Graph Library: Algorithms

Document \#:	P3128r0
Date:	2024-02-05
Project:	Programming Language $\mathrm{C}++$
Audience:	Library Evolution
	SG19 Machine Learning
	SG14 Game, Embedded, Low Latency
	SG6 Numerics
Revises:	P1709r5
Reply-to:	Phil Ratzloff (SAS Institute)
	phil.ratzloff@sas.com
	Andrew Lumsdaine
	lumsdaine@gmail.com
Contributors:	Kevin Deweese
	Muhammad Osama (AMD, Inc)
	Jesun Firoz
	Michael Wong (Codeplay)
	Jens Maurer
	Richard Dosselmann (University of Regina)
	Matthew Galati (Amazon)

1 Getting Started

This paper is one of several interrelated papers for a proposed Graph Library for the Standard C++ Library. The Table 1 describes all the related papers.

Paper	Status	Description
P1709	Inactive	Original proposal, now separated into the following pa
$\overline{\mathrm{P}} \overline{3} 1 \overline{2} \overline{6}$	- Āctive	
P3127	Active	Background and Terminology providing the motivation, theoretical background and terminology used across the other documents.
P3128	Active	Algorithms covering the initial algorithms as well as the ones we'd like to see in the future.
P3129	Active	Views has helpful views for traversing a graph.
P3130	Active	Graph Container Interface is the core interface used for uniformly accessing graph data structures by views and algorithms. It is also designed to easily adapt to existing graph data structures.
P3131	Active	Graph Containers describing a proposed high-performance compressed_graph container. It also discusses how to use containers in the standard library to define a graph, and how to adapt existing graph data structures.

Table 1: Graph Library Papers
Reading them in order will give the best overall picture. If you're limited on time, you can use the following guide to focus on the papers that are most relevant to your needs.

Reading Guide

- If you're new to the Graph Library, we recommend starting with the Overview paper (P3126) to understand focus and scope of our proposals.
- If you want to understand the theoretical background that underpins what we're doing, you should read the Background and Terminology paper (P3127).
- If you want to use the algorithms, you should read the Algorithms paper (P3128) and Graph Containers paper (P3131).
- If you want to write new algorithms, you should read the Views paper (P3129), Graph Container Interface paper (P3130) and Graph Containers paper (P3131). You'll also want to review existing implementations in the reference library for examples of how to write the algorithms.
- If you want to use your own graph container, you should read the Graph Container Interface paper (P3130) and Graph Containers paper (P3131).

2 Revision History

P3128r0

- Split from P1709r5. Added Getting Started section.
- Added A*, Best-first search and Adamic-Adar Index to Tier 2 algorithms based on input.
- Removed allocator parameters for consistency with existing algorithms. It was observed that stable_sort allocates memory, but does not take an allocator parameter.
- Removed exception throwing from algorithms to support free-standing $\mathrm{C}++$. The caller will need to follow the preconditions to avoid undefined behavior. The other option considered was to return an error code.

3 Algorithm Introduction

Basic characteristics of algorithms are summarized in tables of the following form:

Complexity	Directed? Yes	Cycles? No	Throws? No
$\mathcal{O}(\|E\|+\|V\|)$	Multi-edge? No	Self-loops Yes	

The parts of the table have the following meaning:

- Complexity The complexity of the algorithm based on the number of vertices (V) and edges (E).
- Directed? Is the algorithm only for directed graphs, or can it also be used for undirected graphs that have complimentary edges, with different directions, between two vertices.
- Multi-edge? Does the algorithm act as expected if more than one edge with the same direction exists between the same two vertices?
- Cycles? Does the algorithm act act as expected if a vertex (or edge) is part of a cycle?
- Self-loops? Does the algorithm act act as expected if an edge exists with the same source and target?
- Throws? Will the algorithm throw at all? If so, look at the Throws section after the function prototypes for details.

4 Naming Conventions

Table 2 shows the naming conventions used throughout the Graph Library documents.

