
Graph Library: Background and Terminology
Document #: P3127r0
Date: 2024-02-05
Project: Programming Language C++
Audience: Library Evolution

SG19 Machine Learning
SG14 Game, Embedded, Low Latency
SG6 Numerics

Revises: P1709r5

Reply-to: Phil Ratzloff (SAS Institute)
phil.ratzloff@sas.com
Andrew Lumsdaine
lumsdaine@gmail.com

Contributors: Kevin Deweese
Muhammad Osama (AMD, Inc)
Jesun Firoz
Michael Wong (Codeplay)
Jens Maurer
Richard Dosselmann (University of Regina)
Matthew Galati (Amazon)

1

mailto:phil.ratzloff@sas.com
mailto:lumsdaine@gmail.com

© ISO/IEC P3127r0

1 Getting Started
This paper is one of several interrelated papers for a proposed Graph Library for the Standard C++ Library.
The Table 1 describes all the related papers.

Paper Status Description
P1709 Inactive Original proposal, now separated into the following papers.
P3126 Active Overview, describing the big picture of what we are proposing.
P3127 Active Background and Terminology providing the motivation, theoretical background and

terminology used across the other documents.
P3128 Active Algorithms covering the initial algorithms as well as the ones we’d like to see in the future.
P3129 Active Views has helpful views for traversing a graph.
P3130 Active Graph Container Interface is the core interface used for uniformly accessing graph data

structures by views and algorithms. It is also designed to easily adapt to existing graph data
structures.

P3131 Active Graph Containers describing a proposed high-performance compressed_graph container.
It also discusses how to use containers in the standard library to define a graph, and how to
adapt existing graph data structures.

Table 1: Graph Library Papers

Reading them in order will give the best overall picture. If you’re limited on time, you can use the following
guide to focus on the papers that are most relevant to your needs.

Reading Guide

— If you’re new to the Graph Library, we recommend starting with the Overview paper (P3126) to
understand focus and scope of our proposals.

— If you want to understand the theoretical background that underpins what we’re doing, you should
read the Background and Terminology paper (P3127).

— If you want to use the algorithms, you should read the Algorithms paper (P3128) and Graph Containers
paper (P3131).

— If you want to write new algorithms, you should read the Views paper (P3129), Graph Container Interface
paper (P3130) and Graph Containers paper (P3131). You’ll also want to review existing implementations
in the reference library for examples of how to write the algorithms.

— If you want to use your own graph container, you should read the Graph Container Interface paper
(P3130) and Graph Containers paper (P3131).

2 Revision History
P3127r0

— Split from the P1709r5 Overview and Introduction section and expanded with more details and examples.
Also added Getting Started section.

3 Naming Conventions
Table 2 shows the naming conventions used throughout the Graph Library documents.

§3.0 2

https://www.wg21.link/P3126
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3126
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3131
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3130
https://www.wg21.link/P3131

© ISO/IEC P3127r0

Template Variable
Parameter Type Alias Names Description
G Graph

graph_reference_t<G> g Graph reference
GV val Graph Value, value or reference
V vertex_t<G> Vertex

vertex_reference_t<G> u,v,x,y Vertex reference. u is the source (or only)
vertex. v is the target vertex.

VId vertex_id_t<G> uid,vid,seed Vertex id. uid is the source (or only) vertex
id. vid is the target vertex id.

VV vertex_value_t<G> val Vertex Value, value or reference. This can be
either the user-defined value on a vertex, or a
value returned by a function object (e.g. VVF)
that is related to the vertex.

VR vertex_range_t<G> ur,vr Vertex Range
VI vertex_iterator_t<G> ui,vi Vertex Iterator. ui is the source (or only)

vertex.
first,last vi is the target vertex.

VVF vvf Vertex Value Function: vvf(u) → vertex value,
or vvf(uid) → vertex value, depending on re-
quirements of the consume algorithm or view.

VProj vproj Vertex descriptor projection function: vproj(x
) → vertex_descriptor<VId,VV> .

partition_id_t<G> pid Partition id.
P Number of partitions.

PVR partition_vertex_range_t<G> pur,pvr Partition vertex range.
E edge_t<G> Edge

edge_reference_t<G> uv,vw Edge reference. uv is an edge from vertices u
to v . vw is an edge from vertices v to w .

EId edge_id_t<G> eid,uvid Edge id, a pair of vertex_ids.
EV edge_value_t<G> val Edge Value, value or reference. This can be

either the user-defined value on an edge, or a
value returned by a function object (e.g. EVF)
that is related to the edge.

ER vertex_edge_range_t<G> Edge Range for edges of a vertex
EI vertex_edge_iterator_t<G> uvi,vwi Edge Iterator for an edge of a vertex. uvi is

an iterator for an edge from vertices u to v .
vwi is an iterator for an edge from vertices v
to w .

EVF evf Edge Value Function: evf(uv) → edge value,
or evf(eid) → edge value, depending on the
requirements of the consuming algorithm or
view.

