
Document #:  P3113R0 
Date:               2024-02-01 
Audience:      SG21 (Contracts)

Contract assertions, the noexcept 
operator, and deduced exception 
specifications 

Timur Doumler



2Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Contracts MVP – The Final Boss



3Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Every C++ expression is: 

• either potentially-throwing 
• or not potentially-throwing 



4Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

[except.spec] 



5Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Every C++ expression is: 

• either potentially-throwing 
• or not potentially-throwing 

It matters in two situations: 

• result of noexcept(expr) 
• whether defaulted special member functions are noexcept 

(exception specification is deduced by the compiler) 



6Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Are contract assertions potentially-throwing? 



7Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Are contract assertions potentially-throwing? 

It doesn't matter for pre and post: 

noexcept(pre(f())      // ill-formed (pre/post are not expressions) 

struct X  
{ 
  X() pre(f()) = default;  // ill-formed (consensus in Kona) 
} 



8Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Are contract assertions potentially-throwing? 

It matters for contract_assert: 

noexcept(contract_assert(false));  // true or false? 



9Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Are contract assertions potentially-throwing? 

It matters for contract_assert: 

noexcept(contract_assert(false));  // true or false? 

noexcept((contract_assert(x.a()), x.b())); // true or false? 



10Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Are contract assertions potentially-throwing? 

It matters for contract_assert: 

noexcept(contract_assert(false));  // true or false? 

noexcept((contract_assert(x.a()), x.b())); // true or false? 

class B {  

  int i = (contract_assert(true), 17);     // default member initialiser 

  B(int j = (contract_assert(true), 34));  // default argument 

}; 

class D : B {};   // noexcept(D{}) true or false ? 



11Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Fact: contract_assert(x) can throw an exception. 



12Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Fact: contract_assert(x) can throw an exception. 

#include <contracts> 

using namespace std::contracts;  

handle_contract_violation(const contract_violation&) {  

  throw 666;  

}  

int main() {  

  contract_assert(false); // this statement throws an exception  

} 



13Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Design principle: "Concepts do not see Contracts" (P2932) 

Adding a contract annotation to an existing program must never 
alter the compile-time semantics of the program: 
• Whether a concept or constraint is satisfied 
• SFINAE 
• Overload resolution 
• which branch is taken by if constexpr 
• the result of operator noexcept 
• ... 



14Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Design principle: "Concepts do not see Contracts" (P2932) 

Adding a contract annotation to an existing program must never 
alter the compile-time semantics of the program: 
• Whether a concept or constraint is satisfied 
• SFINAE 
• Overload resolution 
• which branch is taken by if constexpr 
• the result of operator noexcept 
• ... 



15Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio



16Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Options 

1. Make contract_assert(x) potentially-throwing 
(P2969R0, option 3.1) 

   noexcept(contract_assert(false));  // -> false 

   noexcept((contract_assert(x.a()), x.b())); // -> false 

   class B {  
     int i = (contract_assert(true), 17);     // default member initialiser 
     B(int j = (contract_assert(true), 34));  // default argument 
   }; 
   class D : B {};   // noexcept(D{}) -> false 



17Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Options 

2. Make contract_assert(x) not potentially-throwing 
~ "operator noexcept assumes no contract violations happen" 
(P2969R0, option 3.2) 

   noexcept(contract_assert(false));  // -> true 

   noexcept((contract_assert(x.a()), x.b())); // -> true 

   class B {  
     int i = (contract_assert(true), 17);     // default member initialiser 
     B(int j = (contract_assert(true), 34));  // default argument 
   }; 
   class D : B {};   // noexcept(D{}) -> true 



18Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Options 

3. When determining if a set of expressions is potentially-throwing, CCAs 
are not considered. If there are no non-CCA expressions the query is ill-
formed. (P2932R2, proposal 7A) 

   noexcept(contract_assert(false));  // -> ill-formed, like noexcept() 

   noexcept((contract_assert(x.a()), x.b())); // -> true 

   class B {  
     int i = (contract_assert(true), 17);     // default member initialiser 
     B(int j = (contract_assert(true), 34));  // default argument 
   }; 
   class D : B {};   // noexcept(D{}) -> true 



19Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Options 

4. Allow both options, via an extra annotation 
(P2969R0, option 3.3) 

   int f(int i) pre (i > 0);          // potentially-throwing contract check  
   int g(int i) pre noexcept (i > 0); // non-throwing contract check 



20Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Options 

4. Allow both options, via an extra annotation 
(P2969R0, option 3.3) 

   int f(int i) pre (i > 0);          // potentially-throwing contract check  
   int g(int i) pre noexcept (i > 0); // non-throwing contract check 

   → not proposed; exact syntax and semantics unclear, no paper,  
           default case still violates Concepts do not see Contracts 



21Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Options 

5. Allow erroneously thrown exceptions to escape deduced non-throwing 
exception specifications 
(P2969R0, option 3.4) 



22Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Options 

5. Allow erroneously thrown exceptions to escape deduced non-throwing 
exception specifications 
(P2969R0, option 3.4) 
 
→ not proposed; we have SG21 consensus to not do this: 

Poll, 2023-05-18 
Throwing an exception from a contract violation handler shall invoke the usual 
exception semantics: stack unwinding occurs, and if a `noexcept` barrier is 
encountered during unwinding, std::terminate is called, as proposed in P2811. 

SF F N A SA 
10 7 2 0 0 

Result: Consensus



23Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Options 

6. contract_assert is neither potentially-throwing nor not potentially-
throwing. Any use of contract_assert in a situation where this must be 
determined is ill-formed. (P2969R0, option 3.5; P2832R2, proposal 7B) 



24Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Options 

6. contract_assert is neither potentially-throwing nor not potentially-
throwing. Any use of contract_assert in a situation where this must be 
determined is ill-formed. (P2969R0, option 3.5; P2832R2, proposal 7B) 
a. Make contract_assert a statement, not an expression 
b. Make it ill-formed if a contract_assert appears as a subexpression 

of the operand of noexcept or while deducing an exception 
specification 

c. Make it ill-formed if a contract_assert appears as a subexpression 
of the operand of noexcept or while deducing an exception 
specification, and no other subexpression is potentially-throwing 



25Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Options 

6. contract_assert is neither potentially-throwing nor not potentially-
throwing. Any use of contract_assert in a situation where this must be 
determined is ill-formed. (P2969R0, option 3.5; P2832R2, proposal 7B) 
a. Make contract_assert a statement, not an expression 
b. Make it ill-formed if a contract_assert appears as a subexpression 

of the operand of noexcept or while deducing an exception 
specification → not proposed 

c. Make it ill-formed if a contract_assert appears as a subexpression 
of the operand of noexcept or while deducing an exception 
specification, and no other subexpression is potentially-throwing 



26Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Options 

6a.  Make contract_assert a statement, not an expression

   noexcept(contract_assert(false));          // -> ill-formed 

   noexcept((contract_assert(x.a()), x.b())); // -> ill-formed 

   class B {  
     int i = (contract_assert(true), 17);     // -> ill-formed 
     B(int j = (contract_assert(true), 34));  // -> ill-formed 
   }; 



27Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Options 

6c.  Make it ill-formed if a contract_assert appears as a subexpression of  
       the operand of noexcept or while deducing an exception specification,  
       and no other subexpression is potentially-throwing 

   noexcept(contract_assert(false));              // -> ill-formed 

   noexcept((contract_assert(false), true));      // -> ill-formed 

   noexcept((contract_assert(false), throw 666)); // -> OK, returns false 



28Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Options 

7. Address the issue via coding guidelines or diagnostics  
•  with contract_assert potentially-throwing or not potentially-throwing 
•  with diagnostics being normative, recommended practice, or QoI



29Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Options 

7. Address the issue via coding guidelines or diagnostics  
•  with contract_assert potentially-throwing or not potentially-throwing 
•  with diagnostics being normative, recommended practice, or QoI 

→ not proposed; not really a solution as we still need to define the  
     normative behaviour



30Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Options 

8. Make contract_assert(x) not potentially-throwing and the contract-
violation handler always noexcept (P2969R0, option 3.7: "Remove 
support for throwing contract-violation handlers").



31Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Viable options – Overview 
1.   Make contract_assert(x) potentially-throwing 
2.   Make contract_assert(x) not potentially-throwing 
3.   When determining if a set of expressions is potentially-throwing,     
      contract_assert is not considered; if there are no expressions other  
      than contract_assert, the query is ill-formed 
6a. Make contract_assert a statement rather than an expression 
6c. contract_assert is neither potentially-throwing nor not potentially- 
      throwing; if a contract_assert appears as a subexpression of the      
      operand of noexcept or while deducing an exception specification, and  
      no other subexpression is potentially-throwing, the program is ill-formed. 
8.   Make contract_assert(x) not potentially-throwing and the contract- 
      violation handler always noexcept (= remove throwing violation handlers)



Instead of talking about solutions,  
let's talk about the underlying design goals and principles!

32Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

The Swan, The Pike, and The Crab 
– Fable by Ivan Krylov, 1814



33Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Desiderata for this problem: 
• Maximises teachability 
• Minimises chance of standardising 

something suboptimal 
• Concepts do not see Contracts (~ adding 

a contract assertion cannot silently 
switch behaviour of surrounding code) 

• Maximises consistency with existing 
language 

• Minimises cognitive dissonance with 
current understanding that noexcept(x) 
means "x will not throw" 

• Minimises making code ill-formed when 
adding Contracts to it 

• Minimises interaction between Contracts 
and exception handling (makes them 
orthogonal) 

• Minimises ability to write useless code 
• Maximises backward-compatible evolution of 

the language 
• Does not inject new code paths into existing 

code 
• Maximises compatibility with code bases 

that compile with exceptions turned off or 
have coding guidelines against using 
exceptions 

• Does not disenfranchise important use cases 
• Allows effective negative testing 
• Allows recovery (non-terminating non-

continuing violation handling)



34Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Desiderata for this problem: 
• Maximises teachability 
• Minimises chance of standardising 

something suboptimal 
• Concepts do not see Contracts (~ adding 

a contract assertion cannot silently 
switch behaviour of surrounding code) 

• Maximises consistency with existing 
language 

• Minimises cognitive dissonance with 
current understanding that noexcept(x) 
means "x will not throw" 

• Minimises making code ill-formed when 
adding Contracts to it 

• Minimises interaction between Contracts 
and exception handling (makes them 
orthogonal) 

• Minimises ability to write useless code 
• Maximises backward-compatible evolution of 

the language 
• Does not inject new code paths into existing 

code 
• Maximises compatibility with code bases 

that compile with exceptions turned off or 
have coding guidelines against using 
exceptions 

• Does not disenfranchise important use cases 
• Allows effective negative testing 
• Allows recovery (non-terminating non-

continuing violation handling)



35Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Desiderata for this problem: 
• Maximises teachability 
• Minimises chance of standardising 

something suboptimal 
• Concepts do not see Contracts (~ adding 

a contract assertion cannot silently 
switch behaviour of surrounding code) 

• Maximises consistency with existing 
language 

• Minimises cognitive dissonance with 
current understanding that noexcept(x) 
means "x will not throw" 

• Minimises making code ill-formed when 
adding Contracts to it 

• Minimises interaction between Contracts 
and exception handling (makes them 
orthogonal) 

• Minimises ability to write useless code 
• Maximises backward-compatible evolution of 

the language 
• Does not inject new code paths into existing 

code 
• Maximises compatibility with code bases 

that compile with exceptions turned off or 
have coding guidelines against using 
exceptions 

• Does not disenfranchise important use cases 
• Allows effective negative testing 
• Allows recovery (non-terminating non-

continuing violation handling)

These are the four 
properties which were referred to 

with words like "this is imperative", 
"people won't use Contracts", "I will 
vote against Contracts", "over my 

dead body", etc.



36Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

1. contract_assert 
is potentially-

throwing

2. contract_assert 
is not potentially-

throwing

3. contract_assert 
is not considered 
when determining 

exception spec

6a. Make 
contract_assert a 
statement, not an 

expression

6c. Determining 
exception spec of 
contract_assert is 

ill-formed

8. Remove 
support for 

throwing contract-
violation handlers

Concepts do not see 
Contracts ❌ ✅ ✅ ✅ ✅ ✅

noexcept(x) means  
"x will not throw" ✅ ❌ ❌ ✅ ⚠ ✅

Adding Contracts 
cannot make client 

code ill-formed
✅ ✅ ✅ ✅ ❌ ✅

Allows recovery  
(non-terminating  
non-continuing 

violation handling)
✅ ⚠ ⚠ ✅ ✅ ❌



37Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

1. contract_assert 
is potentially-

throwing

2. contract_assert 
is not potentially-

throwing

3. contract_assert 
is not considered 
when determining 

exception spec

6a. Make 
contract_assert a 
statement, not an 

expression

6c. Determining 
exception spec of 
contract_assert is 

ill-formed

8. Remove 
support for 

throwing contract-
violation handlers

Concepts do not see 
Contracts ❌ ✅ ✅ ✅ ✅ ✅

noexcept(x) means  
"x will not throw" ✅ ❌ ❌ ✅ ⚠ ✅

Adding Contracts 
cannot make client 

code ill-formed
✅ ✅ ✅ ✅ ❌ ✅

Allows recovery  
(non-terminating  
non-continuing 

violation handling)
✅ ⚠ ⚠ ✅ ✅ ❌

Unlike options 2 and 3, this 
does not subvert the 

meaning of noexcept(x), 
but it creates a new category 

of expressions for which 
noexcept(x) is ill-formed 



38Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

1. contract_assert 
is potentially-

throwing

2. contract_assert 
is not potentially-

throwing

3. contract_assert 
is not considered 
when determining 

exception spec

6a. Make 
contract_assert a 
statement, not an 

expression

6c. Determining 
exception spec of 
contract_assert is 

ill-formed

8. Remove 
support for 

throwing contract-
violation handlers

Concepts do not see 
Contracts ❌ ✅ ✅ ✅ ✅ ✅

noexcept(x) means  
"x will not throw" ✅ ❌ ❌ ✅ ⚠ ✅

Adding Contracts 
cannot make client 

code ill-formed
✅ ✅ ✅ ✅ ❌ ✅

Allows recovery  
(non-terminating  
non-continuing 

violation handling)
✅ ⚠ ⚠ ✅ ✅ ❌

Treating contract_assert as 
not potentially-throwing 

lands you in the 
noexcept(true) branch of 

algorithms such as 
push_back; throwing an 

exception in such a place is 
likely to lead to UB, reducing 
the usefulness of a throwing 
contract-violation handler.



39Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Desiderata for this problem: 
• Maximises teachability 
• Minimises chance of standardising 

something suboptimal 
• Concepts do not see Contracts (~ adding 

a contract assertion cannot silently 
switch behaviour of surrounding code) 

• Maximises consistency with existing 
language 

• Minimises cognitive dissonance with 
current understanding that noexcept(x) 
means "x will not throw" 

• Minimises making code ill-formed when 
adding Contracts to it 

• Minimises interaction between Contracts 
and exception handling (makes them 
orthogonal) 

• Minimises ability to write useless code 
• Maximises backward-compatible evolution of 

the language 
• Does not inject new code paths into existing 

code 
• Maximises compatibility with code bases 

that compile with exceptions turned off or 
have coding guidelines against using 
exceptions 

• Does not disenfranchise important use cases 
• Allows effective negative testing 
• Allows recovery (non-terminating non-

continuing violation handling)



40Copyright (c) Timur Doumler   |        @timur_audio   |    https://timur.audio

Possible language evolution paths

1. contract_assert 
is potentially-

throwing

2. contract_assert 
is not potentially-

throwing

3. contract_assert 
is not considered 
when determining 

exception spec

6c. determining 
exception spec of 
contract_assert is 

ill-formed

8. Remove support 
for throwing 

contract-violation 
handlers

6a. Make 
contract_assert a 
statement, not an 

expression