Template	Variable		
Parameter	Type Alias	Names	Description

Table 2: Naming Conventions for Types and Variables

5 Algorithm Selection

When determining the algorithms to propose we split them into different tiers. Tier 1 algorithms are included in this proposal. The algorithms selected are a result of balancing a few things:

- Include a rich enough set of algorithms for the library to be useful.
- Include algorithms with well-defined functionality and agreed-upon algorithmic description.
- Don't include so many that the proposal will get bogged down for years and years.

5.1 Tier 1 Algorithms

Shortest Paths
- Breadth-First search
- Dijkstra's algorithm
- Bellman-Ford
Clustering
- Triangle counting
Communities
- Label propagation
\section*{Components}
- Articulation points
- Connected components
- Biconnected components
- Kosaraju's Strongly CC
- Tarjan's Strongly CC
Directed Acyclic Graphs
- Topological sort

Maximal Independent Set

- Maximal independent set

Link Analysis

- Jaccard coefficient

Minimal Spanning Tree

- Kruskal's MST
- Prim's MST

Shortest Paths and Topological Sort are all single source with multiple targets.

5.2 Other Algorithms

Additional algorithms that were considered but not included in this proposal are shown in Table 3. Tier X algorithms are variations of shortest paths algorithms that complement the Single Source, Multiple Target algorithms in this proposal. It is assumed that future proposals will include them, thought the exact mix for each proposal will depend on feedback received and our experience with the current proposal.
Parallel versions of algorithms will also be considered, keeping in mind that not all algorithms benefit from parallelism.

6 Algorithm Concepts

The abstraction that is used for describing and analyzing almost all graph algorithms is the adjacency list. Naturally then implementations of graph algorithms in C++ will operate on a data structure representing an adjacency list. And generic algorithms will be written in terms of concepts that capture the essential operations that a concrete data structure must provide in order to be used as an abstraction of an adjacency list.

Most fundamentally (as illustrated above), an adjacency list is a collection of vertices, each of which has a collection of outgoing edges. In terms of existing $\mathrm{C}++$ concepts, we can consider an adjacency list to be a range of ranges (or, more specifically, a random access range of forward ranges). The outer range is the collection of vertices, and the inner ranges are the collections of outgoing edges.

```
template <class G, class WF, class DistanceValue, class Compare, class Combine>
concept basic_edge_weight_function = // e.g. weight(uv)
    is_arithmetic_v<DistanceValue> &&
    strict_weak_order<Compare, DistanceValue, DistanceValue> &&
    assignable_from<add_lvalue_reference_t<DistanceValue>,
        invoke_result_t<Combine, DistanceValue, invoke_result_t<WF, edge_reference_t<G>>>>>;
```

Tier 2	Tier 3	Tier X
All Pairs Shortest Paths	Jones Plassman	Single Source, Single Target: Shortest Paths Driver
Floyd-Warshall	Cores: k-cores	Single Source, Single Target: BFS
Johnson	Cores: k-truss	Single Source, Single Target: Dijkstra
Centrality: Betweenness Centrality	Subgraph Isomorphism	Single Source, Single Target: Bellman-Ford
Coloring: Greedy		Single Source, Single Target: Delta Stepping
Communities: Louvain		Multiple Source: Shortest Paths Driver
Connectivity: Minimum Cuts		Multiple Source: BFS
Transitive Closure		Multiple Source: Dijkstra
Flows: Edmunds Karp		Multiple Source: Bellman-Ford
Flows: Push Relabel	Multiple Source: Delta Stepping	
Flows: Boykov Kolmogorov		
Link Analysis: Adamic-Adar Index		Multiple Source, Single Target: Shortest Paths Driver
Pathfinding: A*		Multiple Source, Single Target: BFS
Best-first search		Multiple Source, Single Target: Dijkstra
		Multiple Source, Single Target: Bellman-Ford

Table 3: Other Algorithms

```
template <class G, class WF, class DistanceValue>
concept edge_weight_function = // e.g. weight(uv)
    is_arithmetic_v<invoke_result_t<WF, edge_reference_t<G>>> &&
    basic_edge_weight_function<G,
    WF,
    DistanceValue,
    less<DistanceValue>,
    plus<DistanceValue>>;
```


