present paper is to satisfy the requirements in [P2267R1] and

1

mailto:papers@timur.audio
mailto:jlakos@bloomberg.net


serve as an “envelope paper” for [P2831R0] and [P2861R0] to make them admissible for discussion
in LEWG.
Most recently, another paper [P3005R0], rather than proposing a concrete noexcept policy, proposed
a process how to agree on such a policy. [P3005R0] considers seven possible candidate noexcept
policies, six design questions that would need to be answered to choose one of those policies, and
lists 20 design principles that can help us find the correct answers to those questions by following the
Principled-Design methodology. We believe that the process described in [P3005R0] is an excellent
way to resolve the current disagreements on a noexcept policy in LEWG. However, since [P3005R0]
proposes a process for decision-making rather than a single concrete policy, it also does not fit into
the requirements for a policy paper in [P2267R1]. We therefore consider the present paper to be an
“envelope paper” for [P3005R0] as well.

1 Rationale
The rationale for retaining the Lakos Rule as a design policy has been thoroughly explored in our
previous papers, [P2831R0] and [P2861R0], and is further analysed in detail in [P3005R0]. We
therefore refer the reader to those papers and references therein.
In short, the Lakos Rule is essential for implementing non-terminating recovery (an important
requirement in some systems) and negative testing (the only known alternative to exception-based
negative testing, death tests, is neither scalable nor portable). Independently from that, in API
design, adhering to the Lakos Rule is a requirement for being able to widen the contract of a function
without breaking backwards-compatibility. Finally, the Lakos Rule is foundational for Contracts,
a new language feature targeting C++26 (see [P2900R5]) which is currently in design review. In
addition, nearly 15 years of experience with noexcept have shown that applying it superfluously in
the Library, beyond its original intended use, can be highly detrimental to writing safe and reliable
software, while the claimed benefits of doing so generally do not hold up to scrutiny.

2 Prior art in the C++ Standard
The C++ Standard Library has been mostly following the Lakos Rule as a design principle since
C++11, the standard that added noexcept to the language, but exceptions do exist. A detailed
survey of the prior art in the C++ Standard will be provided in a future revision of this paper.

3 Status quo in the wider C++ community
Community surveys such as the JetBrains Developer Ecosystem survey, the Meeting C++ Com-
munity Survey, and the Standard C++ Foundation’s Annual C++ Developer Survey consistently
show that about half of C++ developers work on codebases where exceptions are either partially or
completely banned from use; for the latter in particular, the noexcept policy is of little relevance.
Codebases that do use exceptions fall into different camps: many C++ libraries generously sprinkle
noexcept all over their code, while codebases that portably use techniques like non-terminating
recovery and negative testing adhere to the Lakos Rule in their own code (see [P2831R0] for case
studies of several companies with such codebases). We expect the use of such techniques to become
significantly more widespread with the adoption of Contracts for C++ ([P2900R5]). The three
major implementations of the C++ Standard Library (GCC, Clang, and Microsoft) do not use the
Lakos Rule and generally tighten Throws: nothing to noexcept, making them incompatible with
these techniques; other implementations of the Standard Library, or parts of it, such as Bloomberg’s
BDE, follow the Lakos Rule.

2



4 Proposed policy
We propose to retain the policy we already have: the one described in [P0884R0], refining the
previous rules in [N3279]. The policy consists of the following rules, which includes the Lakos Rule:

a) No library destructor should throw. They shall use the implicitly supplied (nonthrowing)
exception specification.

b) If a library function has a wide contract (i.e., does not specify undefined behavior due to a
precondition), it should be marked as unconditionally noexcept if it cannot throw; if it has a
narrow contract, it should be specified as Throws: Nothing if it cannot throw when called
in-contract.

c) If a library swap function, move-constructor, or move-assignment operator is conditionally-wide
(i.e. can be proven to not throw by applying the noexcept operator) then it should be marked
as conditionally noexcept.

d) If a library type has wrapping semantics to transparently provide the same behavior as the
underlying type, then default constructor, copy constructor, and copy-assigment operator
should be marked as conditionally noexcept matching the underlying exception specification.

e) No other function should use a conditional noexcept specification.

f) Library functions designed for compatibility with C code (such as the atomics facility) may
be marked as unconditionally noexcept.

