
Graph Library: Graph Containers
Document #: P3131r0
Date: 2024-02-05
Project: Programming Language C++
Audience: Library Evolution

SG19 Machine Learning
SG14 Game, Embedded, Low Latency
SG6 Numerics

Revises: P1709r5

Reply-to: Phil Ratzloff (SAS Institute)
phil.ratzloff@sas.com
Andrew Lumsdaine
lumsdaine@gmail.com

Contributors: Kevin Deweese
Muhammad Osama (AMD, Inc)
Jesun Firoz
Michael Wong (Codeplay)
Jens Maurer
Richard Dosselmann (University of Regina)
Matthew Galati (Amazon)

1

mailto:phil.ratzloff@sas.com
mailto:lumsdaine@gmail.com

© ISO/IEC P3131r0

1 Getting Started
This paper is one of several interrelated papers for a proposed Graph Library for the Standard C++ Library.
The Table 1 describes all the related papers.

Paper Status Description
P1709 Inactive Original proposal, now separated into the following papers.
P3126 Active Overview, describing the big picture of what we are proposing.
P3127 Active Background and Terminology providing the motivation, theoretical background and

terminology used across the other documents.
P3128 Active Algorithms covering the initial algorithms as well as the ones we’d like to see in the future.
P3129 Active Views has helpful views for traversing a graph.
P3130 Active Graph Container Interface is the core interface used for uniformly accessing graph data

structures by views and algorithms. It is also designed to easily adapt to existing graph data
structures.

P3131 Active Graph Containers describing a proposed high-performance compressed_graph container.
It also discusses how to use containers in the standard library to define a graph, and how to
adapt existing graph data structures.

Table 1: Graph Library Papers

Reading them in order will give the best overall picture. If you’re limited on time, you can use the following
guide to focus on the papers that are most relevant to your needs.

Reading Guide

— If you’re new to the Graph Library, we recommend starting with the Overview paper (P3126) to
understand focus and scope of our proposals.

— If you want to understand the theoretical background that underpins what we’re doing, you should
read the Background and Terminology paper (P3127).

— If you want to use the algorithms, you should read the Algorithms paper (P3128) and Graph Containers
paper (P3131).

— If you want to write new algorithms, you should read the Views paper (P3129), Graph Container Interface
paper (P3130) and Graph Containers paper (P3131). You’ll also want to review existing implementations
in the reference library for examples of how to write the algorithms.

— If you want to use your own graph container, you should read the Graph Container Interface paper
(P3130) and Graph Containers paper (P3131).

2 Revision History
P3131r0

— Split from P1709r5. Added Getting Started section.

— Move text for graph data structures created from std containers from Graph Container Interface to Container
Implementation paper.

— GCI overloads are no longer required for adjacency lists constructed with standard containers. Data struc-
tures that follow the pattern random_access_range<forward_range<integral>> and random_access_range<
forward_range<tuple<integral,...>>> are automatically recognized as an adjacency list, including contain-
ers from non-standard libraries. The integral value is used as the target_id.

§3.0 2

https://www.wg21.link/P3126
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3126
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3131
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3130
https://www.wg21.link/P3131

© ISO/IEC P3131r0

3 Naming Conventions
Table 2 shows the naming conventions used throughout the Graph Library documents.

Template Variable
Parameter Type Alias Names Description
G Graph

graph_reference_t<G> g Graph reference
GV val Graph Value, value or reference
V vertex_t<G> Vertex

vertex_reference_t<G> u,v,x,y Vertex reference. u is the source (or only)
vertex. v is the target vertex.

VId vertex_id_t<G> uid,vid,seed Vertex id. uid is the source (or only) vertex
id. vid is the target vertex id.

VV vertex_value_t<G> val Vertex Value, value or reference. This can be
either the user-defined value on a vertex, or a
value returned by a function object (e.g. VVF)
that is related to the vertex.

VR vertex_range_t<G> ur,vr Vertex Range
VI vertex_iterator_t<G> ui,vi Vertex Iterator. ui is the source (or only)

vertex.
first,last vi is the target vertex.

VVF vvf Vertex Value Function: vvf(u) → vertex value,
or vvf(uid) → vertex value, depending on re-
quirements of the consume algorithm or view.

VProj vproj Vertex descriptor projection function: vproj(x
) → vertex_descriptor<VId,VV> .

partition_id_t<G> pid Partition id.
P Number of partitions.

PVR partition_vertex_range_t<G> pur,pvr Partition vertex range.
E edge_t<G> Edge

edge_reference_t<G> uv,vw Edge reference. uv is an edge from vertices u
to v . vw is an edge from vertices v to w .

EId edge_id_t<G> eid,uvid Edge id, a pair of vertex_ids.
EV edge_value_t<G> val Edge Value, value or reference. This can be

either the user-defined value on an edge, or a
value returned by a function object (e.g. EVF)
that is related to the edge.

ER vertex_edge_range_t<G> Edge Range for edges of a vertex
EI vertex_edge_iterator_t<G> uvi,vwi Edge Iterator for an edge of a vertex. uvi is

an iterator for an edge from vertices u to v .
vwi is an iterator for an edge from vertices v
to w .

EVF evf Edge Value Function: evf(uv) → edge value,
or evf(eid) → edge value, depending on the
requirements of the consuming algorithm or
view.

EProj eproj Edge descriptor projection function: eproj(x)
→ edge_descriptor<VId,Sourced,EV> .

PER partition_edge_range_t<G> Partition Edge Range for edges of a partition
vertex.