7 Shortest Paths

7.1 Unweighted Shortest Paths

7.1.1 Breadth-First Search, Single Source, Initialization

```
template <class DistanceValue>
constexpr auto breadth_first_search_invalid_distance() {
    return numeric_limits<DistanceValue>::max(); // exposition only
}
template <class DistanceValue>
constexpr auto breadth_first_search_zero() { return DistanceValue(); } // exposition only
template <class Distances>
constexpr void init_breadth_first_search(Distances& distances) {
    // exposition only
    ranges::fill(distances,
                            breadth_first_search_invalid_distance<ranges::range_value_t<Distances>>());
}
template <class Predecessors>
constexpr void init_breadth_first_search(Predecessors& predecessors) {
    // exposition only
    size_t i = 0;
```

```
for(auto& pred : predecessors)
    pred = i++;
}
```

Effects:

- Each predecessors[i] is initialized to i.

7.1.2 Breadth-First Search, Single Source

Compute the breadth-first path and associated distance from vertex source to all reachable vertices in graph .

Complexity	Directed? Yes	Cycles? No	Throws? No
$\mathcal{O}((\|E\|+\|V\|) \log \|V\|)$	Multi-edge? No	Self-loops Yes	

Note that complexity may be $\mathcal{O}(|E|+|V| \log |V|)$ for certain implementations.

```
template <index_adjacency_list G,
    ranges::random_access_range Distances,
    ranges::random_access_range Predecessors
    >
requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
    convertible_to<vertex_id_t<G>, ranges::range_value_t<Predecessors>>
void breadth_first_search(
    G&& g, // graph
    vertex_id_t<G> source, // starting vertex_id
    Distances& distances, // out: Distances[uid] of uid from source in number of edges
    Predecessors& predecessors) // out: predecessor[uid] of uid in path
template <index_adjacency_list G,
        ranges::random_access_range Distances
        >
requires is_arithmetic_v<ranges::range_value_t<Distances>>
void breadth_first_search(
    G&& g, // graph
    vertex_id_t<G> seed, // starting vertex_id
    Distances& distances) // out: Distances[uid] of uid from seed in number of edges
```


Preconditions:

- 0 <= source < num_vertices (graph).
- distances will be initialized with init_breadth_first_search.
- predecessors will be initialized with init_breadth_first_search.

Effects:

- If vertex with index i is reachable from vertex source, then distances[i] will contain the lowest number of edges from source to vertex i. Otherwise distances[i] will contain breadth_first_search_invalid_distance().
- If vertex with index i is reachable from vertex source, then predecessors [i] will contain the predecessor vertex of vertex i. Otherwise predecessors [i] will contain i.

7.2 Weighted Shortest Paths

7.2.1 Shortest Paths Initialization

```
template <class DistanceValue>
constexpr auto shortest_path_invalid_distance() {
    return numeric_limits<DistanceValue>::max(); // exposition only
}
template <class DistanceValue>
constexpr auto shortest_path_zero() { return DistanceValue(); } // exposition only
template <class Distances>
constexpr void init_shortest_paths(Distances& distances) {
    // exposition only
    ranges::fill(distances,
                            shortest_path_invalid_distance<ranges::range_value_t<Distances>>());
}
template <class Distances, class Predecessors>
constexpr void init_shortest_paths(Distances& distances, Predecessors& predecessors) {
    // exposition only
    init_shortest_paths_distances(distances);
    size_t i = 0;
    for(auto& pred : predecessors)
        pred = i++;
}
```


Effects: :

_ init_shortest_paths(distances) sets all elements in distance to shortest_path_invalid_distance()
_ init_shortest_paths(distances,predecessors) does the same as shortest_path_invalid_distance(distances) and sets predecessors[i] = i for i < size(predecessors).

Returns:

- shortest_path_invalid_distance() returns a sentinel value for an invalid distance, typically numeric_limits<DistanceValue>: :max () for numeric types.
- shortest_path_zero() returns a value for for a zero-length path, typically 0 for numeric types.

7.2.2 Dijkstra Single Source Shortest Paths and Shortest Distances

Compute the shortest path and associated distance from vertex source to all reachable vertices in graph using non-negative weights.