EProj eproj Edge descriptor projection function: eproj(x)
→ edge_descriptor<VId,Sourced,EV> .

PER partition_edge_range_t<G> Partition Edge Range for edges of a partition
vertex.

Table 2: Naming Conventions for Types and Variables

§3.0 3

© ISO/IEC P3127r0

4 Motivation
The original STL revolutionized the way that C++ programmers could apply algorithms to different kinds of
containers, by defining generic algorithms, realized via function templates. A hierarchy of iterators were the
mechanism by which algorithms could be made generic with respect to different kinds of containers, Named
requirements specified the valid expressions and associated types that algorithms required of their arguments. As
of C++20, we now have both ranges and concepts, which now provide language-based mechanisms for specifying
requirements for generic algorithms.

As powerful as the algorithms in the standard library are, the underlying basis for them is a range (or iterator
pair), which inherently can only specify a one-dimensional container. Iterator pairs (equiv. ranges) specify a
begin() and an end() and can move between those two limits in various ways, depending on the type of iterator.
As a result, important classes of problems that programmers are regularly faced with use structures that are not
one-dimensional containers, and so the standard library algorithms can’t be directly used. Multi-dimensional
arrays are an example of one such kind of data structure. Matrices do have the nice property that they (typically)
have the ability to be “raveled”, i.e., the data underlying the matrix can still be treated as a one-dimensional
container. Multi-dimensional arrays also have the property that, even though they can be thought of as hierarchical
containers, the hierarchy is uniform—an N-dimensional array is a container of N-1 dimensional arrays.

Another important problem domain that does not fit into the category of one-dimensional ranges is that of graph
algorithms and data structures. Graphs are a powerful abstraction for modeling relationships between entities
in a given problem domain, irrespective of what the actual entities are, and irrespective of what the actual
relationships are. In that sense, graphs are, by there very nature, generic. Graphs are a fundamental abstraction
in computer science, and are ubiquitous in real-world applications.

Any problem concerned with connectivity can be modeled as a graph. Just a small set of examples include
Internet routing, circuit partitioning and layout, finding the best route to take to a destination on map. There are
also relationships between entities that are inferred from large sets of data, for example the graph of consumers
who have purchased the same product, or who have viewed the same movie. Yet more interesting structures arise
(hypergraphs or k-partite graphs) can arise when we want to model relationships between diverse types of data,
such as the graph of consumers, the products they have purchased, and the vendors of the products. And, of
course, graphs play a critical role in multiple aspects of machine learning.

On the flip side of graph structures are the graph algorithms that are widely used for problems such as the above.
Well-known graph algorithms include breadth-first search, Dijkstra’s algorithm, connected components, and so
on. Because graphs can come from so many different problem domains, they will also be represented with many
different kinds of data structures. To make graph algorithms as usable as possible across arbitrary representation
requires application of the same principles that were used in the original STL: a collection of related algorithms
from a problem domain (in our case, graphs), minimizing the requirements imposed by the algorithms on their
arguments, systematically organizing the requirements, and realizing this framework of requirements in the form
of concepts.

There are also many uses of graphs that would not be met by a standard set of algorithms. A standardized
interface for graphs is eminently useful in such situations as well. In the most basic case, it would provide a
well-defined framework for development. But in keeping with the foundational goal of generic programming to
enable reuse, it would also empower users to develop and deploy their own reusable graph components. In the
best case, such algorithms would be available to the broader C++ programmer community.

Because graphs are so ubiquitous and so important to modern software systems, a standardized library of graph
algorithms and data structures would have enormous benefit to the C++ development community. This proposal
contains the specification of such a library, developed using the principles above.

5 Example: Six Degrees of Kevin Bacon
A classic example of the use of a graph algorithm is the game “The Six Degrees of Kevin Bacon.” The game is
played by connecting actors to each other through movies they have appeared in together. The goal is to find
the smallest number of movies that connect a given actor to Kevin Bacon. That number is called the “Bacon

§5.0 4

© ISO/IEC P3127r0

number” of the actor. Kevin Bacon himself has a Bacon number of 0. Since Kevin Bacon appeared with Tom
Cruise in “A Few Good Men”, Tom Cruise has a Bacon number of 1.

The following program computes the Bacon number for a small selection of actors.

std::vector<std::string> actors { "Tom Cruise", "Kevin Bacon", "Hugo Weaving",
"Carrie-Anne Moss", "Natalie Portman", "Jack Nicholson",
"Kelly McGillis", "Harrison Ford", "Sebastian Stan",
"Mila Kunis", "Michelle Pfeiffer", "Keanu Reeves",
"Julia Roberts" };

using G = std::vector<std::vector<int>>;
G costar_adjacency_list{

{1, 5, 6}, {7, 10, 0, 5, 12}, {4, 3, 11}, {2, 11}, {8, 9, 2, 12}, {0, 1}, {7, 0},
{6, 1, 10}, {4, 9}, {4, 8}, {7, 1}, {2, 3}, {1, 4} };

int main() {
std::vector<int> bacon_number(size(actors));

