
Differentiating potentially throwing and nonthrowing
violation handlers

Document #: P3101R0
Date: 2024-01-22
Project: Programming Language C++
Audience: SG21 (Contracts)
Reply-to:
Ran Regev <regev.ran@gmail.com>
Gašper Ažman <gasperazman@gmail.com>

Abstract
We propose a clarification of the specification of the noexcept specifier of the
::handle_contract_violation(const std::contracts::contract_violation&) function.

The current contract MVP proposal, [P2900R4, 3.5.7] states:

The Contract-Violation handler is a function named ::handle_contract_violation that is
attached to the global module. This function will be invoked when a contract violation is detected
at runtime. This function
– shall take a single argument of type const std::contracts::contract_violation&,
– shall return void,
– may or may not be noexcept [emphasis ours].

This document clarifies the meaning of the last point.

Proposal
This proposal clarifies the meaning of the value of the boolean expression

noexcept(
::handle_contract_violation(

std::declval<const std::contracts::contract_violation&>()
)

)

If the value is true, installing a throwing violation handler is ill-formed, and the above is the
recommended way for code to detect this implementation-defined property of the abstract
machine.

mailto:regev.ran@gmail.com
mailto:gasperazman@gmail.com


A compiler might choose to control the noexcept-ness of the violation handler with a compiler
flag, for example -fthrowing-violation-handler.

We feel the final point in P2900R4 is insufficiently clear; we propose to change it from

– may or may not be noexcept.

To

- It is implementation defined whether ::handle_contract_violation(const
std::contracts::contract_violation&) is marked noexcept. [Note: this is the
primary means for an implementation to expose the possibility a throwing violation
handler to user code -- end note]

Motivation
A throwing contact handler may be useful and even necessary in known situations already
discussed in P2900.

Conversely, a piece of code might not be designed to work with exceptions at all. Such code
might want to static_assert() that the contract violation handler cannot throw; other code
might be able to optimize based on the knowledge of that fact (if constexpr-gated RAII
cleanup, for instance).

This paper details why we believe that giving the programmer the ability to reason about
exceptions being thrown from the handler at constexpr-time is crucial, and why.

We also want to encourage implementation to default to marking the handler function
noexcept, and specify how they will handle linking units with differing choices for this option
(this is out of the scope of the standard). One would hope that making the noexcept and
non-noexcept symbols conflict at link-time would help with ODR-violations arising from
incongruent compilation configuration.

Examples

Code relying on non-throwing sections
Consider a piece of code of the form

auto resource = acquire_resource(); // non-RAII resource handle
f(resource); // known not to throw
release(resource);



This code is correct, but not exception-safe.

If we add a precondition on f, this code becomes incorrect in the presence of a
potentially-throwing handler, if we ever want to continue with program execution after catching
the exception thrown by the handler at a higher level (this is the motivation for throwing
handlers, after all).

This code can be made correct by the inclusion of

static_assert(
noexcept(

::handle_contract_violation(
declval<const contract_violation&>()

)
)

);

Adaptive library code
Code might want to selectively adapt to cleanup-upon-exception.

auto guard = [&]
{

auto const handler_may_throw =
not noexcept(

::handle_contract_violation(
declval<const contract_violation&>()

)
);

if constexpr (handler_may_throw)
{

return on_scope_error([&]
{

release(resource);
});

}
else
{

return 0;
}

}();

The above code only installs a cleanup handler if a violation handler can throw, otherwise it
leaves a clean instruction stream, because that is the only possible source of an exceptional exit
from the scope.



Code that expects a closed set of exceptions
Code that expects a closed set of exception types becomes incorrect in the presence of a
throwing violation handler (it opens the set of possible exceptions).

try
{

auto resource = acquire_resource();
try
{

send_to_queue(resource);
}
catch(queue_full const&)
{

release(resource);
} // all possible exceptions are handled… or are they?

}
catch (...)
{
// handle acquire_resource() errors
// swallows send_to_queue contract violation exception by accident

}

Interfaces that want to be violation-tolerant in noexcept specifications
Code that advertises that signals failure through non-exceptional means through noexcept might
want to be extra truthful for the benefit of code composition.

std::expected<...> f(args) noexcept;

Might want to advertise its interface as

std::expected<...> f(args) noexcept(handler_may_throw);

instead, to prevent f being used as a callback in APIs that enforce noexcept function pointers
because they cannot deal with throwing callbacks (example: threadpool submission queues).

References
[P2932R2, 3.7] - https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2932r2.pdf
[P2900R4, 3.5.7] - https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2900r4.pdf

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2932r2.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2900r4.pdf