Complexity	Directed? Yes	Cycles? No	Throws? No
$\mathcal{O}((\|E\|+\|V\|) \log \|V\|)$	Multi-edge? No	Self-loops Yes	

Note that complexity may be $\mathcal{O}(|E|+|V| \log |V|)$ for certain implementations.
The following functions are split into the common and general cases, where the general cases allow the caller to specify Compare and Combine functions (e.g. less and add). Concepts and types from std::ranges don't include the namespace prefix for brevity and clarity of purpose.

```
template <index_adjacency_list G,
    ranges::random_access_range Distances,
    ranges::random_access_range Predecessors,
    class WF = function<ranges::range_value_t<Distances>(edge_reference_t<G>)>
    >
requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
    convertible_to<vertex_id_t<G>, ranges::range_value_t<Predecessors>> &&
    edge_weight_function<G, WF, ranges::range_value_t<Distances>>
```

```
void dijkstra_shortest_paths(
    G&& g, // graph
    vertex_id_t<G> source, // starting vertex_id
    Distances& distances, // out: Distances[uid] of uid from source
    Predecessors& predecessors, // out: predecessor[uid] of uid in path
    WF&& weight =
        [] (edge_reference_t<G> uv) { return ranges::range_value_t<Distances>(1); });
template <index_adjacency_list G,
        ranges::random_access_range Distances,
        class WF = function<ranges::range_value_t<Distances>(edge_reference_t<G>)>
        >
requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
        edge_weight_function<G, WF, ranges::range_value_t<Distances>>
void dijkstra_shortest_distances(
    G&& g, // graph
    vertex_id_t<G> seed, // starting vertex_id
    Distances& distances, // out: Distances[uid] of uid from seed
    WF&& weight =
                [] (edge_reference_t<G> uv) { return ranges::range_value_t<Distances>(1); });
template <index_adjacency_list G,
            ranges::random_access_range Distances,
            ranges::random_access_range Predecessors,
            class Compare,
            class Combine,
            class WF = function<ranges::range_value_t<Distances>(edge_reference_t<G>)>
            >
requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
            convertible_to<vertex_id_t<G>, ranges::range_value_t<Predecessors>> &&
            basic_edge_weight_function<G, WF, ranges::range_value_t<Distances>, Compare, Combine>
void dijkstra_shortest_paths(
    G&& g, // graph
    vertex_id_t<G> source, // starting vertex_id
    Distances& distances, // out: Distances[uid] of uid from source
    Predecessors& predecessors, // out: predecessor[uid] of uid in path
    Compare&& compare,
    Combine&& combine,
    WF&& weight = // default weight(uv) -> 1
            [] (edge_reference_t<G> uv) { return ranges::range_value_t<Distances>(1); });
template <index_adjacency_list G,
            ranges::random_access_range Distances,
            class Compare,
            class Combine,
            class WF = std::function<ranges::range_value_t<Distances>(edge_reference_t<G>)>
            >
requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
            basic_edge_weight_function<G, WF, ranges::range_value_t<Distances>, Compare, Combine>
void dijkstra_shortest_distances(
    G&& g, // graph
    vertex_id_t<G> seed, // starting vertex_id
    Distances& distances, // out: Distances[uid] of uid from seed
    Compare&& compare,
    Combine&& combine,
    WF&& weight = // default weight(uv) -> 1
            [] (edge_reference_t<G> uv) { return ranges::range_value_t<Distances> (1); } );
```


Mandates:

(1.1)

- The weight function w must return a non-negative value.

Preconditions:

- 0 <= source < num_vertices (graph).
- distances will be initialized with init_shortest_paths.
- predecessors will be initialized with init_shortest_paths.

Effects:

- If vertex with index i is reachable from vertex source, then distances [i] will contain the distance from source to vertex i. Otherwise distances[i] will contain shortest_path_invalid_distance().
- If vertex with index i is reachable from vertex source, then predecessors [i] will contain the predecessor vertex of vertex i. Otherwise predecessors [i] will contain i.
Remarks: Bellman-Ford Shortest Paths allows negative weights with the consequence of greater complexity.