// 1 -> Kevin Bacon
for (auto&& [uid,vid] : basic_sourced_edges_bfs(costar_adjacency_list, 1)) {

bacon_number[vid] = bacon_number[uid] + 1;
}

for (int i = 0; i < size(actors); ++i) {
std::cout << actors[i] << " has Bacon number " << bacon_number[i] << std::endl;

}
}

Output:

Tom Cruise has Bacon number 1
Kevin Bacon has Bacon number 0
Hugo Weaving has Bacon number 3
Carrie-Anne Moss has Bacon number 4
Natalie Portman has Bacon number 2
Jack Nicholson has Bacon number 1
Kelly McGillis has Bacon number 2
Harrison Ford has Bacon number 1
Sebastian Stan has Bacon number 3
Mila Kunis has Bacon number 3
Michelle Pfeiffer has Bacon number 1
Keanu Reeves has Bacon number 4
Julia Roberts has Bacon number 1

In graph parlance, we are creating a graph where the vertices are actors and the edges are movies. The number
of movies that connect an actor to Kevin Bacon is the shortest path in the graph from Kevin Bacon to that actor.
In the example above, we compute shortest paths from Kevin Bacon to all other actors and print the results.
Note, however, that actor-actor relationships are not how data about actors is available in the wild (from IMDB,
for example). Rather, two types of relationships available are actor-movie and movie-actor. See Section 7 below.

6 Graph Background
For clarity, we briefly review some of the basic terminology of graphs. We use commonly accepted terminology
for graph data structures and algorithms and adopt the particular terminology used in the textbook by Cormen,
Leiserson, Rivest, and Stein (“CLRS”) [1].

§6.1 5

© ISO/IEC P3127r0

6.1 Basic Terminology
To model the relationships between entities, a graph G comprises two sets: a vertex set V , whose elements
correspond to the entities, and an edge set E, whose elements are pairs corresponding to elements in V that have
some relationship with each other. That is, if u and v are members of V that have some relationship that we wish
to capture, then there is a pair {u, v} in E. We can express that together V and E define a graph as G = {V, E}.

Two examples of graph models are shown in Figures 1a and 1b, which respectively model a network of routes
between and an electronic circuit. The figures show the domain-specific data to be modeled and the sets V and
E for each graph. Also shown for each graph is a node and link diagram, a commonly-used graphical1 notation.

SEA
MSP
SLC

DTW
ATL
BOS

MSP DTW
SEASLC

MSP SLC
BOS SLC
SEA BOS
BOS ATL
SEA MSP
BOS DTW

850
1357
1981
3835
4016
1523
2704
1191

SEA

MSP

BOS

SLC

DTW

ATL

850

1357

1981

3835

1523
2704

1191

Airport Distance (km)
<latexit sha1_base64="Qs4lx608We42x+Xrxviq/GN8r3M=">AAADgHicjVJdb9MwFHUTYFv46uCRBywmqj2UkkxCSBVIG6OChyGK+jVUV5XjusWq7US2gzRFedj7XuFn8c7v4AeA00UsoWNwFUv3XJ977slNwpgzbXz/e81xr12/sbG55d28dfvO3fr2vaGOEkXogEQ8Usch1pQzSQeGGU6PY0WxCDkdhcvD/H70mSrNItk3JzGdCLyQbM4INrY03a79RCFdMJlipfBJlirCM+8NbMCX9qAUDpuwA1EGERojLTDnesliLKJEmok3vOAhgc0nJdJe5yBr/kbvet0S6h0dltDr/qiEDvpHJfTqfS/769TOxVSvNLk6K1e3Cs0KpWogt7qiIOQ1GqiN2lfo5a1rernNSyiX61U3U7zhVXr5Sv5bL3f7D71iJfbxEJWz4otP6zt+y18FXE+CItnZ/3j27bT242F3WmdoFpFEUGkIx1qPAz82E6tmGOHUaieaxpgs8YKObSqxoHqSrv7UDD62lRmcR8oeaeCqWu5IeSL0E3tvPWee9Rb86WQ9Ge61gmct/4M1+QKcxyZ4AB6BXRCA52AfvAVdMADEmTtnzhfnq+u4u+5TNzinOrWi5z6ohNv+BaiXFBk=</latexit>

G = {V, E}
V = {SEA, MSP, SLC, DTW, ATL, BOS}
E = {{MSP, DTW}, {SLC, SEA},

{MSP, SLC}, {BOS, SLC},
{SEA, BOS}, {BOS, ATL},
{SEA, MSP}, {BOS, DTW}}

(a) An undirected graph representing airline routes between cities. Shown are the list of
airports (the vertices) and the list of routes between them (the edges). Also shown are a
node and link diagram and the set-based description.