Note that this set of rules corresponds to Policy C in [P3005R0], which considers seven possible
noexcept policies B-H in addition to the null policy A (“no policy”). We believe that all these
policies should be considered, via the process proposed in [P3005R0], in order to be confident that
we are adopting the correct one.

5 Rationale for adopting a policy
The placement of noexcept in the C++ Standard Library has been a hotly debated topic in recent
years, taking up a considerable amount of Committee time. Adopting a formal policy on this matter
would put the debate to rest and help maintain a coherent design for the C++ Standard Library
going forward. Adopting the policy sooner rather than later would reduce the amount of newly
introduced Standard Library functions incompatible with the Lakos Rule that would have to be
retroactively fixed via Defect Reports.

6 Proposed wording
Append to “List of Standard Library Policies” section of SD-9 the items a) — f) enumerated in
Section 4 above.

3



Acknowledgements
We wish to express our gratitude to the late Ed Catmur, co-author of [P2831R0], for his valuable
contributions to this effort until his tragic death during a fell run on 31 December 2023.

References

[N3248] Alisdair Meredith and John Lakos. noexcept Prevents Library Validation. https://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3248.pdf, 2011-02-28.

[N3279] Alisdair Meredith and John Lakos. Conservative use of noexcept in the Library. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf, 2011-03-25.

[O’Dwyer2018] Arthur O’Dwyer. The Lakos Rule. https://quuxplusone.github.io/blog/2018/
04/25/the-lakos-rule/, 2018-04-25.

[P0884R0] Nicolai Josuttis. Extending the noexcept Policy, Rev0. https://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2018/p0884r0.pdf, 2018-02-10.

[P1656R2] Agustín Bergé. “Throws: Nothing” should be noexcept. https://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2020/p1656r2.html, 2020-02-11.

[P2148R0] CJ Johnson and Bryce Adelstein Lelbach. Library Evolution Design Guidelines. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2148r0.pdf, 2020-09-23.

[P2267R1] Inbal Levi, Ben Craig, and Fabio Fracassi. Library Evolution Policies — The rationale
and process of setting a policy for the Standard Library. https://wg21.link/p2267r1,
2023-11-23.

[P2831R0] Timur Doumler and Ed Catmur. Functions having a narrow contract should not be
noexcept. https://wg21.link/p2831r0, 2023-05-15.

[P2861R0] John Lakos. Narrow Contracts and noexcept Are Inherently Incompatible: The Lakos
Rule. https://wg21.link/p2861r0, 2023-05-15.

[P2900R5] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r5, 2024-02-15.

[P3005R0] John Lakos, Joshua Berne, Harold Bott, Mungo Gill, Alisdair Meredith, Bill Chapman,
Mike Giroux, and Oleg Subbotin. Memorializing Principled-Design Policies for WG21.
https://wg21.link/p3005r0, 2024-02-15.

4

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3248.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3248.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf
https://quuxplusone.github.io/blog/2018/04/25/the-lakos-rule/
https://quuxplusone.github.io/blog/2018/04/25/the-lakos-rule/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0884r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0884r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1656r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1656r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2148r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2148r0.pdf
https://wg21.link/p2267r1
https://wg21.link/p2831r0
https://wg21.link/p2861r0
https://wg21.link/p2900r5
https://wg21.link/p2900r5
https://wg21.link/p3005r0

	0 Motivation and context
	1 Rationale
	2 Prior art in the C++ Standard
	3 Status quo in the wider C++ community
	4 Proposed policy
	5 Rationale for adopting a policy
	6 Proposed wording
	References