7.2.3 Bellman-Ford Single Source Shortest Paths and Shortest Distances

Compute the shortest path and associated distance from vertex source to all reachable vertices in graph .

Complexity	Directed? Yes	Cycles? No	Throws? No
$\mathcal{O}(\|E\| \cdot\|V\|)$	Multi-edge? No	Self-loops Yes	

The following functions are split into the common and general cases, where the general cases allow the caller to specify Compare and Combine functions (e.g. less and add). Concepts and types from std::ranges don't include the namespace prefix for brevity and clarity of purpose.

```
template <index_adjacency_list G,
    ranges::random_access_range Distances,
    ranges::random_access_range Predecessors,
    class WF = function<ranges::range_value_t<Distances>(edge_reference_t<G>)>
        >
requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
    convertible_to<vertex_id_t<G>, ranges::range_value_t<Predecessors>> &&
    edge_weight_function<G, WF, ranges::range_value_t<Distances>>
void bellman_ford_shortest_paths(
    G&& g, // graph
    vertex_id_t<G> source, // starting vertex_id
    Distances& distances, // out: Distances[uid] of uid from source
    Predecessors& predecessors, // out: predecessor[uid] of uid in path
    WF&& weight =
            [] (edge_reference_t<G> uv) { return ranges::range_value_t<Distances> (1); })
template <index_adjacency_list G,
    ranges::random_access_range Distances,
    class WF = function<ranges::range_value_t<Distances>(edge_reference_t<G>)>
    >
requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
    edge_weight_function<G, WF, ranges::range_value_t<Distances>>
void bellman_ford_shortest_distances(
    G&& g, // graph
    vertex_id_t<G> seed, // starting vertex_id
    Distances& distances, // out: Distances[uid] of uid from seed
    WF&& weight =
            [] (edge_reference_t<G> uv) { return ranges::range_value_t<Distances>(1); });
```

```
template <index_adjacency_list G,
        ranges::random_access_range Distances,
        ranges::random_access_range Predecessors,
        class Compare,
        class Combine,
        class WF = function<ranges::range_value_t<Distances>(edge_reference_t<G>)>
        >
requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
        convertible_to<vertex_id_t<G>, ranges::range_value_t<Predecessors>> &&
        basic_edge_weight_function<G, WF, ranges::range_value_t<Distances>, Compare, Combine>
void bellman_ford_shortest_paths(
        G&& g, // graph
        vertex_id_t<G> source, // starting vertex_id
        Distances& distances, // out: Distances[uid] of uid from source
        Predecessors& predecessors, // out: predecessor[uid] of uid in path
        Compare&& compare,
        Combine&& combine,
        WF&& weight = // default weight(uv) -> 1
            [] (edge_reference_t<G> uv) { return ranges::range_value_t<Distances>(1); });
template <index_adjacency_list G,
        ranges::random_access_range Distances,
        class Compare,
        class Combine,
        class WF = function<ranges::range_value_t<Distances>(edge_reference_t<G>)>
        >
requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
        basic_edge_weight_function<G, WF, ranges::range_value_t<Distances>, Compare, Combine>
void bellman_ford_shortest_distances(
        G&& g, // graph
        vertex_id_t<G> seed, // starting vertex_id
        Distances& distances, // out: Distances[uid] of uid from seed
        Compare&& compare,
        Combine&& combine,
        WF&& weight = // default weight(uv) -> 1
            [] (edge_reference_t<G> uv) { return ranges::range_value_t<Distances>(1); });
```


Preconditions:

- 0 <= source < num_vertices (graph).
- distance will be initialized with init_shortest_paths.
- predecessors will be initialized with init_shortest_paths.

Effects:

- If vertex with index i is reachable from vertex source, then distances [i] will contain the distance from source to vertex i. Otherwise distances [i] will contain shortest_path_invalid_distance().
- If vertex with index i is reachable from vertex source, then predecessors [i] will contain the predecessor vertex of vertex i. Otherwise predecessors [i] will contain i.
Remarks:
- Unlike Dijkstra's algorithm, Bellman-Ford allows negative edge weights. Performance constraints limit this to smaller graphs.