AC

Vdd

n0 n1 n2
Vout

R2

C0

C1 R3
R0

R1

L1
0

n0

n2

Vdd

n1

Vout

<latexit sha1_base64="5u07uPE3WD0tnunKt0+HDPe2B+4=">AAAEEniclVPPa9swFFbt/eiyX2l33EUsLKQQgl1GN0oHhVG2YweLW4hMkGUlFZFkI8mDYPw39NJ/ZZcdNsauO+22/2ayYzInbdftgeB773vve08PKUo508bzfm047q3bd+5u3mvdf/Dw0eP21nagk0wROiQJT9RphDXlTNKhYYbT01RRLCJOT6LZm5I/+UiVZon8YOYpDQWeSjZhBBsbGm85PRTRKZM5VgrPi1wRXrQgfAu78LU9KIdBHx5BVECERkgLzLmesRSLJJMmtJkLC/7kI4HNmRK5V/SXOIjjhieblPSbzm6zKMlMcWPno2XnZah3bSe402/Sq2N5FY3QUqfbRfto/ybZUqQs7F1zi5r+F11vdRVr016xnJ3+f8t6f5WtdmR3XqsgKuP6ZbTG7Y438CqDl4Ffgw6o7Xjc/onihGSCSkM41nrke6kJrZxhhNOihTJNU0xmeEpHFkosqA7z6kkX8LmNxHCSKHukgVW0WZFjofVcRDazHF2vc2XwKm6UmcmrMGcyzQyVZNFoknFoElj+DxgzRYnhcwswUczOCskZVpgY+4vKJfjrV74Mgt2BvzfYe/+ic3hQr2MTPAXPQA/44CU4BO/AMRgC4pw7n5wvzlf3wv3sfnO/L1KdjbrmCVgx98dvn9Q2ww==</latexit>

G = {V, E}
V = {0, Vdd, n0, n1, n2, Vout}
E = {(n0, n1), (Vdd, 0),

(n0, Vdd), (n2, Vdd),
(0, n2), (n2, Vout),
(0, n0), (n2, n1)}

(b) A directed graph representing an electronic circuit. Shown in the circuit diagram are the labeled
circuit nodes (the vertices) and the circuit elements connecting the nodes (the edges). Since circuit
elements are oriented, we use a directed graph to model the circuit. Also shown are a node and link
diagram and the set-based description.

Figure 1: Graph models of an airline route system and of an electronic circuit.

6.2 Graph Representation: Enumerating the Vertices
To reason about graphs, and to write algorithms for them, we require a representation of the graph. We note
that a graph and its representation are not the same thing. It is therefore essential that we be precise about this
distinction as we develop a software library of graph algorithms and data structures2.

The representations that we will be using are familiar ones: adjacency matrix, edge list, and adjacency list. We
begin with a process that is so standard that we typically don’t even notice it, but it forms the foundation of
graph representations: we enumerate the vertices. That is, we assign an index to each element of V and write
V = {v0, v1, . . . vn−1}. Based on that enumeration, elements of E are expressed in the form {vi, vj}. Similarly,
we can enumerate the edges, and write E = {e0, e1, . . . em−1}, though the enumeration of E does not play a
role in standard representations of graphs. The number of elements in V is denoted by |V | and the number of
elements in E is denoted by |E|.

We summarize some remaining terminology about vertices and edges.

— An edge ek may be directed, denoted as the ordered pair ek = (vi, vj), or it may be undirected, denoted as
the (unordered) set ek = {vi, vj}. The edges in E are either all directed or all undirected, corresponding
respectively to a directed graph or to an undirected graph.

1An unfortunate collision of terminology.
2In fact, if we are to be completely precise, the library we are proposing is one of algorithms and data structures for graph

representations. We will make concessions to commonly accepted terminology, while precisely defining that terminology.

§6.2 6

© ISO/IEC P3127r0

— If the edge set E of a directed graph contains an edge ek = (vi, vj), then vertex vj is said to be adjacent to
vertex vi. The edge ek is an out-edge of vertex vi and an in-edge of vertex vj . Vertex vi is the source of
edge ek, while vj is the target of edge ek.

— If the edge set E of an undirected graph contains an edge ek = {vi, vj}, then ek is said to be incident on
the vertices vi and vj . Moreover, vertex vj is adjacent to vertex vi and vertex vi is adjacent to vertex vj .
The edge ek is an out-edge of both vi and vj and it is an in-edge of both vi and vj .

— The neighbors of a vertex vi are all the vertices vj that are adjacent to vi. The set of all of the neighbors is
the neighborhood of vi.

— A path as a sequence of vertices v0, v1, . . . , vk−1 such that there is an edge from v0 to v1, an edge from v1
to v2, and so on. That is, a path is a set of edges (vi, vi+1) ∈ E for i = 0, 1, . . . , k − 2.

6.3 Adjacency-Based Representations
We begin our development of graph representations with the almost universally-accepted definition of the
adjacency matrix representation of a graph. The adjacency matrix representation of a graph G is a |V | × |V |
matrix A = (aij) such that, respectively for a directed or undirected graph

aij =
{

1 if (vi, vj) ∈ E
0 otherwise aij = aji =

{
1 if (vi, vj) ∈ E
0 otherwise

That is, aij = 1 if and only if vj is adjacent to vi in the original graph G (hence the name “adjacency matrix“).
Here we can see why we said that the initial enumeration of V is foundational to representations: The adjacency
matrix is based solely on the indices used in that enumeration. It does not contain the vertices or edges themselves.