Table 2: Naming Conventions for Types and Variables

§3.0 3

© ISO/IEC P3131r0

4 compressed_graph
compressed_graph is a graph container being proposed for the standard library. It is a high-performance data
structure that uses Compressed Sparse Row format to store its vertices, edges and associated values. Once
constructed, vertices and edges cannot be added or deleted but values on vertices and edges can be modified.

The following listing shows the prototype for the compressed_graph . Only the members shown for compressed_graph
are public. No other member functions or types are exposed as part of the standard. All other types are only
accessible through the types and functions in the Graph Container Interface. Multiple partitions (multi-partite)
can be defined by passing the number of partitions in a constructor.

Implements load_graph ? Yes Append vertices? No vertex_id assignment: Contiguous
Implements load_vertices ? Yes Append edges? No Vertices range: Contiguous
Implements load_edges ? Yes Edge range: Contiguous
Implements load_partition ? Yes

template <class EV = void, // Edge Value type
class VV = void, // Vertex Value type
class GV = void, // Graph Value type
integral VId = uint32_t, // vertex id type
integral EIndex = uint32_t, // edge index type
class Alloc = allocator<VId>> // for internal containers

class compressed_graph {
public:

compressed_graph();
explicit compressed_graph(size_t num_partitions); // multi-partite
compressed_graph(const compressed_graph&);
compressed_graph(compressed_graph&&);
{tilde}compressed_graph();

compressed_graph& operator=(const compressed_graph&);
compressed_graph& operator=(compressed_graph&&);

}

1 Mandates:

—(1.1) Vertices and edges cannot be appended to an existing partition in an existing graph, but they can be
added to a new partition.

2 Preconditions:

—(2.1) The VId template argument must be able to store a value of |V|+1, where |V| is the number of vertices
in the graph. The size of this type impacts the size of the edges.

—(2.2) The EIndex template argument must be able to store a value of |E|+1, where |E| is the number of
edges in the graph. The size of this type impact the size of the vertices.

3 Effects:

—(3.1) When EV , VV , or GV are void , no extra memory overhead is incurred for it.

—(3.2) The VId and EIndex template arguments impact the internal storage requirements and performance.
The default of uint32_t is sufficient for most graphs and provides a good balance between storage
and performance.

4 Remarks:

—(4.1) The default allocator type of allocator<VId> is rebound for different internal containers.

§5.0 4

https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_%28CSR%2C_CRS_or_Yale_format%29

© ISO/IEC P3131r0

5 Using Existing Graph Data Structures
Reasonable defaults have been defined for the GCI functions to minimize the amount of work needed to adapt an
existing graph data structure to be used by the views and algorithms.

There are two cases supported. The first is for the use of standard containers to define the graph and the other is
for a broader set of more complicated implementations.

5.1 Using Standard Containers for the Graph Data Structure
For example this we’ll use G = vector<forward_list<tuple<int,double>>> to define the graph, where g is an
instance of G . tuple<int,double> defines the target_id and weight property respectively. We can write loops to
go through the vertices, and edges within each vertex, as follows.

using G = vector<forward_list<tuple<int,double>>>;
auto weight = [&g](edge_t& uv) { return get<1>(uv); }

G g;
load_graph(g, ...); // load some data

// Using GCI functions
for(auto&& [uid, u] : vertices(g)) {

for(auto&& [vid, uv]: edges(g,u)) {
auto w = weight(uv);
// do something...

}
}

Note that no function override was required and is a special case when the outer range is a random_access_range
and and inner inner range is a forward_range , and the value type of the inner range is either integral or
tuple<integral, ...> . This extends to any range type. For instance, boost::containers can be used just as easily
as std containers.

Function or Value Concrete Type
vertices(g) vector<forward_list<tuple<int,double>>> (when random_access_range<G>)
u forward_list<tuple<int,double>>
edges(g,u) forward_list<tuple<int,double>> (when random_access_range<vertex_range_t<G>>)
uv tuple<int,double>
edge_value(g,uv) tuple<int,double> (when random_access_range<vertex_range_t<G>>)
target_id(g,uv) integral , when uv is either integral or tuple<integral,...>

Table 3: Types When Using Standard Containers

5.2 Using Other Graph Data Structures
For other graph data structures more function overrides are required. Table 4 shows the common function
overrides anticipated for most cases, keeping in mind that all functions can be overridden. When they are defined
they must be in the same namespace as the data structures.

Acknowledgements
Phil Ratzloff’s time was made possible by SAS Institute.

Portions of Andrew Lumsdaine’s time was supported by NSF Award OAC-1716828 and by the Segmented Global
Address Space (SGAS) LDRD under the Data Model Convergence (DMC) initiative at the U.S. Department
of Energy’s Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute
under Contract DE-AC06-76RL01830.

§5.2 5

© ISO/IEC P3131r0

Function Comment
vertices(g)
edges(g,u)
target_id(g,uv)
edge_value(g,uv) If edges have value(s) in the graph
vertex_value(g,u) If vertices have value(s) in the graph
graph_value(g) If the graph has value(s)

When edges have the optional source_id on an edge
source_id(g,uv)

When the graph supports multiple partitions
partition_count(g)
partition_id(g,u)
vertices(g,u,pid)

Table 4: Common CPO Function Overrides

Michael Wong’s work is made possible by Codeplay Software Ltd., ISOCPP Foundation, Khronos and the
Standards Council of Canada.

Muhammad Osama’s time was made possible by Advanced Micro Devices, Inc.

The authors thank the members of SG19 and SG14 study groups for their invaluable input.

§5.2 6

	Getting Started
	Revision History
	Naming Conventions
	compressed_graph
	Using Existing Graph Data Structures
	Using Standard Containers for the Graph Data Structure
	Using Other Graph Data Structures

	Acknowledgements