8 Clustering

8.1 Triangle Counting

Compute the number of triangles in a graph.
$\left.\begin{array}{|c|l|l|l|}\hline \text { Complexity } & \begin{array}{l}\text { Directed? Yes } \\ \mathcal{O}\left(N^{3}\right)\end{array} & \begin{array}{l}\text { Cycles? No } \\ \text { Multi-edge? No }\end{array} & \text { Throws? No } \\ \text { Self-loops No }\end{array}\right]$

```
template <index_adjacency_list G>
size_t triangle_count(G&& g);
```

Returns: Number of triangles
Remarks: To avoid duplicate counting, only directed triangles of a certain orientation will be detected. If vertex_id(u)< vertex_id(v) < vertex_id(w), count triangle if graph contains edges uv, vw, uw .

9 Communities

9.1 Label Propagation

Propagate vertex labels by setting each vertex's label to the most popular label of its neighboring vertices. Every vertex voting on its new label represents one iteration of label propagation. Vertex voting order is randomized every iteration. The algorithm will iterate until label convergence, or optionally for a user specified number of iterations. Convergence occurs when no vertex label changes from the previous iteration. $\mathcal{O}(M)$ complexity is based on the complexity of one iteration, with number of iterations required for convergence considered small relative to graph size.

Some label propagation implementations use vertex ids as an initial labeling. This is not supported here because the label type can be more generic than the vertex id type. User is responsible for meaningful initial labeling.

Complexity	Directed? Yes	Cycles? Yes	Throws? No
$\mathcal{O}(M)$	Multi-edge? Yes	Self-loops Yes	

```
template <index_adjacency_list G,
    ranges::random_access_range Label,
    class Gen = default_random_engine,
    class T = size_t>
void label_propagation(G&& g,
    Label& label,
    Gen&& rng = default_random_engine {},
    T max_iters = numeric_limits<T>::max());
```


Preconditions:

- label contains initial vertex labels.
- rng is a random number generator for vertex voting order.
- max_iters is the maximum number of iterations of the label propagation, or equivalently the maximum distance a label will propagate from its starting vertex.

Effects: label [uid] is the label assignments of vertex id uid discovered by label propagation. Remarks: User is responsible for initial vertex labels.

Complexity	Directed? Yes	Cycles? Yes	Throws? No
$\mathcal{O}(M)$	Multi-edge? Yes	Self-loops Yes	

```
template <index_adjacency_list G,
    ranges::random_access_range Label,
    class Gen = default_random_engine
    class T = size_t>
void label_propagation(G&& g,
            Label& label,
            ranges::range_value_t<Label>& empty_label
            Gen&& rng = default_random_engine {},
            T max_iters = numeric_limits<T>::max());
```


10 Components

10.1 Articulation Points

Find articulation points, or cut vertices, which when removed disconnect the graph into multiple components. Time complexity based on Hopcroft-Tarjan algorithm.

Complexity	Directed? Yes	Cycles? Yes	Throws? No
$\mathcal{O}(\|E\|+\|V\|)$	Multi-edge? No	Self-loops Yes	

```
template <index_adjacency_list G, class Iter>
requires output_iterator<Iter, vertex_id_t<G>>
void articulation_points(G&& g, Iter cut_vertices);
```


Preconditions:

- Output iterator cut_vertices can be assigned vertices of type vertex_id_t<G> when dereferenced.

Effects:

- Output iterator cut_vertices contains articulation point vertices, those which removed increase the number of components of g.

10.2 BiConnected Components

Find the biconnected components, or maximal biconnected subgraphs of a graph, which are components that will remain connected if a vertex is removed. Time complexity based on Hopcroft-Tarjan algorithm.

Complexity	Directed? Yes	Cycles? Yes	Throws? No
$\mathcal{O}(\|E\|+\|V\|)$	Multi-edge? No	Self-loops Yes	

```
template <index_adjacency_list G,
    ranges::forward_range OuterContainer>
requires ranges::forward_range<ranges::range_value_t<OuterContainer>> &&
```

```
        integral<ranges::forward_range_t<ranges::forward_range_t<0uterContainer>>>
void biconnected_components(G&& g,
    OuterContainer& components);
```


10.3 Connected Components

Find weakly connected components of a graph. Weakly connected components are subgraphs where a path exists between all pairs of vertices when ignoring edge direction.