As a data structure to use for algorithms, the adjacency matrix is not very efficient, neither in terms of storage
(which, at |V | × |V | is prohibitive), nor for computation. Instead of storing the entire adjacency matrix, we can
simply store the index values of its non-zero elements. A sparse coordinate adjacency matrix is a container C of
pairs (i, j) for every aij in A. At first glance, it may seem that we have simply created a data structure C that
has a pair (i, j) if E in the original graph has an edge from vi to vj . This is true in the directed case. However,
in the undirected case, if there is an edge between vi and vj , then vi is adjacent to vj and vj is adjacent to vi. In
other words, if there is an edge between vi and vj in an undirected graph, then both the entries aij and aji are
equal to 13 — and therefore for a single edge between vi and vj , C contains two index pairs: (i, j) and (j, i). The
sparse coordinate representation is commonly known as edge list. However, we caution the reader that C does
not store edges, but rather indices and that, in the case that it represents an undirected graph, there is not a 1-1
correspondence between the edges in E and the contents of C.

Although the sparse coordinate adjacency matrix is much more efficient in terms of storage than the original
adjacency matrix, it isn’t as efficient as it could be. Much more importantly, it is not useful for the types of
operations used by most graph algorithms, which need to be able to get the set of neighbors of a given vertex
in constant time. To support this type of operation, we use a compressed sparse adjacency matrix, which is an
array J with |V | entries, where each J [i] is a linear container of indices {j} such that vj is a neighbor of vi in G.
That is j is contained in J [i] if and only if there is an edge (vi, vj) in E (or, equivalently, if there is a pair (i, j)
in C or, equivalently, if aij = 1)4. We note that if (vi, vj) is an edge in an undirected graph, J [i] will contain
j and J [j] will contain i. The common name for this data structure is adjacency list. Although this name is
problematic (for instance, it is not actually a list), it is so widely used that we also use it here—but we mean
specifically that an “adjacency list” is the compressed sparse adjacency matrix representation of a graph5. Again
we emphasize the distinction between a graph and its representation: An adjacency list J is not the same as the
graph G—it is a representation of G.

Illustrations of the adjacency-matrix representations of the airline route graph and the electronic circuit graph
are shown in Figures 2 and 3, respectively.

3That is, the adjacency matrix is symmetric.
4The compressed sparse adjacency matrix is identical to the compressed sparse row format from linear algebra
5We concede that “adjacency list” rolls off the tongue much more easily than “compressed sparse adjacency matrix representation

of a graph.”

§7.0 7

© ISO/IEC P3127r0

2
0
1
3
5
4

SLC
SEA
MSP
DTW
BOS
ATL

(a) An enumeration
of the airport graph
given in 1a.

<latexit sha1_base64="1hoyjL+Pxw3n2H6Xy3Mqwq+glp0=">AAAC5nicbVLLbtNAFB27PMrwaChLNiOqVKwiO20om0qlbFgWibSVYjcaT66TUcdja+a6UmSlezYsQIgta1Z8Czs+BomJE6Wk5kpndHTOfcwrKZS0GAS/PX/jzt179zcf0IePHj/Zaj3dPrV5aQT0Ra5yc55wC0pq6KNEBeeFAZ4lCs6Sy7dz/+wKjJW5/oDTAuKMj7VMpeDopGHrzxt2yCIFKQ5olMBY6gp5UipuZpWoY0bbAWMsdOg67DnsO/SoW3advABbIowi1mYBXYlrCbUZ0kbVTWX3pm3T3KNr4rq535wZrmb2aAR6tDoajYwcTzAetnaCTlAHa5JwSXaOLnavL378PD4Ztn5Fo1yUGWgUils7CIMC44oblEKB61taKLi45GMYOKp5Bjau6measbZTRizNjYNGVqv/VlQ8s3aaJS4z4zixt725+D9vUGL6Oq6kLkoELRaD0lIxzNn8zdlIGhCopo5wYaTbKxMTbrhA9zOou4Tw9pGb5LTbCV91eu/dbRyTRWyS5+QFeUlCckCOyDtyQvpEeML76H32vvgT/5P/1f+2SPW9Zc0zshb+97+jaMOM</latexit>

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 1 1
1 1 1

1 1
1

1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(b) The adjacency matrix rep-
resentation of the graph given
in Figure 1a, using the enumer-
ation given in Figure 2a.

