
noexcept(contract_assert(_))

Andrzej Krzemieński

akrzemi1.wordpress.com

P3114R0

2024-02-02

SG21

akrzemi1@gmail.com

2

Contradictory goals:

1. No technical reason to use assert().

2. No technical reason to invent one’s own assertion macro.

3. Contract annotations are for defining predicates, not for dodging
contracts design choices.

4. Adding contract annotation does not affect surrounding compile-
time semantics.

5. I want throwing violation handlers, because I know how to deal
with exceptions.

3

Contract annotations are for defining predicates, not for dodging
contracts design choices.

contract_assert(p(x));

desired:

not desired:

contract_assert {evaluate_in_build_mode_X, noexcept} (p(x));

4

Adding contract annotation does not affect surrounding compile-
time semantics.

template <int I>

Lib::X<I>::X(X&& r, int i = (contract_assert(I > 0), I)) noexcept;

std::is_nothrow_move_constructible<Lib::X<0>>

5

Not compiling controversial cases, reports the problem in the wrong
place

template <int I>

Lib::X<I>::X(X&& r, int i = f(I)) noexcept;

library:

programmer:

std::vector<Lib::X<0>> vec;

vec.push_back({}); // ok

6

Not compiling controversial cases, reports the problem in the wrong
place

template <int I>

Lib::X<I>::X(X&& r, int i = f((contract_assert(I > 0), I))) noexcept;

library:

programmer:

std::vector<Lib::X<0>> vec;

vec.push_back({}); // ERROR

7

Use cases for throwing violation handlers:

1. Detect bugs, but “never crash”.

2. Unit-testing defensive checks.

3. Try recovering, but OK to crash.

People who disable exceptions do not use noexcept.

8

Try recovering, but OK to crash.

▪ Works well today because we use different assertions than our
libraries:

▪ Our assertions throw – and we control them

▪ Other assertions are disabled

9

“noexcept returns true, but we still throw”

▪ Not acceptable

▪ You get a throw, but it becomes different mechanism than normal
exception handling

▪ Compromises expectation “use normal exceptions”.

▪ Exception handling means using noexcept for the strong
guarantee.

10

Proposal

▪ Either remove throwing violation handlers

▪ Or accept that they are throwing, and say that

	Slide 1: noexcept(contract_assert(_))
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