Complexity	Directed? No	Cycles? Yes	Throws? No
$\mathcal{O}(\|E\|+\|V\|)$	Multi-edge? No	Self-loops Yes	

```
template <index_adjacency_list G,
    ranges::random_access_range Component>
void connected_components(G&& g,
    Component& component);
```


Preconditions:

- size(component)>= num_vertices(g).

Effects:

- component [v] is the connected component id of vertex v .
- There is at least one Connected Component, with compondent id of 0 , for num_vertices $(\mathrm{g})>0$.

10.4 Strongly Connected Components

10.4.1 Kosaraju's SCC

Find strongly connected components of a graph using Kosaraju's algorithm. Strongly connected components are subgraphs where a path exists between all pairs of vertices.

Complexity	Directed? Yes	Cycles? Yes	Throws? No
$\mathcal{O}(\|E\|+\|V\|)$	Multi-edge? No	Self-loops Yes	

```
template <index_adjacency_list G,
    index_adjacency_list GT,
    ranges::random_access_range Component>
void strongly_connected_components(G&& g,
                                    GT&& g_t,
                        Component& component);
```

Preconditions:

- g_t is the transpose of g. Edge uv in g implies edge vu in g_t. num_vertices(g) equals num_vertices(g_t).
- size(component)>= num_vertices(g).

10.4.2 Tarjan's SCC

Find strongly connected components of a graph using Tarjan's algorithm. Strongly connected components are subgraphs where a path exists between all pairs of vertices.

Complexity	Directed? Yes	Cycles? Yes	Throws? No
$\mathcal{O}(\|E\|+\|V\|)$	Multi-edge? No	Self-loops Yes	

```
template <adjacency_list G,
    ranges::random_access_range Component>
requires ranges::random_access_range<vertex_range_t<G>> && integral<vertex_id_t<G>>
void strongly_connected_components(G&& g,
    Component& component);
```

Preconditions:

- size(component)>= num_vertices(g).

Effects:

- component[v] is the strongly connected component id of v .

11 Directed Acyclic Graphs

11.1 Topological Sort, Single Source

A linear ordering of vertices such that for every directed edge (u, v) from vertex u to vertex v, u comes before v in the ordering.

11.1.1 Initialization

```
template <class Predecessors>
constexpr void init_topological_sort(Predecessors& predecessors) {
    // exposition only
    size_t i = 0;
    for(auto& pred : predecessors)
        pred = i++;
}
```


Effects:

- Each predecessors[i] is initialized to i.

11.1.2 Topological Sort, Single Source

Complexity	Directed? Yes	Cycles? No	Throws? No
$\mathcal{O}(\|E\|+\|V\|)$	Multi-edge? No	Self-loops Yes	

```
template <index_adjacency_list G,
    class Predecessors>
void topological_sort(const G& graph,
            vertex_id_t<G> source,
            Predecessors& predecessors);
```


12 Maximal Independent Set

12.1 Maximal Independent Set

Find a maximally independent set of vertices in a graph starting from a seed vertex. An independent vertex set indicates no pair of vertices in the set are adjacent.
$\left.\begin{array}{|c|l|l|l|}\hline \text { Complexity } & \begin{array}{l}\text { Directed? Yes } \\ \mathcal{O}(|E|)\end{array} & \begin{array}{l}\text { Cycles? No } \\ \text { Multi-edge? No }\end{array} & \text { Throws? No } \\ \text { Self-loops No }\end{array}\right]$

```
template <index_adjacency_list G, class Iter>
requires output_iterator<Iter, vertex_id_t<G>>
void maximal_independent_set(G&& g, Iter mis, vertex_id_t<G> seed);
```

Preconditions:

- 0 <= seed < num_vertices (graph).
- mis output iterator can be assigned vertices of type vertex_id_t<G> when dereferenced.