5

5

2

4

2

0

5 3

0

1

1

5

2

3

01 5

5

2

4

2

0

53

0

1

1

5

2

3

0 1
<latexit sha1_base64="Ah9GC8B10eUvNcXFy3BDuKoxQk4=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYRCswp1ItLAI2FhGMB+QHGFvby9Zs7d77M4FQsh/sLFQxNb/Y+e/cZNcoYkPBh7vzTAzL0wFN+h5387a+sbm1nZhp7i7t39wWDo6bhqVacoaVAml2yExTHDJGshRsHaqGUlCwVrh8G7mt0ZMG67kI45TFiSkL3nMKUErNbujSKHplcpexZvDXSV+TsqQo94rfXUjRbOESaSCGNPxvRSDCdHIqWDTYjczLCV0SPqsY6kkCTPBZH7t1D23SuTGStuS6M7V3xMTkhgzTkLbmRAcmGVvJv7ndTKMb4IJl2mGTNLFojgTLip39robcc0oirElhGpub3XpgGhC0QZUtCH4yy+vkuZlxa9Wqg9X5dptHkcBTuEMLsCHa6jBPdShARSe4Ble4c1Rzovz7nwsWtecfOYE/sD5/AHNM49H</latexit>...

<latexit sha1_base64="Ah9GC8B10eUvNcXFy3BDuKoxQk4=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYRCswp1ItLAI2FhGMB+QHGFvby9Zs7d77M4FQsh/sLFQxNb/Y+e/cZNcoYkPBh7vzTAzL0wFN+h5387a+sbm1nZhp7i7t39wWDo6bhqVacoaVAml2yExTHDJGshRsHaqGUlCwVrh8G7mt0ZMG67kI45TFiSkL3nMKUErNbujSKHplcpexZvDXSV+TsqQo94rfXUjRbOESaSCGNPxvRSDCdHIqWDTYjczLCV0SPqsY6kkCTPBZH7t1D23SuTGStuS6M7V3xMTkhgzTkLbmRAcmGVvJv7ndTKMb4IJl2mGTNLFojgTLip39robcc0oirElhGpub3XpgGhC0QZUtCH4yy+vkuZlxa9Wqg9X5dptHkcBTuEMLsCHa6jBPdShARSe4Ble4c1Rzovz7nwsWtecfOYE/sD5/AHNM49H</latexit>...

(c) The coordinate
sparse adjacency ma-
trix representation
(shown split into two
columns).

51

04

0
1
2
3
4
5

32

2

2
0

50 1
51

5
3

(d) The compressed sparse adjacency
matrix representation.

Figure 2: Adjacency matrix representations of the airport graph model.

5

4

3

2

1

0

n2

Vout

n1

Vdd

n0

0

(a) An enumeration
of the circuit graph
given in 1b.

<latexit sha1_base64="VqOLaZbh6DafMzmfcMOrV3nlLxU=">AAAC5nicfVLLbhMxFPUMr2JeAZZsLKpUrKJx2gALkIpgwYJFkUhTKTOKPM6dxKrHM7LvIEWjfEA3LECILb/AF/AP7PgYJJxJSUsHcaVjH51zr69faamVwyj6GYSXLl+5em3rOr1x89btO5279w5dUVkJQ1nowh6lwoFWBoaoUMNRaUHkqYZRevxy5Y/eg3WqMO9wUUKSi5lRmZICvTTp/HrBnrNYQ4ZjGqcwU6ZGkVZa2GUtm1jSbsQY4x59j12PPY8B9cOOl3ea+Q94HLMui+iZcD6pMTltVZ2Zfdo2Nubu/8y9dk++MQc0BjPdHI3GVs3mmEw621EvaoK1CT8l2/sj9+r7m28nB5POj3hayCoHg1IL58Y8KjGphUUlNfh1KwelkMdiBmNPjcjBJXXzTEvW9cqUZYX1MMga9XxFLXLnFnnqM3OBc3fRW4n/8sYVZk+TWpmyQjBy3SirNMOCrd6cTZUFiXrhiZBW+b0yORdWSPQ/g/pL4BeP3CaH/R5/3Bu89bfxjKxjizwgD8kjwskTsk9ekwMyJDKQwUnwMfgUzsMP4efwyzo1DE5r7pO/Ivz6Gw08w1U=</latexit>

A =




1 1
1 1

1

1 1 1




(b) The adjacency matrix rep-
resentation of the graph given
in Figure 1b, using the enumer-
ation given in Figure 3a.

5
0
5
1
2
1

4
5
2
2
0
3

5
0

3
1

(c) The coordinate
sparse adjacency ma-
trix representation.

51

0

34

0
1
2
3
4
5

32

2

(d) The compressed sparse adjacency
matrix representation.

Figure 3: Adjacency matrix representations of the circuit graph model.

7 Bipartite Graphs
So far, we have been considering graphs where edges in E are pairs of vertices, which are taken from a single set
V . We refer to such a graph as a unipartite graph. But consider again the Kevin Bacon example. The source
for the information comprising the Kevin Bacon data is the Internet Movie Database (IMDB). However, the
IMDB does not contain any explicit information about the relationships between actors. Rather it contains files
of tabular data, one of which contains an entry for each movie with the list of actors that have appeared in that
movie, and another of which contains an entry for each actor with the list of movies that actor has appeared in
(“movie-actor” and “actor-movie” tables, respectively). Such tables are shown in Figure 4.6 Thus, a graph, as we
have defined it, cannot model the IMDB.

There is a small generalization we can make to the definition of graph that will result in a suitable abstraction
for modeling the IMDB. In particular, we need one set of vertices corresponding to actors, another set of vertices
corresponding to movies, and then a set of edges corresponding to the relationships between actors and movies.
There are two kinds of relationships to consider actors in movies or movies starring actors. To be well-defined, the
edge set may only contain one kind of relationship. To capture this kind of model, we define a structurally bipartite
graph H = {U, V, E}, where vertex sets U and V are enumerated U = {u0, u1, . . . , un0} and V = {v0, v1, . . . vn1},
and the edge set E consists of pairs (ui, vj) where ui is in U and vj is in V .

The adjacency matrix representation of a structurally bipartite graph is a |U | × |V | matrix A = (aij) such that,

aij =
{

1 if (vi, vj) ∈ E
0 otherwise

From this adjacency matrix representation we can readily construct coordinate and compressed sparse represen-
tations. The only structural difference between the representations of a structurally bipartite graph and that

6This is a greatly simplified version of the CSV files that actually comprise the IMDB. The full set of files is available for
non-commercial use at https://datasets.imdbws.com.

§7.0 8

https://datasets.imdbws.com

© ISO/IEC P3127r0

2

3

0

Hugo Weaving

Carrie-Ann Moss

Tom Cruise

Kelly McGillis

Natalie Portman

Kevin Bacon

5

4

1

(a) Table of ac-
tors.

V for Vendetta

A Few Good Men

Black Swan

Top Gun
2

0

3

1

The Matrix4

(b) Table of movies.

A Few Good Men

The Matrix
V for Vendetta, The Matrix

Black Swan, V for Vendetta

Top Gun, A Few Good Men

Natalie Portman

Kevin Bacon
Tom Cruise

Carrie-Ann Moss
Hugo Weaving

Top GunKelly McGillis

(c) A table of actors and movies they
have appeared in.

A Few Good Men

The Matrix

V for Vendetta
Top Gun

Tom Cruise, Kevin Bacon
Kelly McGillis, Tom Cruise

Carrie-Ann Moss, Hugo Weaving

Hugo Weaving, Natalie Portman
Black Swan Natalie Portman

(d) A table of movies with starring
actors.

Figure 4: Illustrative simplification of IMDB actor and movie data.

of a unipartite graph is that of vertex cardinality. That is, in a unipartite graph, edges map from V to V , and
hence the values in the left hand column and in the right hand column of a coordinate representation would
be in the same range: [0, |V |). However, for a structurally bipartite graph, this is no longer the case. Although
the coordinate representation still consists of pairs of vertex indices, the range of values in the left hand column
is [0, |U |), while in the right hand column it is [0, |V |). Similarly, the compressed representation will have |U |
entries, but the values stored in each entry may range from [0, |V |). We note that these are constraints on values,
not on structure.

0 0

1 5
10

11
2 2

3 4
42

33
24

10
1
2
3
4

5
0

1
2 4

43
2

(a) Coordinate and compressed sparse adjacency
representations for movies with their starring ac-
tors.

0 1

1 0
00

22
2 4

4 3
43

24
15

00
1
2
3
4

0
1

2
2 4
4
3

5 1
2

(b) Coordinate and compressed sparse adjacency
representations for actors and the movies they
have appeared in.

Figure 5: Sparse adjacency representations (edge lists and adjacency lists) for IMDB actor and movie data.

We distinguish a structurally bipartite graph from simply a bipartite graph because the former applies separate
enumerations to U and V . In customary graph terminology, a bipartite graph is one in which the vertices can
be partitioned into two disjoint sets, such that all of the edges in the graph only connect vertices from one set
to vertices of the other set. However, although the vertices are partitioned, they are still taken from the same
original vertex set V and have a single enumeration. Whether a graph can be partitioned in this way is a run-time
property inherent to the graph itself (which can be discovered with an appropriate algorithm). This is not a
natural way to model separate categories of entities, such as movies and actors, where entities are categorized
completely independently of each other and it is therefore most appropriate to have independent enumerations
for them. A structurally bipartite graph explicitly captures distinct vertex categories.

§8.0 9

© ISO/IEC P3127r0

8 Partitioned Graphs
In contrast to structurally bipartite graphs, there are certainly cases where one would want to maintain two
categories of entities, or otherwise distinguish the vertices, from the same vertex set. In that case, we would use
a partitioned graph, which we define as G = {V, E}, where the vertex set V consists of non-overlapping subsets,
i.e., V = {V0, V1, . . .} which we enumerate as V0 = {v0, v1, . . . , vn0−1}, V1 = {vn0, . . . , vn1−1} and so on. Each Vi

is a partition of V . The total enumeration of V is V = {v0, v1, . . . , vn−1}. Just as each Vi is a partition of V , the
enumeration of each Vi is a partitioning of the enumeration of V .