Effects:

- Output iterator mis contains maximal independent set of vertices containing seed, which is a subset of vertices(graph).

13 Link Analysis

13.1 Jaccard Coefficient

Calculate the Jaccard coefficient of a graph
$\left.\begin{array}{|c|l|l|l|}\hline \text { Complexity } & \begin{array}{l}\text { Directed? Yes } \\ \mathcal{O}\left(|N|^{3}\right)\end{array} & \begin{array}{l}\text { Cycles? No } \\ \text { Multi-edge? No }\end{array} & \text { Throws? No } \\ \text { Self-loops No }\end{array}\right]$

```
template <index_adjacency_list G, typename OutOp, typename T = double>
requires is_invocable_v<OutOp, vertex_id_t<G>&, vertex_id_t<G>&, edge_reference_t<G>, T>
void jaccard_coefficient(G&& g, OutOp out);
```


Preconditions:

- out is an operator for setting the resulting Jaccard coefficient. This function is expected to be of the form out(vertex_id_t<G> uid, vertex_id_t<G> vid, edge_t<G> uv, T val).

Effects:

- For every pair of neighboring vertices (uid, vid), the function out is called, passing the vertex ids, the edge uv between them, and the calculated Jaccard coefficient.

14 Minimum Spanning Tree

14.1 Kruskal Minimum Spanning Tree

Find the minimum weight spanning tree of a graph using Kruskal's algorithm.
$\left.\begin{array}{|c|l|l|l|}\hline \text { Complexity } & \begin{array}{l}\text { Directed? Yes } \\ \mathcal{O}(|E|)\end{array} & \begin{array}{l}\text { Cycles? No } \\ \text { Multi-edge? No }\end{array} & \text { Throws? No } \\ \text { Self-loops No }\end{array}\right]$

```
template <edgelist::edgelist E, edgelist::edgelist T>
void kruskal(E&& e, T&& t);
template <edgelist::edgelist E, edgelist::edgelist T, CompareOp>
void kruskal(E&& e, T&& t, CompareOp compare);
```


14.2 Prim Minimum Spanning Tree

Find the minimum weight spanning tree of a graph using Prim's algorithm.

Complexity	Directed? No	Cycles? No	Throws? No
$\mathcal{O}(\|E\| \log \|V\|)$	Multi-edge? No	Self-loops No	

```
template <index_adjacency_list G,
    ranges::random_access_range Predecessor,
    ranges::random_access_range Weight>
void prim(G&& g, Predecessor& predecessor, Weight& weight, vertex_id_t<G> seed = 0);
template <index_adjacency_list G,
    ranges::random_access_range Predecessor,
    ranges::random_access_range Weight,
    class CompareOp>
void prim(G&& g,
    Predecessor& predecessor,
    Weight& weight,
    CompareOp compare,
    ranges::range_value_t<Weight> init_dist,
    vertex_id_t<G> seed = 0);
```

Preconditions:

- 0 <= seed < num_vertices (g).
- Size of weight and predecessor is greater than or equal to num_vertices (g).
- compare operator is a valid comparison operation on two edge values of type edge_value_t<G> which returns a bool.

Effects:

- predecessor [v] is the parent vertex of v in a tree rooted at seed and weight [v] is the value of the edge between v and predecessor [v] in the tree. When compare is < and init_dist==+inf, predecessor represents a minimum weight spanning tree.
- If predecessor and weight are not initialized by user, and the graph is not fully connected, predecessor [v] and weight [v] will be undefined for vertices not in the same connected component as seed.

Acknowledgements

Phil Ratzloff's time was made possible by SAS Institute.
Portions of Andrew Lumsdaine's time was supported by NSF Award OAC-1716828 and by the Segmented Global Address Space (SGAS) LDRD under the Data Model Convergence (DMC) initiative at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute under Contract DE-AC06-76RL01830.

Michael Wong's work is made possible by Codeplay Software Ltd., ISOCPP Foundation, Khronos and the Standards Council of Canada.

Muhammad Osama's time was made possible by Advanced Micro Devices, Inc.
The authors thank the members of SG19 and SG14 study groups for their invaluable input.