The edge set E still consists of edges (vi, vj) (or {vi, vj} where, in general, vi and vj may come from any partition.

We note that partitioned graphs are not restricted to two partitions—a partitioned graph can represent an
arbitrary number of partitions, i.e., a multipartite graph (a graph with multiple subsets of vertices such that edges
only go between subsets). While partitioned graphs can be used to model multipartite graphs, partitioned graphs
are not necessarily multipartite; edges can comprise vertices within a partition as well as well as across partitions.

9 From Data to Graph
9.1 Columnar Data
Here we show how one might create an unlabeled edge list from a table of data stored in a CSV file. The following
loads a list of directed edges from a CSV file (the values in each row are assumed to be separated by whitespace)7.
The elements of the first column are considered to be the source vertices and the elements of the second column
are the destination vertices. If the edges also had properties, the third column would contain the property values.
In this example, the edges are loaded into a vector of tuples, which meets the requirements of a (presumed)
sparse_coordinate concept.

auto sparse_coordinate edges = std::vector<std::tuple<vertex_id_t, vertex_id_t>;
auto input = std::ifstream ("input.csv");
vertex_id_t src, dst;
while (input >> src >> dst) {

edges.emplace_back (src, dst);
}

Similarly, we could load a list of undirected edges from a CSV file into a sparse_coordinate structure. Note that,
as discussed above, the coordinate sparse adjacency matrix representation (aka an edge list), contains an entry
(i, j) as well as an entry (j, i) for each undirected edge {vi, vj}. Hence, we add both (src, dst) and (dst, src)
to edges.

auto sparse_coordinate edges = std::vector<std::tuple<vertex_id_t, vertex_id_t, double> edges;
auto input = std::ifstream ("input.csv");
vertex_id_t src, dst;
double val;
while (input >> src >> dst >> val) {

edges.emplace_back (src, dst, val);
edges.emplace_back (dst, src, val);

}

These examples are meant to be illustrative and not necessarily comprehensive (nor efficient). There are, of
course, many ways to define containers that meet the requirements of the edge list concept and many ways to
create an edge list from columnar data.

9.2 Converting an Edge List to an Adjacency List
The following creates a compressed sparse representation (an adjacency list) from a coordinate sparse representation.
The adjacency list is represented as a std::vector<std::vector<vertex_id_t>>;

7We take a broad view of what a comma is.

§9.2 10

© ISO/IEC P3127r0

auto sparse_coordinate edges = std::vector<std::tuple<vertex_id_t, vertex_id_t>;
// Read the edges
auto sparse_compressed adj_list = std::vector<std::vector<vertex_id_t>>;
for (auto [src, dst] : edges) {

if (src >= adj_list.size()) {
adj_list.resize(src + 1);

}
adj_list[src].push_back (dst);

}

We note that the sparse_coordinate representation is agnostic as to whether it was originally created based on
directed edges or undirected edges. An optimization to the sparse coordinate representation would be to use a
packed coordinate representation, which would only maintain a single entry for each undirected edge. In that
case, we would need to have two complementary insertions into the adjacency list for each entry in the packed
coordinate representation.

The following example illustrates the use of a packed coordinate format to construct an adjacency list with an
edge property.

auto packed_sparse_coordinate edges = std::vector<std::tuple<vertex_id_t, vertex_id_t, double>>;
// Read the edges
auto compressed_sparse adj_list = std::vector<std::vector<std::tuple<vertex_id_t, double>>>(edges

.num_vertices();
for (auto [src, dst, val] : edges) {

adj_list[src].push_back (dst, val);
adj_list[dst].push_back (src, val);

}

Acknowledgements
Phil Ratzloff’s time was made possible by SAS Institute.

Portions of Andrew Lumsdaine’s time was supported by NSF Award OAC-1716828 and by the Segmented Global
Address Space (SGAS) LDRD under the Data Model Convergence (DMC) initiative at the U.S. Department
of Energy’s Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute
under Contract DE-AC06-76RL01830.

Michael Wong’s work is made possible by Codeplay Software Ltd., ISOCPP Foundation, Khronos and the
Standards Council of Canada.

Muhammad Osama’s time was made possible by Advanced Micro Devices, Inc.

The authors thank the members of SG19 and SG14 study groups for their invaluable input.

§9.2 11

© ISO/IEC P3127r0

References
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 4 ed.,

2022.

[2] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User Guide and Reference Manual.
Addison-Wesley Professional, Dec. 2001.

§9.2 12

	Getting Started
	Revision History
	Naming Conventions
	Motivation
	Example: Six Degrees of Kevin Bacon
	Graph Background
	Basic Terminology
	Graph Representation: Enumerating the Vertices
	Adjacency-Based Representations

	Bipartite Graphs
	Partitioned Graphs
	From Data to Graph
	Columnar Data
	Converting an Edge List to an Adjacency List

	Acknowledgements

